+ All Categories
Home > Documents > SEAUPG 2002 CONFERENCEseaupg.org/PDF/2002/TopDown_Cracking_RRoque_02.pdfSEAUPG 2002 CONFERENCE 1 ......

SEAUPG 2002 CONFERENCEseaupg.org/PDF/2002/TopDown_Cracking_RRoque_02.pdfSEAUPG 2002 CONFERENCE 1 ......

Date post: 23-May-2018
Category:
Upload: lephuc
View: 216 times
Download: 1 times
Share this document with a friend
10
SEAUPG 2002 CONFERENCE 1 Top-Down Cracking: Causes and Potential Solutions Dr. Rey Roque, P.E. University of Florida 352-392-9537 [email protected] Introduction Surface-initiated longitudinal wheel path cracking: Common mode of failure Recently identified Mechanisms now better understood Occurs primarily under critical conditions Existing design methods are inadequate Understanding leads to more resistant pavements Background In the Past, Cracking Assumed to Always Start at Bottom of AC Layer (Structure has a Strong Effect) Have evaluated effects of factors on response at this location CRACKING IN WHEEL PATHS CORE EXTRACTED FROM FIELD Objectives To Summarize Findings Related to Top-Down Cracking - Mechanisms for Initiation and Propagation - Key Factors Dominating the Mechanisms - Implications for Mitigation and Design (improved guidelines for mixture and pavement design)
Transcript

SEAUPG 2002 CONFERENCE

1

Top-Down Cracking: Causes and Potential Solutions

Dr. Rey Roque, P.E. University of Florida

352-392-9537

[email protected]

IntroductionSurface-initiated longitudinal wheel path cracking:

Common mode of failure Recently identified Mechanisms now better understoodOccurs primarily under critical conditionsExisting design methods are inadequateUnderstanding leads to more resistant pavements

BackgroundIn the Past, Cracking Assumed to AlwaysStart at Bottom of AC Layer (Structure has a Strong Effect)

Have evaluatedeffects of factorson response atthis location

CRACKING IN WHEEL PATHS

CORE EXTRACTED FROM FIELDObjectives

To Summarize Findings Related to Top-Down Cracking- Mechanisms for Initiation and Propagation- Key Factors Dominating the Mechanisms- Implications for Mitigation and Design (improved guidelines for mixture and pavement design)

SEAUPG 2002 CONFERENCE

2

Pavement Surface Stresses

Tire-Pavement Interface Stresses- Including lateral stressesThermal StressesPavement Structure Effects

Layer Stiffness and Thickness

Measured Tire-Pavement Interface Stresses

(Smithers Scientific Services, Inc.)

16 Transducers

Bed Motion

Tire RollingDirection

Bed

σz δz

σy δyσx δx

Tire

Transducer Detail

Transverse Contact Stresses

. . . . .

Radial (R24.5)Truck Tire

Transverse Stress, σxx

Tension

Compression

Transverse Surface Stress Distribution

-10-8-6-4-202468

10

0 50 100 150 200 250 300Transverse Distance, X (mm)

Tran

sver

se S

tres

s,

xx (

MPa

)

Specified Load/Pressure

Tension

Compression

1 3 4 52Tread

Thermal Stress

-1-0.8-0.6-0.4-0.2

00.20.40.60.8

1

0 24 48 72Time (hr)

Ther

mal

Str

ess

(MPa

) 0 mm Depth50 mm Depth100 mm Depth

Aged AC-30

Findings for Crack Initiation

Primary Contributors to Surface-Initiated Longitudinal Wheel Path Cracking- Transverse contact stresses induced by

radial truck tires- Thermal stresses- Age-Hardening near surface

SEAUPG 2002 CONFERENCE

3

Propagation of Top-Down Cracks

Surface Contact Stresses (Tire or Thermal) Cannot Explain Propagation of Top-Down Cracks- Continued work to identify mechanisms and factors controlling propagation

RANGE OF FACTORS

• Load Spectra Positioning with respect to crackRealistic tire contact stresses (vertical and lateral)

