+ All Categories
Home > Documents > Section 6.1: The TurboFan Propulsion...

Section 6.1: The TurboFan Propulsion...

Date post: 13-Mar-2020
Category:
Upload: others
View: 21 times
Download: 0 times
Share this document with a friend
38
MAE 6530 - Propulsion Systems II Section 6.1: The TurboFan Propulsion Cycle 1
Transcript

MAE 6530 - Propulsion Systems II

Section 6.1: The TurboFan Propulsion Cycle

1

MAE 6530 - Propulsion Systems II

Overview

2

MAE 6530 - Propulsion Systems II

Overview (2)

3

• Turbofan engine is the most modern variation of the basic gas turbine engine. • As with other gas turbines, there is a core engine, whose parts and operation are nearly identical to the turbojet operation. • In the turbofan engine, the core engine is surrounded by a fan in the front and an additional turbine at the rear.

MAE 6530 - Propulsion Systems II

Overview (3)

4

MAE 6530 - Propulsion Systems II

Overview(4)

5

• Turbofan engines power now all civil transports flying at transonic speeds up to Mach 0.9. • Several advantages to turbofan engines over both propeller-driven and turbojet engines• By enclosing fan inside a duct or cowling, aerodynamics are better controlled. • Fan is not as large as propeller, so increase of speeds along blade is less, and there is less chance of tip stall and shock wave development.• Turbofan can suck in more total air massflow than a turbojet, thus offer potential for generating more thrust. • Turbofan has low fuel consumption compared with turbojet.

MAE 6530 - Propulsion Systems II

Jet Engine Performance Efficiency (revisited)

6

Kinetic energy production rate

Propulsive power

Propulsive EfficiencyRatio of Power Developed from Engine (desired beneficial output) Thrust to Change in Kinetic Energy of the Moving Airstream (cost of propulsion)

Maximum propulsive efficiency achieved by generating thrust moving as much air as possible with as little a change in velocity across the engine as possible.

MAE 6530 - Propulsion Systems II

Jet Engine Performance Efficiency (2)

7

• Maximum propulsive efficiency achieved by generating thrust moving as much air as possible with as little a change in velocity across the engine as possible. .. Fan provides that function

MAE 6530 - Propulsion Systems II

Jet Engine Performance Efficiency (3)

8

• Recall that optimal thrust level of a turbo jet is characterized by

τc( )opt =1τr⋅ 1+ 1

f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟τλ Πc( )

opt= τc

γγ−1

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟opt

=

• As supersonic flight Mach become larger, compression goes down until

…. optimal solution gets rid of compressor all together, and best engine becomes a ramjet!

1= 1τr⋅ 1+ 1

f⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟τλ → τλ =

ff +1

τr2

MAE 6530 - Propulsion Systems II

Jet Engine Performance Efficiency (4)

9

• We are going to show that similar effect occurs as Mach drops significantly below Mach 1

• Trend emerges that replaces turbojet with Turbofan at lower Mach numbers

Decreasing Mach Number

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines

10

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (2)

11

• Turbofan engines may be classified based on fan location as either forward or aft fan. • Based on a number of spools, engine may be classified as single, double, or triple spools. •Based on a bypass ratio, engine may be categorized as either low-or high- bypass ratio. • Fan may be geared or ungeared to its driving low-pressure turbine. • Mixed-flow types (where flow merges in nozzle) may be fitted with afterburner.

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (3)

12

• High-bypass ratio turbofan (β > 5) achieves 75 % of thrust from bypass air

- Ideal for subsonic transport aircraft. e.g. - Rolls-Royce Trent series (Airbus A330, A340, A350, A380), - Pratt & Whitney PW1000 G (geared) (Airbus A320neo, Bombardier

CSeries, Embraer E2, Mitsubishi Regional Jet MC-21) - General Electric GE90 powering Boeing 777-300ER, 747.

• Low-bypass ratio turbofan β ~ 1 achieves approximately equal thrust distribution between gas generator and bypass duct

- Well suited to high-speed military applications. e.g. - Rolls-Royce RB199 in the Tornado- Pratt & Whitney F100-PW-200 in F-16A/B and F-15- EuroJet Turbo GmbH EJ200 powering the Typhoon Fighter

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (4)

13

• Unmixed Bypass Flow Turbofan

• Mixed Bypass Flow Turbofan

2-spool, low-bypass turbofanengine with a mixed exhaust,showing the low-pressure(green) and high-pressure(purple) spools.

