+ All Categories
Home > Documents > Searching for Anomalous Extra Z’ at the LHC

Searching for Anomalous Extra Z’ at the LHC

Date post: 05-Jan-2016
Category:
Upload: kolina
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Searching for Anomalous Extra Z’ at the LHC. Claudio Coriano’ Universita’ del Salento INFN, Lecce. Based on work in collaboration with N. Irges (Crete), M.Guzzi (Lecce), S. Morelli (Lecce), R. Armillis (Lecce) Olympia, April 2008. original formulation with Irges and E. Kiritsis - PowerPoint PPT Presentation
Popular Tags:
64
Searching for Anomalous Extra Z’ at the LHC Claudio Coriano’ Universita’ del Salento INFN, Lecce Based on work in collaboration with N. Irges (Crete), M.Guzzi (Lecce), S. Morelli (Lecce), R. Armillis (Lecce) Olympia, April 2008
Transcript
Page 1: Searching for Anomalous Extra Z’ at the LHC

Searching for Anomalous Extra Z’ at the LHC

Claudio Coriano’

Universita’ del Salento

INFN, Lecce

Based on work in collaboration with

N. Irges (Crete), M.Guzzi (Lecce), S. Morelli (Lecce), R. Armillis (Lecce)

Olympia, April 2008

Page 2: Searching for Anomalous Extra Z’ at the LHC

original formulation with Irges and E. Kiritsis“On the effective theory of low scale orientifold string vacua”. Introduction of the Axi-Higgs

Nucl.Phys.B 746, 2006.

Page 3: Searching for Anomalous Extra Z’ at the LHC

“Stuckelberg Axions and the Effective Action of Anomalous Abelian Models”

“Windows over a new Low energy Axion” hep-ph/0612140, Irges, C.C., Phys. Lett. B, 2007

2. A Unitarity analysis of the Higgs-axion mixing.hep-ph/0701010Irges, Morelli, C.C., JHEP 2007

3.“A SU(3) x SU(2) x U(1)Y x U(1)B model and its signature at the LHC”hep-ph/0703127, Irges, Morelli, C.C., Nucl. Phys B 2008

4.”Trilinear gauge interactions..” M. Guzzi, R. Armillis, S. Morelli, JHEP 2008

5. “Unitarity Bound for anomalous gauge interactions and the GS mechanism”, Guzzi, Morelli, C.C., EPJ C 2008 Plus work in prgress with Nikos Irges

Page 4: Searching for Anomalous Extra Z’ at the LHC

OUTLINESearching for some extra neutral interactions at the Large Hadron Collider involves a combined effort from two sides:

1) Precise determination of the signal, which should allow also a discrimination of any specific model compared to other models 2) Precise determination of the SM background. at a hadron collider this is a very difficult enterprise “even with the best intentions” (NNLO QCD)

“Extra Z’s” come from many extensions of the Standard Model However, some of these U(1) are anomalous, and invoke a mechanism of cancelation of the anomalies that requires an axion. What is the effective field theory of these U(1)’s and how can they, eventually, be found?

Page 5: Searching for Anomalous Extra Z’ at the LHC

Goal: to study the effective field theory of a class of brane models containing a gauge structure of the form SM x U(1) x U(1) x U(1) SU(3) x SU(2) x U(1)Y x U(1)…..from which the hypercharge is assigned in a given string construction, corresponding to a certain class of vacua in string theory (Minimal Low Scale orientifold Models).

These models are the object of an intense scrutiny by many groups working on intersecting branes. Antoniadis, Kiritsis, Rizos, Tomaras

Antoniadis, Leontaris, RizosIbanez, Marchesano, Rabadan,Ghilencea, Ibanez, Irges, QuevedoSee. E. Kiritsis’ review on Phys. Rep.

Blumenhagen, Kors, Lust, Stieberger recent work by G. Leontaris and Coll.

Page 6: Searching for Anomalous Extra Z’ at the LHC

Simplified approach: 1) these neutral interactions and the corresponding anomalous generators decouple at LHC energies: we won’t see anything.

Then: string theory predictions simply “overlap” with those coming from the “large array” of U(1)’s We don’t need to worry about the axion, and its mixing with the remaining scalars of the SM.