• Cracks and Discontinuities Crack depth

• Asphalt Pavement ThicknessInterstate highway pavements – thick/stiff

• Surface and Base Layer Stiffness

• Stiffness Gradients Induced in Asphalt Layer Daily temperature and environmental fluctuations

STRUCTURAL PARAMETERS

4, 8”

12”

90”

AC

Complex Vertical LoadPositions: Wide Rib, 7”, 15”, 20”, 25”, 30”

Crack Length0.25”, 0.5”, 0.75”, 1.0”,1.5”

E1 = 800,1200ksiBase

E2 = 20,44.5ksi

SubgradeE3 = 14.5ksi

MODELING SYSTEM – STEP 1

Rollers Applied to Bottom Side

Vertical and Transverse Tire Contact Load

AC Layer

Base Layer

Subgrade Layer

Predict Vertical and Horizontal Reaction Forces

Boundary ConditionApplied to Sides:

Rollers

Pins Applied to Bottom Corners

MODELING SYSTEM – STEP 2

Boundary ConditionApplied on Sides:

Rollers

Predicted Vertical and Horizontal Reaction Forces Applied Along Bottom Nodes

Crack

AC Layer

Vertical and Transverse Tire Contact Load

Spring Constant “k” Applied

Model geometry of crack & increase mesh refinement

USE OF FRACTURE MECHANICS

( )

−+=

EKKJ III

222 1* υ

Crack Depth

Tire Loading

PredictedStressesUnder Crack Tip

Stresses Predicted in Process Zone (Contours) Ahead of Crack TipProvides local

description ofcrack tip region

Mode I Stress Intensity Factor, KI≈ lim σxx ∗ (2πr)1/2

r→0

Mode II Stress Intensity Factor, KII≈ lim τyx ∗ (2πr)1/2

r→0

Fracture Energy Release Rate, J = (KI2 + KII

2) ∗ 1-ν2

E

SEAUPG 2002 CONFERENCE

4

PARAMETRIC STUDY - STRUCTURE

-250-225

-200-175

-150-125

-100

-75

-50-25

025

5075

100125

150175

200225

250

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Crack Length, a (in)

Mod

e I a

nd II

Fra

ctur

e K I

, K

II (

psi-(

in)0.

5 )

K1 - E1:E2 = 800:20ksiK1 - E1:E2 = 800:44ksiK1 - E1:E2 = 1200:20ksiK1 - E1:E2 = 1200:44ksiK2 - E1:E2 = 800:20ksiK2 - E1:E2 = 800:44ksiK2 - E1:E2 = 1200:20ksiK2 - E1:E2 = 1200:44ksi

• Tension >> Shear failure at crack tip• Higher stiffness ratio increases tension at crack tip

E1:E2= 60

E1:E2= 27E1:E2= 40

E1:E2= 18

Load Position/Crack Length

Undeformed Pavement

CRACK

LOAD

CRACK

LOAD

Deformed Pavement

Transverse Stress DistributionAlong Surface of PavementTensile

Zone (+)

(-)Compressive

Zone

(+)(-)

PARAMETRIC STUDY - LOADING

0

25

50

75

100

125

150

175

200

225

250

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Crack Length (in)

Mod

e I F

ract

ure,

KI (

psi-(

in)0.

5 )

Crack Located Under W ide Rib

Crack Located 20" Away From Center of Load

Crack Located 25" Away From Center of Load

Crack Located 30" Away From Center of Load

E1:E2 = 800:20 ksi

Load position – most critical factor for tension at crack tipSTIFFNESS GRADIENTS

Case 1: Uniform temperature distribution (i.e., no stiffness gradient) mean pavement temperature computed at 1/3-depth when

temperature conditions = warm

Case 2: Sharpest temperature gradient near surface - temperatures at 7 PM represent this condition

Case 3: Highest temperature differential between surface & bottomof asphalt concrete layer - temperatures at 5 AM representthis condition