2-Spool High-bypass turbofanengine with a unmixedexhaust, showing the fan(pink) and core (red) exhauststreams

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (5)

14

• Modern high bypass ratio engine designed for long distance cruise at subsonicMach numbers around 0.83.• Fan uses a single stage composed of a large diameter fan (rotor) with wide chordblades followed by a single nozzle stage (stator).• Bypass ratio is ~6 and the fan pressure ratio is ~2.

High Bypass Ratio

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (6)

15

• Military turbofan designed for high performance at supersonic Mach numbers in the range of 1.1 to 1.5. • Fan has three stages with an overall pressure ratio of about 6 and a bypass ratio of only about 0.6. • Let’s investigate to understand why these engines look so different due to the the differences in the design flight condition.

Low Bypass Ratio

MAE 6530 - Propulsion Systems II

Classification of Turbofan Engines (7)

16

MAE 6530 - Propulsion Systems II

Thrust of a TurboFan Engine

17

• 4-Primary Components of TurboFan Thrusto Bypass Momentum Thrusto Core Momentum Thrusto Fan Pressure Thrust o Core Pressure Thrust

!macore

!mafan

!mafan

Vexitcore

Vexitfan

Vexitfan

!mafan

!mafan

!mcore

MAE 6530 - Propulsion Systems II

Thrust of a TurboFan Engine (2)

18

Fthrust = !macore ⋅ Vexitcore−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+ !mfuel ⋅Vexit

core+ !mafan ⋅ Vexit

fan−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+ pexit

core− p∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⋅ Aexit

core+ pexit

fan− p∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⋅ Aexit

fan

Core Momentum Bypass Momentum Core Pressure Bypass Pressure Thrust Thrust Thrust Thrust

!macore

!mafan

!mafan

Vexitcore

Vexitfan

Vexitfan

!mafan

!mafan

!mcore

MAE 6530 - Propulsion Systems II

Thrust of a TurboFan Engine (3)

19

Total Air Massflow!ma = !macore + !mafan

Air− to− fuel Ratio

f =!ma!mfuel

Bypass Ratio

β=!mafan!macore=

B1−B

Bypass Fraction

B=!mafan!ma=β

1+β

Fthrust = !ma!macore!ma⋅ Vexit

core−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+!mfuel

!ma⋅Vexitcore+!mafan!ma⋅ Vexit

fan−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

⎢⎢⎢

⎥⎥⎥+ pexit− p∞( )⋅ Aexit + p1exit− p∞( )⋅ Aexit

fan

!macore!ma=

!macore!macore + !mafan

=1

1+!mafan!macore

=1

1+β

!macore!ma=!ma− !mafan!ma

=1−B

!mafan!ma= B= β

1+β, !mfuel

!ma=

1f

Fthrust = !ma1

1+β⋅ Vexit

core−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+

1f⋅Vexitcore+β

1+β⋅ Vexit

fan−V∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

⎣⎢⎢

⎦⎥⎥+

pexitcore− p∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⋅ Aexit

core+ pexit

fan− p∞

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⋅ Aexit

fan

MAE 6530 - Propulsion Systems II

Thrust of a TurboFan Engine (4)

20

• Similar to the Previous Discussion for the TurboJet, Normalized Thrust is

T( )turbofan

=Fthrustp∞A0

=!maV∞p∞A0

1+ f +βf 1+β( )

⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢

⎥⎥⎥⎥+pexitcore

p∞⋅Aexitcore

A0+pexitfan

p∞

Aexitfan

A0−Aexitcore+ Aexit

fan

A0

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟=

!maV∞p∞A0

=ρ∞ ⋅ A0 ⋅V∞ ⋅V∞

p∞A0=γV∞

2

γ ⋅Rg ⋅T∞= γ ⋅M∞

2

Aexitcore+ Aexit

fan= Aexit→

T( )turbofan

= γ ⋅M∞21+ 1

f1+β( )

1+β( )⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+AexitA0

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟pexitp∞⋅Aexitcore

Aexit+pexitfan

p∞

Aexitfan

Aexit−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

I( )turbofan

=Isp ⋅g0c∞

= T( )turbofan

⋅f

γ ⋅M∞

MAE 6530 - Propulsion Systems II

Thrust of a TurboFan Engine (5)

21

• Fully expanded nozzle & f >> 1 • Inlet, fan, compressor, turbine, and fan /core nozzles are isentropic• Combustor heat addition is as constant pressure and Low Mach

Toptimal( )turbofan

= γ ⋅M∞2 1

1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitcore

V∞+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitfan

V∞−1

⎢⎢⎢⎢

⎥⎥⎥⎥=

= γ ⋅M∞2 1

1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitcore

V∞−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitfan

V∞−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

pexitfan= pexit

core= p∞ → πd = πb = πncore = πn

fan=1

πccore= τc

core

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

γγ−1,πc

fan= τc

fan

⎝⎜⎜⎜⎜⎞

⎠⎟⎟⎟⎟

γγ−1,πt = τt( )

γγ−1 .