Complete approach: 2) We don’t decouple the anomalous U(1) completely, The anomalous generators are kept: Interesting implications for ANOMALOUS GAUGE INTERACTIONS with hopes to detect an anomalous U(1)

Page 7: Searching for Anomalous Extra Z’ at the LHC

Gluon sector

Irges, Morelli, C.C.

Page 8: Searching for Anomalous Extra Z’ at the LHC

ALTERNATIVE MECHANISMS OF ANOMALY CANCELATION

Page 9: Searching for Anomalous Extra Z’ at the LHC

What is the anomaly cancelation mechanism at the LHC

Fermion charge assignment (anomaly free)Wess-Zumino (anomalous) + physical axion (axion-like particle)

Green Schwarz (physical/unphysical axion ? Is it consistent with unitarity?)

GS involves a re-definition of the anomalous vertices of a given theory

Wess Zumino: axion

GS cancelation: the problem with double poles

Armillis, Guzzi, C.C., in preparationin supersymmetry: no physical axion

Page 10: Searching for Anomalous Extra Z’ at the LHC

Diagrams responsible for extra double poles

Unsettled debate:Adam, Bassetto, Soldati, Andrianov,Federbush, Fosco, Montemajor

The conclusions of these papers should be reconsidered: there is a cancelation of double poles, at least through 3-loop order (Armillis, Guzzi, Morelli, C.C., in prep)

Page 11: Searching for Anomalous Extra Z’ at the LHC

QuickTime™ and a decompressor

are needed to see this picture. QuickTime™ and a decompressor

are needed to see this picture.

1992

This paper was withdrawn.

Page 12: Searching for Anomalous Extra Z’ at the LHC

How do we search for extra U(1)’s at the LHC ? Golden plated process: Drell-Yan lepton pair production but also other s-channel processes

These models, being anomalous, involve “anomalous gauge interactions”

Page 13: Searching for Anomalous Extra Z’ at the LHC

General features of the model

Number of axions = Number of anomalous U(1)

Two Higgs-doublets

Anomalies canceled by 1) charge assignments + CS + GS

These features are best illustrated in the context of a simple model with just 1 extra U(1)

SU(3) x SU(2) x U(1) xU(1)) SU(3) x SU(2) x U(1, Y) x U(1)’)

Page 14: Searching for Anomalous Extra Z’ at the LHC

B gets mass by the combined Higgs-Stuckelberg Mechanism and is chirally coupled

U(1)Ax U(1)B

Page 15: Searching for Anomalous Extra Z’ at the LHC

Stuckelberg mass

the axion is a Goldstone (if B does not gets also its mass via ewsb)

shift

The Stueckelberg shifts like the phase of a Higgs field

Page 16: Searching for Anomalous Extra Z’ at the LHC

These effective models have 2 broken phases 1) A Stuckelberg phase 2) A Higgs-Stuckelberg phase

In the first case the axion b is a Goldstone boson in the second phase, there is a Higgs-axion mixing if the Higgs is charged under the anomalous U(1)

Physical axion

Goldstone boson

Page 17: Searching for Anomalous Extra Z’ at the LHC

PQ breaking potentials give mass to the Axi-Higgs. This is due to the “competition” between of ewsb (v) and the extra PQ breaking potential.It can be driven to be quite small.

One can add an additional potential which includes the Stuckelbergs axions

Page 18: Searching for Anomalous Extra Z’ at the LHC

Bouchiat, Iliopoulos, Meyer Amplitudes. Gauge independence of the S-matrix. Work in a specific gauge and select the phase

CS interaction

WZ

Irges, Morelli, C.C.

Chern Simons Interactions. They appear in some special situations.In multiple Z’ models (Z1,Z2,Z3) where the partial anomalies can be distributed among the 3 anomalous vertices

Page 19: Searching for Anomalous Extra Z’ at the LHC

One can start with a symmetric distributionOf the anomaly and then correct by Chern-Simons interactions. Z gamma gamma does not have any CS term

Page 20: Searching for Anomalous Extra Z’ at the LHC

These have been computed

Armillis, Guzzi, C.C., JHEP 2008

Typical anomaly diagram

R= product of rotation matrices, theta’s=chiral asymmetry of the fermion spectrum respect to the anomalous U(1)’s

Page 21: Searching for Anomalous Extra Z’ at the LHC

The CS terms, in this case, take part in the defining Slavnov-Taylor identities of the model in the presence Of anomalous contributions and aFF coupling

Armillis, Guzzi, C.C., 2007

Page 22: Searching for Anomalous Extra Z’ at the LHC

Check of gauge independence in the 2 phases (3 loop)

In the Stuckelberg phase: cured by the axion b

In the HS phase: cured by the Goldstone GB

Page 23: Searching for Anomalous Extra Z’ at the LHC

Checks in the fermionic sector.