Case 4: Rapid cooling near the surface represent case of suddenrain showers

Temperature differentials, age-hardening, sudden rains induce sub-layers of variable stiffness within asphalt concrete

0

25

50

75

100

125

150

175

200

225

250

275

300

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Crack Length, a (in)

Mod

e I F

ract

ure,

K 1

(psi

-(in)

0.5 )

8in AC, Case 1 - Uniform Stiffness E1 = 800 ksi

8in AC, Case 2 - Sharp Gradient

8in AC, Case 3 - Highest TemperatureDifferential8in AC, Case 4 - Sudden Rain

Base Stiffness E2=20ksi

Major increase in tension – key factor in propagation of cracks

STIFFNESS GRADIENTS STAGES OF CRACK GROWTHShort Cracks, a = 0.25”,0.5”

Intermediate Cracks, a = 0.75”,1.0”,1.5”

aWide Rib Load 20”-30”

8” ACd

aLoad 20”-30”

8” ACd

Load 7”

SEAUPG 2002 CONFERENCE

5

MPLICATION OF LOAD SPECTRA

Load Wander & Magnitude Instrumental in Mechanism- Critical position not always directly in wheel path on top of crack

- Depends on crack length, pavement structure,type of stiffness gradient

- Need to determine how many loads induce tension @ crack tip

Key FindingsTop-Down Cracks Develop Even in Thick Pavements (Previous Field Studies)Mechanisms Cannot be Captured Without Considering- Realistic Contact Stresses- Temperature Gradients- Load Wander- Presence of Cracks (Fracture Mechanics)

Most Recent Field Test Sections5 pairs of poor and good performing sections throughout Florida

•Location:

Performance:

SR 16-4C

SR 16-6U

US 19-1U

US 19-2C

TPK 1U

TPK 2C

SEAUPG 2002 CONFERENCE

6

NW 39-1C

NW 39-2U

NW 39-2U

NW 39-1C

SamplingCoring

Section WP BWP Total

SR 16-4C 3 4 7

SR 16-6U 4 4 8

US 19-1U 18 18 36

US 19-2C 18 18 36

SR 375-1U 12 0 12

SR 375-2C 12 0 12

TPK-1U 12 12 24

TPK-2C 8 12 20

NW 39-1C 18 18 36

NW 39-2U 18 18 36

Total 227

Sample selection: closest to average BSGCrack depth:

