+ All Categories
Home > Documents > SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and...

SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and...

Date post: 30-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
27
SECTION 4 LOSS OF PRESTRESS EMPHASIS ON ITEMS SPECIFIC TO POSTTENSIONED SYSTEMS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRIAN SWARTZ
Transcript
Page 1: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

SECTION 4

LOSS OF PRESTRESS

EMPHASIS ON ITEMS SPECIFIC TO POST‐TENSIONED SYSTEMS

DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEELEAD AUTHOR: BRIAN SWARTZ

Page 2: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

LOSS OF PRESTRESS Friction Elastic shortening Anchor set Shrinkage Creep Relaxation

Initial losses Specific to post‐tensioning

Time dependent losses (Long term losses)Similar to pre‐tensioning

Page 3: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

STRESSING OF PT STRANDS

The stressing jack bears against the concrete Concrete is compressed gradually as the strand is tensioned

Many things occur simultaneously• Stressing, friction, elastic shortening

Page 4: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION LOSSES

Page 5: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION LOSSES Monitor elongation in addition to pressure during stressing

Overcoming friction: Over‐tensioning (limited) Stressing from both ends

Page 6: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION LOSSES

Calculating losses Function of:

• Curvature friction coefficient• Angular change over length of strand• Wobble friction coefficient• Length from jack to point of interest

Reference:• Post‐Tensioning Manual, Appendix A

Page 7: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ELASTIC SHORTENING LOSSES

fpy

Strain

fjack

fpu

Elastic Response of Concrete To Compression

Elastic Response of Concrete To Load

“Elastic Shortening Loss”

Jacking (Exact Magnitude Affected by Friction)

Effective Stress after Jacking/Elastic Shortening

For Post-Tensioning, All Occur Simultaneously

Page 8: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ELASTIC SHORTENING LOSSES Shortening of concrete compressed during stressing as the two occur simultaneously

If only one strand (tendon) – no ES losses

If  multiple strands (tendons) Tendons stressed early in the sequence will suffer losses as subsequent tendons are stressed The first strand stressed will suffer the most total loss The last strand stressed has zero loss Reasonable to take the average of first and last

Page 9: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ELASTIC SHORTENING LOSSESΔ

Strain in strandSteel elastic modulus

Hooke’s Law

Change in strand stress due to elastic shortening loss

Assume: Perfect bond between steel and concrete 

Strain in the concrete, due to compressive stress applied:

Concrete stress at prestressing centroidConcrete elastic modulus at time of stressing

Δ1

2

Substitution through previous steps

Average of first and last strand that experience loss; the last strand tensioned has zero loss, hence the (N‐1) term.

Page 10: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ANCHORAGE DEVICES

STANDARD ANCHORSENCAPSULATEDANCHOR

WEDGES

ENCAPSULATEDANCHOR

Source: PTI

Page 11: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ANCHORAGE DEVICES: WEDGE

Source: PTI

Page 12: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

HOW ARE STRANDS ANCHORED?

Concrete

Duct

Strand

Anchor cast in concrete

Page 13: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ANCHORAGE SEATING LOSS

Page 14: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

ANCHORAGE SEATING LOSS Calculating losses Some of the imposed strain on the strand is lost when the wedge seats in the plate

• Function of:– Hardware used– Type of stressing jack (Power seating, etc.)

Reference: Post‐Tensioning Manual, Appendix A

Page 15: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

Page 16: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

Page 17: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

Page 18: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

Page 19: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

Page 20: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

FRICTION AND ANCHORAGE LOSSES

The variable prestress force in the previous slide is negligible for: Strands less than 100 feet (single‐end stressed) Strands less than 200 feet (both ends stressed)

Reference: Bondy, K.B., “Variable Prestress Force in Unbonded Post‐Tensioned Members,” Concrete International, January 1992, pp. 27‐33.

Page 21: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

SHRINKAGE, CREEP, AND RELAXATION

Page 22: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

CONCRETE SHRINKAGE

Moisture

L L’ LLL

LL

sh

'

Page 23: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

CONCRETE SHRINKAGE

Time

Linetype Key:Model BaselineEffect of Decreasing f’c

Effect of Decreasing HEffect of Decreasing V/S

Ultimate Shrinkage (Baseline Condition)

Start of drying

Page 24: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

CONCRETE CREEPL L 1’

Shrinkage Specimen

L

Creep Specimen

L 2’

P

ε1 ε2

Concrete shortening due to sustained compression

Page 25: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

CONCRETE CREEPC

ast

Con

cret

e

End

Cur

ing

(Sta

rt D

ryin

g)

App

ly

Load

Stra

in

Page 26: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

CONCRETE CREEP

Time, t

Con

cret

e St

rain

(S

um o

f Ela

stic

and

Cre

ep R

espo

nse)

Instantaneous application of stress, fc

Elastic Strain

c

cel E

f

Creep Strain

c

cicr E

ftt,

tiLinetype Key:

Model BaselineEffect of Decreasing f’c

Effect of Decreasing HEffect of Decreasing V/S

Effect of the same applied stress, fc, at a later time

Total Strain

ic

ctotal tt

Ef ,1

Creep strain is calculated by a creep coefficient,  , , that expresses creep strain as a function of elastic strain.

Page 27: SECTION 4 LOSS OF PRESTRESS - Post-Tensioning Institute · Assume: Perfect bond between steel and concrete ó ã L ó Ö Strain in the concrete, due to compressive stress applied:

STEEL RELAXATION A loss of stress in the steel after being held at a constant elongation (sustained tension)

For low‐relaxation steel (industry standard) relaxation losses are very small compared to other loss components (~1‐3 ksi)


Recommended