These are the typical classes of diagrams one needs to worry about.

Page 24: Searching for Anomalous Extra Z’ at the LHC

Compared to a Peccei-Quinn axion, the new axion is gauged

For a PQ axion a: m = C/fa, while the aFF interaction is also suppressed by : a/fa FF with fa = 10^9 GeV In the case of these models, the mass of the axion and its gauge interactions are unrelated

the mass is generated by the combination of the Higgs and the Stuckelberg mechanisms combined The interaction is controlled by the Stuckelberg mass (M1)

The axion shares the properties of a CP odd scalar

Page 25: Searching for Anomalous Extra Z’ at the LHC

In WZ anomaly cancelation:

The axion can be massless (light) or massive. However, in the simplest formulation of the theory, there is a unitarity bound, one needs higher dimensional operators (Irges, C.C.)The Stuckelberg mass term in the lagrangean is crucial for having a physical massless axion.

The axion could be the result of a “partial decoupling of a heavy fermion” (Irges, C.C., PLB 2007).

In the GS case: no physical axion, at least in the supersymmetric case.

Page 26: Searching for Anomalous Extra Z’ at the LHC

with Guzzi and Morelli

QuickTime™ and a decompressor

are needed to see this picture.

One or two axions?

Page 27: Searching for Anomalous Extra Z’ at the LHC

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

QuickTime™ and a decompressor

are needed to see this picture.

Page 28: Searching for Anomalous Extra Z’ at the LHC

ONE CAN INTEGRATE OUT THE AXION IN THE WZ CASE. WE WOULD OBTAIN A THEORY DIFFERENT FROM GS

EXTRA INTERACTIONSCOMPAREDTO GS

Page 29: Searching for Anomalous Extra Z’ at the LHC
Page 30: Searching for Anomalous Extra Z’ at the LHC

The SU(3)xSU(2)xU(1)xU(1) Modelkinetic

L/R fermion

Stueckelberg

CS

Higgs-axion mixing

GS

Higgs doublets

Irges, Kiritsis, C.

Page 31: Searching for Anomalous Extra Z’ at the LHC

The VERY MINIMAL MODEL

2 Higgs doublets

Page 32: Searching for Anomalous Extra Z’ at the LHC

The neutral sector shows a mixing between W3, hypercharge and the anomalous gauge boson, B

The Higgs covariant derivatives responsible for the gauge boson mixing together with the Stueckelberg terms

V/M drives the breaking

vu, vd << M

Page 33: Searching for Anomalous Extra Z’ at the LHC

No v/M corrections on firstrow

SM-like

1/M

O(M)

Page 34: Searching for Anomalous Extra Z’ at the LHC

CP even

CP odd

Page 35: Searching for Anomalous Extra Z’ at the LHC

CP odd Sector. Where the physical axion appears

2 GoldstonesWe need to identify the goldstones of the physical gauge bosons

Axi-Higgs projection vanishes

Page 36: Searching for Anomalous Extra Z’ at the LHC

GS Axions

1 physical axion, The Axi-Higgs

N Nambu-Goldstone modes

Page 37: Searching for Anomalous Extra Z’ at the LHC

Some properties of the axi-Higgs: Yukawa couplings

Induces the decay of the Axi-Higgs, similar to Higgs decay

Page 38: Searching for Anomalous Extra Z’ at the LHC

3-linear interactions of the gauge fields

Page 39: Searching for Anomalous Extra Z’ at the LHC

Moving to the broken phase, the axion has to be rotated into its physical component, theAxi-Higgs and the Goldstones

Page 40: Searching for Anomalous Extra Z’ at the LHC

M. Guzzi, S. Morelli, C.C : axi-higgs decay into 2 photons

Page 41: Searching for Anomalous Extra Z’ at the LHC

The detection of Extra Z’ in this framework

Page 42: Searching for Anomalous Extra Z’ at the LHC

NNLO Drell-Yan is sensitive to the anomaly inflow

2-loop technology (master integrals and such well Developed tools) You need to add a new class of Contributions, usually neglected for anomaly-free models

Page 43: Searching for Anomalous Extra Z’ at the LHC

Factorization Theorems

Page 44: Searching for Anomalous Extra Z’ at the LHC

High precisio determination of the renormalization/factorization scale dependence of the pdf’s

Cafarella, Guzzi, C.C., NPB 2006

Truncated, Singlet and non-singlet

Exact , non singlet

Solved by CANDIA (Cafarella, Guzzi, C.C.)