Crack Depth (in) Rating< 1/2 101/2 - 1 8

1 - 1 1/2 61 1/2 - 2 4

2 - 3 2> 3 0

Section Performance Rating

SR 16 - 4C 0SR 16 - 6U 6US 19 - 1U 10US 19 - 2C 0SR 375 - 1U 10SR 375 - 2C 2

TPK 1U 10TPK 2C 2

NW 39 - 1C 0

NW 39 - 2U 10

Volumetric Properties

Air Void Content

Effective AsphaltContent

0

1

2

3

4

5

6

7

8

9

10

11

12

SR 16-6U SR 16 -4C US 19-1U US 19-2C SR 3 75-1U SR 375-2C TPK 1U TPK 2 C NW 39-2U NW 39 -1C

Section

% A

ir V

oid

Con

tent

WP

BWP

4.2

4 .4

4 .6

4 .8

5.0

5.2

5.4

5.6

5.8

SR 16-6U SR16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

Effe

ctiv

e A

spha

lt C

onte

n

Aggregate Gradation

SR 16

US 19

0

10

20

30

40

50

60

70

80

90

100

Sieve Sizes

% P

assi

ng

Maximum Density Line SR 16-4C SR 16-6U

0 200 100 50 30 16 8 4 3/8 1/2 3/4 1

0

10

20

30

40

50

60

70

80

90

100

Sieve sizes

% P

assin

g

Maximum Density Line US 19-1U US 19-2C

0 200 100 50 30 16 8 4 3/8 1/2 3/4 1

SR 375

TPK

0

10

20

30

40

50

60

70

80

90

100

Sieve sizes

% P

assi

ng

TPK 1U TPK 2C

0 200 100 50 30 16 8 4 3/8 1/2 3/4 1

0

10

20

30

40

50

60

70

80

90

100

Sieve sizes

% P

assin

g

Maximum Density Line SR 375-1U SR 375-2C

0 200 100 50 30 16 8 4 3/8 1/2

0

10

20

30

40

50

60

70

80

90

100

Sieve sizes

% P

assin

g

Maximum Density Line TPK 1U TPK 2C

0 200 100 50 30 16 8 4 3/8 1/2 3/4

SEAUPG 2002 CONFERENCE

7

NW 39

0

10

20

30

40

50

60

70

80

90

100

Sieve sizes

% P

assi

ng

Maximum Density Line NW 39-1C NW 39-2U

0 200 100 50 30 16 8 4 3/8 1/2 3/4 1

Theoretical Film Thickness

Binder Viscosity

0

1

2

3

4

5

6

7

8

9

10

SR 16-6U SR16-4C US 19-1U US 19-2C SR 375-1U S R 375-2C TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

The

oret

ical

Film

Thi

ckne

ss (m

icro

-met

ers)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

S R 16-6U S R 16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C

TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

Bin

der

Vis

cosi

ty (p

oise

s)

Mixture Testing

Resilient Modulus

Creep Compliance

0

2

4

6

8

10

12

14

16

18

20

S R 16-6U S R 16-4C US 19-1U US 19-2C S R 375-1U S R 375-2C TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

Res

ilien

t Mod

ulus

(GPa

)

0

1

2

3

4

5

6

7

8

9

SR 16-6 U SR 16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C TPK 1U TPK 2C NW 3 9-2 U NW 39-1C

Section

Cre

ep C

ompl

ianc

e at

100

0 se

cond

s (1/

GPa

)

Tensile Strength

m-value

0 .0

0 .5

1.0

1.5

2 .0

2 .5

3 .0

SR 16-6 U SR 16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C TPK 1U TPK 2C NW 39 -2 U NW 39-1C

Section

Indi

rect

Ten

sile

Str

engt

h (M

Pa)

0 .00

0 .10

0 .20

0 .30

0 .40

0 .50

0 .60

0 .70

SR 16-6U SR 16-4 C US 19-1U US 19-2C SR 375-1U SR 375-2 C TPK 1U TPK 2 C NW 39 -2U NW 3 9-1C

Section

m -

Val

ue

Failure Strain

Fracture Energy

0

200

400

600

800

1000

1200

1400

1600

1800

SR 16-6U SR 16 -4 C US 19-1U US 19-2 C SR 375-1U SR 375-2 C TPK 1U TPK 2 C NW 39 -2U NW 3 9-1C

Section

Failu

re S

trai

n (m

icro

stra

in)

0 .0

0 .5

1.0

1.5

2 .0

2 .5

3 .0

SR 16 -6U SR 16-4C US 19 -1U US 19-2C SR 375-1U SR 375-2C TPK 1U TPK 2 C NW 39 -2U NW 3 9-1C

Section

Frac

ture

Ene

rgy

(KJ/

m3 )

• DCSE

0.0

0 .5

1.0

1.5

2 .0

2 .5

SR 16 -6U SR 16-4C US 19 -1U US 19-2C SR 375-1U SR 375-2C TPK 1U TPK 2 C NW 39 -2U NW 3 9-1C

Section

DC

SE (K

J/m

3 )

SEAUPG 2002 CONFERENCE

8

FWD Analysis•Geometry

Section Friction Course AC Base Sub-baseSR 16-4C 0.6 3.0 6.7 12.0SR 16-6U 0.6 3.0 6.7 12.0US 19-1U 0.5 9.0 8.0 12.0US 19-2C 0.5 7.0 8.5 12.0SR 375-1U 0.6 6.3 7.5 12.0SR 375-2C 0.6 6.3 7.5 12.0