Ioptimal( )turbofan

= Toptimal( )turbofan

⋅f

γ ⋅M∞

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle

22

• Look at Fan Bypass Flow Stream

• Look at by pass velocity ratio

• First calculate bypass exit stagnation pressure

Vexitfan

V∞=Mexit

fan

M∞⋅Texitfan

T∞

→ P0exitfan

=P0∞

p∞⋅P01

P0∞

⋅P02

P01

⋅P0exit

fan

P02

⋅ p∞ → ideal cycle→ πd =P01

P0∞

⋅P02

P01

=1

→ P0exitfan

= πr ⋅πcfan⋅ p∞ = pexit

fan⋅ 1+ γ+1

2Mexit

fan

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

γγ−1

!mafan Vexitfan

V∞

• Too lengthy to analyze all types of turbofan engines. So, only a simple single spool fan, compressor, turbine cycle will be analyzed

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (2)

23

• Look at Fan Bypass Flow Stream

fully expanded nozzle → pexitfan= p∞

⎧⎨⎪⎪⎩⎪⎪

⎫⎬⎪⎪⎭⎪⎪→ πr ⋅πc

fan= 1+ γ+1

2Mexit

fan

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

γγ−1

Isentropic fan→ πcfan= τc

fan

⎝⎜⎜⎜⎜⎞

⎠⎟⎟⎟⎟

γγ−1→ τr ⋅τc

fan= 1+ γ+1

2Mexit

fan

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

τr =T0∞

T∞1+ γ+1

2M∞

2⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟→γ+1

2M∞

2 = τr−1

→γ+12Mexit

fan

2 = τr ⋅τcfan−1→

γ+12Mexit

fan

2

γ+12M∞

2=τr ⋅τc

fan−1

τr−1→

Mexitfan

2

M∞2 =

τr ⋅τcfan−1

τr−1

!mafanVexitfan

V∞

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (3)

24

• Look at Fan Bypass Flow Stream

Substitute

Vexitfan

V∞=Mexit

fan

M∞⋅Texitfan

T∞=

τr ⋅τcfan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⋅Texitfan

T∞→ isentropic fan→ pexit

fan

⎝⎜⎜⎜⎜⎞

⎠⎟⎟⎟⎟

γ−1γ

= p∞( )γ−1γ

→Texitfan=T∞

Vexitfan

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc

fan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟→ T( )

fan= γ ⋅M∞

2 β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitfan

V∞−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

= γ ⋅M∞2 β

1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅τr ⋅τc

fan−1

τr−1−1

⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Fan Thrust

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (4)

25

• Look at Fan Bypass Flow Stream

• Fan Thrust

Substitute

Vexitfan

V∞=Mexit

fan

M∞⋅Texitfan

T∞=

τr ⋅τcfan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⋅Texitfan

T∞→ isentropic fan→ pexit

fan

⎝⎜⎜⎜⎜⎞

⎠⎟⎟⎟⎟

γ−1γ

= p∞( )γ−1γ

→Texitfan=T∞

Vexitfan

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc

fan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟→ T( )

fan= γ ⋅M∞

2 β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitfan

V∞−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

= γ ⋅M∞2 β

1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅τr ⋅τc

fan−1

τr−1−1

⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (5)

26

• Now look at Core Flow Stream

• Look at by core velocity ratio

• First calculate core exit stagnation pressure

Vexitcore

V∞=Mexit

core

M∞⋅Texitcore

T∞

→ P0exitcore

=P0∞

p∞⋅P01

P0∞

⋅P02

P01

⋅P03

core

P02

⋅P04

core

P03core

⋅P05

core

P04core

p∞ → ideal cycle→

πd =P01

P0∞

⋅P02

P01

=1

πb =1pexitcore= p∞

!mcore Vexitcore

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (6)

27

• Now look at Core Flow Stream

Substitute

Vexitcore

→ P0exitcore

= πr ⋅πc ⋅πt ⋅ p∞ = pexitcore⋅ 1+ γ+1

2Mexit

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

γγ−1

Isentropic compressor→ πc = τc( )γγ−1→ τr ⋅τc ⋅τt = 1+ γ+1

2Mexit

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

τr =T0∞

T∞1+ γ+1

2M∞

2⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟→γ+1

2M∞

2 = τr−1

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (7)