Page 45: Searching for Anomalous Extra Z’ at the LHC

Precision QCD: NNLO effects within 3%in Drell-Yan

Page 46: Searching for Anomalous Extra Z’ at the LHC
Page 47: Searching for Anomalous Extra Z’ at the LHC

Neutral current sector Why it is important and how to detect it at the LHC

To discover neutral currents at the LHC, we need to know the QCD background with very high accuracy.

Much more so if the resonance is in the higher-end in mass (5 TeV).

NNLO in the parton model

Guzzi, Cafarella, C.C.

Page 48: Searching for Anomalous Extra Z’ at the LHC

600 GeV

400 GeV, 14 TeV

QCD “error” around 2-3 %

Reduction by 60 %

Guzzi, Cafarella, C.

Page 49: Searching for Anomalous Extra Z’ at the LHC

Anomaly Effects in Extra Z’ models:

Drell-Yan is resonant

Double prompt photon production is non-resonant and non-unitary (in the WZ case)

Bouchiat-Iliopoulos-Meyer amplitudes (BIM amplitudes) The WZ mechanism does not protect the theory from the non-unitary behaviour of these amplitudes

Guzzi, Morelli, C.C., 2008

The anomaly erases the pole This diagrams is IR UV finite: the amplitude takes the Dolgov-Zakharov form

Page 50: Searching for Anomalous Extra Z’ at the LHC

2-photon processes

New anomalous contributions in 2-photons

Page 51: Searching for Anomalous Extra Z’ at the LHC

with Armillis, Guzzi, Morelli,

Page 52: Searching for Anomalous Extra Z’ at the LHC

2 methods for anomaly cancelation

Wess-Zumino Green Schwarz

Green-Schwarz vertex: pole subtractions on the anomalous lines

Page 53: Searching for Anomalous Extra Z’ at the LHC

New anomalous corrections

Page 54: Searching for Anomalous Extra Z’ at the LHC

Untarity bound in the WZ case: gluon-gluon to gama gamma

Page 55: Searching for Anomalous Extra Z’ at the LHC

Unitarity bound for axion-like particles. Obtained from a parton level Analysis. Should be generalized at hadron level

M_1 is approximately the mass of the extra Z’.

Page 56: Searching for Anomalous Extra Z’ at the LHC

The two formulations are the WZ and the GS mechanisms for anomaly cancelation. Then, if we believe in the results from axial QED The GS mechanism fails to be unitary because of the extra double Poles. On the other hand also the WZ mechanism fails to be unitary, but in a different way: some amplitudes grow quadratically with energy

Page 57: Searching for Anomalous Extra Z’ at the LHC

Unitarity bound for axion-like particles (Guzzi, Morelli, C.C.)

Page 58: Searching for Anomalous Extra Z’ at the LHC

Armillis, Guzzi, Morelli, C.C, in preparation

Page 59: Searching for Anomalous Extra Z’ at the LHC

Drell Yan anomalous (partial) (Madrid Model, Ibanez et al, MLSOM)

MLSOM versus anomaly Free U(1)’s

Page 60: Searching for Anomalous Extra Z’ at the LHC

Armillis, Guzzi, Morelli, C.C.

Page 61: Searching for Anomalous Extra Z’ at the LHC

Withs are quite smallG has to be O(1)

Page 62: Searching for Anomalous Extra Z’ at the LHC
Page 63: Searching for Anomalous Extra Z’ at the LHC
Page 64: Searching for Anomalous Extra Z’ at the LHC

Conclusions and Open Issues

New 3-linear gauge interactions at the LHC due to the different cancelation mechanism

Question: if a new resonance in DY, for instance Is found, are we going to have enough statistics to resolve the type of resonance, that is

once the resonance is found, can we look for1) Charge asymmetries 2) Forward Backward asymmetries To discriminate among the possible models and say thatthere is an inflow? If we integrate part of the fermion specrum we get a WZ term. How do we know that the anomalous theory is Just a result of “partial decoupling”?


Recommended