TPK-1U 0.5 7.0 12.0 12.0TPK-2C 0.5 6.1 12.0 12.0

NW 39-1C 0.8 4.0 12.5 12.0NW 39-2U 1.0 3.3 12.5 12.0

Pavement Structure

Section AC Base Sub-base Sub-gradeUS 19-1U 550 51 37 24US 19-2C 1,000 37 22 28TPK-1U 800 97 39 17TPK-2C 900 34 19 24

NW 39-1C 1,500 28 71 28NW 39-2U 1,500 63 58 30

Section E1/E2US 19-1U 11US 19-2C 27TPK-1U 8TPK-2C 26

NW 39-1C 52NW 39-2U 24

Loading stressesDesign load: 9000 lbs

Thermal StressesCooling rate: 10ºC/hr

0

50

100

150

200

250

300

US 19-1U US 19-2C TPK-1U TPK-2C NW 39-2U NW 39-1C

Section

Loa

ding

Str

esse

s (ps

i)

0

2

4

6

8

10

12

14

16

US 19-1U US 19-2C TPK-1U TPK-2C NW 39-2U NW 39-1C

Section

Ther

mal

Str

esse

s (ps

i)

Crack Growth ModelInitiation

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

SR 16-6U SR 16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C

TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

DC

SE N

f

7000 9000 11000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

SR 16-6U SR 16-4C US 19-1U US 19-2C SR 375-1U SR 375-2C

TP K 1U TP K 2C NW 39-2U NW 39-1C

Section

FE N

f

7000 9000 11000

•Propagation

0

2,00 0

4 ,00 0

6 ,00 0

8 ,00 0

10 ,00 0

12 ,00 0

SR 16 -6 U SR 16-4C US 19-1U US 19 -2C SR 375-1U SR 3 75-2C TPK 1U TPK 2C NW 39-2U NW 3 9-1C

Section

Nf t

o pr

opag

atio

n

7000 9000 11000

Individual Analysis of the SectionsSR 16: high air voids, high m-value, low FEpossible effect of friction course

US 19: stiffness overwhelmed FE, low AC content and film thickness

SR 375: low FE, high m-value, high air voids

SEAUPG 2002 CONFERENCE

9

• TPK: low base stiffness, high m-value, lowfilm thickness

• NW 39: high E1/E2 ratio, low compliance, lowtensile strength, low FE, possible effect of friction course

Summary of Findings• Structure has effects on surface-initiated cracking

• Load + Thermal stresses plays significant role

• High MR + Low Compliance / Load and thermal σ

• UF Cracking model properly explained performance differences

• No single property will assure adequate mixtureperformance. Need of conditions and model

Key Findings (Continued)

Design Approach Using Averaged Pavement and Load Conditions Inadequate- Critical Conditions Must Be IdentifiedMitigation Should be Addressed Primarily Through- More Crack-Resistant Surface Materials- Use of Less Damaging Tires

Implications for Design

Focus on Improving Surface MaterialsDialogue With Tire DesignersPavement Design/Management- Realistic contact stresses- Load spectra (magnitude and position)- Temperature gradients- Cracks/discontinuities (fracture mechanics)

Potential SolutionsImproved Mixture Design- Maximize Fracture Resistance of Mixtures- Improved Gradation/Volumetrics- Appropriate Mixture Design Parameters

(e.g. Fracture Energy)- ModifiersSpecialized Thin Surface Layers- Highly Modified, Low Stiffness/Stress

Relief, High Strain Tolerance

Conclusions• Stiffness and Compliance should be limited• Thermal stresses should be considered in structural

design• More attention should be paid to the effect and design of

friction courses• It is critical to identify appropriate design conditions to

evaluate performance using the parameters from thelaboratory

• UF cracking model adequately represents crackingmechanisms

SEAUPG 2002 CONFERENCE

10

RecommendationsContinue evaluation of field performance to better understand failure mechanisms

Create database of mixture, traffic, environment and pavement structural characteristics

Concentrate more on friction course and structure

Testing at multiple temperatures for thermal analysis


Recommended