28

• Now look at Core Flow Stream

Solve for exit Mach

→γ+12Mexit

core

2 = τr ⋅τc ⋅τt−1→

γ+12Mexit

core

2

γ+12M∞

2=τr ⋅τc ⋅τt−1τr−1

→Mexit

core

2

M∞2 =

τr ⋅τc ⋅τt−1τr−1

Substitute

Vexitcore

V∞=Mexit

core

M∞⋅Texitcore

T∞=

τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅Texitcore

T∞

Vexitcore

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (8)

29

• Now look at Core Flow Stream

Calculate exit Stagnation Temperature

Calculate→T0exitcore

=T∞ ⋅T0∞

T∞⋅T02

core

T0∞

⋅T03

core

T02core

⋅T04

core

T03core

⋅T05

core

T04core

⋅T0exit

core

T05core

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟=T∞ ⋅ τr ⋅τd ⋅τc ⋅τt ⋅τn( )

Isentropic nozzle→T0exitcore

=Texitcore⋅ 1+ γ+1

2Mexit

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

From previous→ 1+ γ+12Mexit

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟= τr ⋅τc ⋅τt

→T0exitcore

=Texitcore⋅ τr ⋅τc ⋅τt( )

Vexitcore

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (9)

30

• Now look at Core Flow Stream

Write in terms of maximum temperature ratio

Texitcore

T∞=T04

core

1+ γ+12M4

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

T03core

1+ γ+12M3

core

2⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

→ M4core≈ M3

core≈ 0→

Texitcore

T∞=T04

core

T03core

⋅T02

core

T0∞⋅T∞T∞=T04

core

T∞⋅T02

core

T03core

⋅T∞T0∞=τλτc ⋅τr

Texitcore

T∞=τλτc ⋅τr

→Vexitcore

V∞=

τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅τλτc ⋅τr

→Vexitcore

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅τλτc ⋅τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

Vexitcore

MAE 6530 - Propulsion Systems II

The Ideal TurboFan Cycle (10)

31

• Now look at Core Flow Stream

• Core Thrust

T( )core= γ ⋅M∞

2 11+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅

τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅τλτc ⋅τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟−1

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢

⎥⎥⎥⎥

Vexitcore

T( )turbofan

=Fthrustp∞A0

=!maV∞p∞A0

1+ f +βf 1+β( )

⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢

⎥⎥⎥⎥+pexitcore

p∞⋅Aexitcore

A0+pexitfan

p∞

Aexitfan

A0−Aexitcore+ Aexit

fan

A0

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟=

!maV∞p∞A0

=ρ∞ ⋅ A0 ⋅V∞ ⋅V∞

p∞A0=γV∞

2

γ ⋅Rg ⋅T∞= γ ⋅M∞

2

Aexitcore+ Aexit

fan= Aexit→

T( )turbofan

= γ ⋅M∞21+ 1

f1+β( )

1+β( )⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+AexitA0

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟pexitp∞⋅Aexitcore

Aexit+pexitfan

p∞

Aexitfan

Aexit−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

MAE 6530 - Propulsion Systems II

Fan/Core/Pressure Thrust Summary

• Fan

• Core

T( )core= γ ⋅M∞

2 11+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅

τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅τλτc ⋅τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟−1

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢

⎥⎥⎥⎥

T( )turbofan

=Fthrustp∞A0

=!maV∞p∞A0

1+ f +βf 1+β( )

⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢

⎥⎥⎥⎥+pexitcore

p∞⋅Aexitcore

A0+pexitfan

p∞

Aexitfan

A0−Aexitcore+ Aexit

fan

A0

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟=

!maV∞p∞A0

=ρ∞ ⋅ A0 ⋅V∞ ⋅V∞

p∞A0=γV∞

2

γ ⋅Rg ⋅T∞= γ ⋅M∞

2

Aexitcore+ Aexit

fan= Aexit→

T( )turbofan

= γ ⋅M∞21+ 1

f1+β( )

1+β( )⋅Vexitcore

V∞+β1+β

⋅Vexitfan

V∞−1

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

+AexitA0

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟pexitp∞⋅Aexitcore

Aexit+pexitfan

p∞

Aexitfan

Aexit−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

The Ideal TurboFan Cycle (11)

