+ All Categories
Home > Documents > Section 1 Overview of Digital Modulation...

Section 1 Overview of Digital Modulation...

Date post: 19-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
35
Section 1 Overview of Digital Modulation Techniques EC 551 Telecommunication Systems Engineering
Transcript
Page 1: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Section 1

Overview of Digital Modulation Techniques

EC 551 Telecommunication Systems Engineering

Page 2: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 3: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Types of digital-to-analog conversion

Page 4: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

�Bit rate is the number of bits per second.

�Baud rate is the number of signal elements per second.

�The Baud rate is less than or equal to the bit rate.

Note

Page 5: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

An signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the bit rate.

SolutionIn this case, r = 4, S = 1000, and N is unknown. We can find the value of N from

Example 1

Page 6: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 2

An signal has a bit rate of 8000 bps and a baud rate of 1000 baud. How many data elements are carried by each signal element? How many signal elements do we need?

SolutionIn this example, S = 1000, N = 8000, and r and L are unknown. We find first the value of r and then the value of L.

Page 7: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 8: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

���������������

Amplitude Shift Keying

(ASK)

Page 9: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Binary amplitude shift keying

d = Rolloff factor

d= 1 (Rectangular pulse)

Page 10: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 3

We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What are the carrier frequency and the bit rate if we modulated our data by using ASK with d = 1?SolutionThe middle of the bandwidth is located at 250 kHz. This means that our carrier frequency can be at fc = 250 kHz. We can use the formula for bandwidth to find the bit rate (with d = 1 and r = 1).

Page 11: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

���������������

Frequency Shift Keying

(FSK)

Page 12: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Binary frequency shift keying

� ����������������������������������������������������������������������������������������������������������������������� �������������!�������"

)2cos(2

)( tfTE

ts ib

bi π=

IntgralTf bi =×

Eb : transmitted signal energy per bit

Page 13: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Binary frequency shift keying

Page 14: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 4

We have an available bandwidth of 100 kHz which spans from 200 to 300 kHz. What should be the carrier frequency and the bit rate if we modulated our data by using FSK with d = 1?

SolutionThis problem is similar to Example 3, but we are modulating by using FSK. The midpoint of the band is at 250 kHz. We choose 2�f to be 50 kHz; this means

Page 15: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 5

We need to send data 3 bits at a time at a bit rate of 3 Mbps. The carrier frequency is 10 MHz. Calculate the number of levels (different frequencies), the baud rate, and the bandwidth.

SolutionWe can have L = 2^3= 8. The baud rate is S = 3 MHz/3 = 1000 Mbaud. This means that the carrier frequencies must be 1 MHz apart (2�f = 1 MHz). The bandwidth is B = 8 × 1000 = 8000. Figure 1 shows the allocation of frequencies and bandwidth.

Page 16: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Figure 1 Bandwidth of MFSK used in Example 5

Page 17: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Concept of a constellation diagram

Page 18: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

��������#���������

[ ] ( )SNRQNE

QPo

bav =�

���

�=ε

Page 19: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

���������������

Phase Shift Keying

(PSK)

Page 20: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

������������� �������

� $���#����������������%�&�����'%�&���������#���������������������������

)2cos(2

)(1 tfTE

ts cb

b π=

( ) )2cos(2

2cos2

)(2 tfTE

tfTE

ts cb

bc

b

b πππ −=+=

Page 21: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

��������#�������(��

���

���

�=

oe

Nd

QP2 bEd 2= �

���

�=

o

be N

EQP

2

Page 22: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Binary phase shift keying

Page 23: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

�)������(���

)2cos(2

)( ici tfTE

ts θπ −= )12( −= iMi

πθ

)2cos(2

)( ici tfTE

ts θπ −=

Quadriphase-shift keying (QPSK)

b

b

EmE

TmT

×=×=

47

,4

5,

43

,4

ππππθ =i

)sin2

(MN

EQP

o

be

π=

Page 24: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 25: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

������������ ��������������

)4

sin2

o

be N

EQP =

Page 26: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 6

Find the bandwidth for a signal transmitting at 12 Mbps for QPSK. The value of d = 0.

SolutionFor QPSK, 2 bits is carried by one signal element. This means that r = 2. So the signal rate (baud rate) is S = N × (1/r) = 6 Mbaud. With a value of d = 0, we have B = S = 6 MHz.

Page 27: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Example 7

Show the constellation diagrams for an ASK (OOK), BPSK, and QPSK signals.

Solution

Page 28: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 29: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

(����������������������������������������

EP

dB / 0NEb

Page 30: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

Quadrature amplitude modulation is a combination of ASK and PSK.

Note

Page 31: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 32: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 33: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

)(1 tψ

)(2 tψ

2s1s 3s 4s“0000” “0001” “0011” “0010”

6s5s 7s 8s

10s9s 11s 12s

14s13s 15s 16s

1 3-1-3

“1000” “1001” “1011” “1010”

“1100” “1101” “1111” “1110”

“0100” “0101” “0111” “0110”

1

3

-1

-3

16QAM 3s

7s

“110”)(1 tψ

4s 2ssE

“000”

)(2 tψ

6s 8s

1s5s

“001”“011”

“010”

“101”

“111” “100”

)(1 tψ

2s 1s

sE

“00”

“11”

)(2 tψ

3s 4s“10”

“01”

8PSK

QPSK

Page 34: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular
Page 35: Section 1 Overview of Digital Modulation Techniqueswebmail.aast.edu/~khedr/Courses/Undergraduate/Telecomm/sheet_0.pdfBinary amplitude shift keying d = Rolloff factor d= 1 (Rectangular

��� ��


Recommended