32

Substitute

Vexitfan

V∞=Mexit

fan

M∞⋅Texitfan

T∞=

τr ⋅τcfan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⋅Texitfan

T∞→ isentropic fan→ pexit

fan

⎝⎜⎜⎜⎜⎞

⎠⎟⎟⎟⎟

γ−1γ

= p∞( )γ−1γ

→Texitfan=T∞

Vexitfan

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc

fan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟→ T( )

fan= γ ⋅M∞

2 β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅Vexitfan

V∞−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

= γ ⋅M∞2 β

1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅τr ⋅τc

fan−1

τr−1−1

⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

Vexitfan

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc

fan−1

τr−1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

Vexitcore

V∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

2

=τr ⋅τc ⋅τt−1τr−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅τλτc ⋅τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

MAE 6530 - Propulsion Systems II

Turbine-Compressor-Fan Work Matching

33

• Work taken from flow by high and low pressure turbine drives both compressor and fan,

!Wturbine = !macore + !mfuel( )⋅ h04 −h05( )= !macore( )⋅ h03−h02( )+ !mafan( )⋅ h03 fan −h02( )Approximating Cp≈ const, factoring out !maCpT∞

!maCpT∞!macore!ma+!mfuel

!ma

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⋅T04−T05

T∞

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟=!macore!ma

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⋅T03

core

−T02

T∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟+!mafan!ma

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⋅T03 fan−T02

T∞

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

MAE 6530 - Propulsion Systems II

Turbine-Compressor-Fan Work Matching (2)

34

→ Simplify

1−B+ 1f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅T04T∞−T05T04

T04T∞

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟= 1−B( )⋅

T02T∞

T03core

T02−T02T∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅T02T∞

T03fan

T02−T02T∞

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

→ Substitute

τλ =T04T∞

τt =T04T∞

τr =T0∞T∞=T02T∞

T03core

T02= τc

core

T03fan

T02= τc

fan

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

→ 1−B+ 1f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅ τλ−τtτλ( )= 1−B( )⋅ τrτc

core−τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅ τrτcfan

−τr⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

→ Solve for τt

τt =1−1−B( )⋅ τr

τλ⋅ τc

core−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅τrτλ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

1−B+ 1f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

MAE 6530 - Propulsion Systems II

Turbine-Compressor-Fan Work Matching (3)

35

→ let B= β1+β

→ τt =1−τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

1− β1+β

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅ τccore

−1⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅ τcfan

−τr⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

1− β1+β

+1f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

→ Simplify

τt =1−τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

11+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅ τccore

−1⎛

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+

β1+β⎛

⎝⎜⎜⎜

⎠⎟⎟⎟⎟⋅τrτλ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

11+β

+1f

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

=1−τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

τccore−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+β ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

1+1+βf

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

τt =1−τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

τccore−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+β ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

1+1+βf

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

→ for !mair >> !mfuel→1f= 0→ τt =1−

τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅ τc

core−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+β ⋅ τrτc

fan−τr

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

⎣⎢⎢

⎦⎥⎥τt =1−

τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟⋅ τc

core−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+β ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

⎣⎢⎢

⎦⎥⎥

MAE 6530 - Propulsion Systems II

Air to Fuel Ratio

36

→ Rearrange

!mfuel ⋅ hfuel−h04( )= !macore ⋅ h04

−h03core( )

→ factor out !maCp ⋅T∞

!maCp ⋅T∞!mfuel

!ma⋅hfuelCp ⋅T∞

−T04

T∞

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟=!macore!ma⋅T04

T∞−T02core

T∞⋅T03core

T02core

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

⎢⎢⎢⎢

⎥⎥⎥⎥

→ Simplify

1f⋅ τ fuel−τλ( )= 1

1+β⋅ τλ−τr ⋅τc

core

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟→

1f=

11+β

⋅τλ−τr ⋅τc

core

τ fuel−τλ

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

f = 1+β( )⋅τ fuel−τλτλ−τr ⋅τc

core

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

MAE 6530 - Propulsion Systems II

Collected TurboFan Matching Equations

37

τt =1−τrτλ

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟⎟

τccore−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟+β ⋅ τc

fan−1

⎝⎜⎜⎜⎜

⎠⎟⎟⎟⎟

1+1+βf

⎝⎜⎜⎜

⎠⎟⎟⎟⎟

• Turbine Work

• Fuel/Air Flow f =!ma!mfuel

If the bypass ratio goes to zero the matching condition reduces to the usual turbojet formula.

1f=

11+β

⋅τλ−τr ⋅τc

core

τ fuel−τλ

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

f = 1+β( )⋅τ fuel−τλτλ−τr ⋅τc

core

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟

MAE 6530 - Propulsion Systems II

Questions??

38


Recommended