+ All Categories
Home > Documents > Section 7 TB meteo

Section 7 TB meteo

Date post: 03-Apr-2018
Category:
Upload: lunefiekert
View: 229 times
Download: 0 times
Share this document with a friend

of 56

Transcript
  • 7/28/2019 Section 7 TB meteo

    1/56

    CAE NLS TB sect7 1

    Wat doet de wind? En waarom.?

  • 7/28/2019 Section 7 TB meteo

    2/56

    CAE NLS TB sect7 2

  • 7/28/2019 Section 7 TB meteo

    3/56

    CAE NLS TB sect7 3

    7. Jetstreams. A band of strong winds > 60kt

    7.1 Thermische wind (Vth)

    Pressure height in FL T (15-2xFL/10)

    850 hPa FL50 +5

    700 hPa FL100 -5500 hPa FL180 -21

    400 hPa FL240 -33

    300 hPa FL300 -45

    250 hPa FL340 -53

    200 hPa FL390 -56,5

    150 hPa FL450 -56,5

    Kennen! Blz 1-27

    Tropopause

    *

  • 7/28/2019 Section 7 TB meteo

    4/56

    CAE NLS TB sect7 4

    Wind at certain FL due to pressure difference in

    horizontal level

    Pressure difference of 5 hPa in upperair gives not the

    same velocity !!!!!

    dxdpFg .

    1

    sin...2 vFc sin..2

    g

    geo

    Fv

    decreases with height Vgeo changes with height by

    same pressure

    difference

  • 7/28/2019 Section 7 TB meteo

    5/56

    CAE NLS TB sect7 5

    Isohyps = line of same pressure AND same altitude. Intersection

    lines of one pressure sfc with horizontal planes

    Flying from A to B along the isohypses of 552 dam means:

    * Flying at constant true altitude of 5520 m

    * Flying in the 500 hPa pressure surface

    * Flying with tail wind (NH), and in general with no cross wind.

    C

    Flying from A to C

    till H true alt. increases

    from H to C true alt.

    decreases

    still flying in the 500

    hPa surface (FL180) !!!

    first wind from SB, later

    wind from port

    In reality

  • 7/28/2019 Section 7 TB meteo

    6/56

    CAE NLS TB sect7 6

  • 7/28/2019 Section 7 TB meteo

    7/56

    CAE NLS TB sect7 7

    Fly from L to X on 300 hPa surface (FL 300!) What happens?

    300 hPa

    contours

    X

    L 9280 m true

    X 9520 m true

    Dif: 240 m

    X = 240 higherStill on 300

    hPa surface =

    FL300

  • 7/28/2019 Section 7 TB meteo

    8/56

    CAE NLS TB sect7 8

    Thickness lines connect points with equal distance

    between two layers

    If difference between 2 layers

    thicker than standard warm air

    thinner than standard cold air

    500 hPa

    300 hPa

    Cold Warm

  • 7/28/2019 Section 7 TB meteo

    9/56

    CAE NLS TB sect7 9

    h constant

    300 hPa

    = p constant Cold Warm

    NH, sloping pressure surface (300 hPa)

    Pressure at B > A

    Pressure at B > A so Vgeo from B to A

    Windspeed depending on hook Alpha!

    A B

    Wind ?

    ABVgeo

  • 7/28/2019 Section 7 TB meteo

    10/56

    CAE NLS TB sect7 10

    More gradient = more sloping = more wind!

    Now we see

    the isohypses

    act like isobars!

    Close together

    = more wind !!

    More slope!!

  • 7/28/2019 Section 7 TB meteo

    11/56

    CAE NLS TB sect7 11

    V V VT top base

    Thermal wind (VT)

    Thermal wind is a vector(not a real wind) wich gives

    the difference between the Vgeo at the bottom of a

    layer and the Vgeo at the top of a layer.

    Vbase

    Vtop-Vbase

    VT

    VT

    Verbind pijlpunten van

    onder naar bovenOB= Vt

    (Verschil-vector!)

  • 7/28/2019 Section 7 TB meteo

    12/56

    CAE NLS TB sect7 12

    The thermal windis parallel to the isotherms of mean

    temperature in the layer (or to the thickness lines) with the

    cold air (low mean temperature or low thickness) to theleft if we have the thermal wind in the back and the warm

    air(high mean temperature or high thickness) to the right,

    in the N.H.

    What is the real wind doing?

  • 7/28/2019 Section 7 TB meteo

    13/56

    CAE NLS TB sect7 13

    Advection of cold or warm air (NH)

    What is this real wind

    doing? (base to top)

    What is this real wind

    doing? (base to top)

    In a layer.!!!

  • 7/28/2019 Section 7 TB meteo

    14/56

    CAE NLS TB sect7 14

    Cold

    advection

    CA=KA

  • 7/28/2019 Section 7 TB meteo

    15/56

    CAE NLS TB sect7 15

    Thermal wind and the Westerlies at moderate latitudes.

    VT on the northern hemisphere is west because

    temperature decreases from equator to north pole

    VT = Vtop - Vbase

    Vtop = Vbase + VT

    V1000 VT

    V900

    V900 VT

    V800

    Conclusion: wind increases with height and becomes mainly

    westerly at higher levels when VT is normally directed (positive!)

    800 hPa

    900 hPa1000 hPa

  • 7/28/2019 Section 7 TB meteo

    16/56

    CAE NLS TB sect7 16

    Vertical shear

    VT is positive: VT is negative:

    Normal situation Is not rare.!

  • 7/28/2019 Section 7 TB meteo

    17/56

    CAE NLS TB sect7 17

    Diktekaart-thermische wind-

    advectie

    Warmte- en kou-advectie

    Ruimen en krimpen van de wind metde hoogte.

  • 7/28/2019 Section 7 TB meteo

    18/56

    CAE NLS TB sect7 18

    Koud

    Warm

    Dun

    Dik

    Koud

    Warm

    Vth NH

    Vth ZH

    KOU LINKS

    KOU RECHTS

    NP

    ZP

  • 7/28/2019 Section 7 TB meteo

    19/56

    CAE NLS TB sect7 19

    Vth=Vboven -Vonder

    Aannemen:

    Diktel i jnen lopen // aan de isothermen, DUS:

    Vth waait // isothermen (op NH kou links)

    (op NH warmte rechts)

  • 7/28/2019 Section 7 TB meteo

    20/56

    CAE NLS TB sect7 20

    Vth=Vboven -Vonder

    Dus teken van pijlpunt Vo naar pijlpunt Vb

    Vb

    Vo

    -Vo R

    Vth

    Vth

    VANONDERNAARBOVEN (OB)

  • 7/28/2019 Section 7 TB meteo

    21/56

    CAE NLS TB sect7 21

    Vth=Vboven -Vonder

    Vbo

    VOnd

    Vbo

    VOnd

    Vth

    300hPa

    500hPa

  • 7/28/2019 Section 7 TB meteo

    22/56

    CAE NLS TB sect7 22

    Vo

    A

    B

  • 7/28/2019 Section 7 TB meteo

    23/56

    CAE NLS TB sect7 23

    Positie A (dia 22)

    Vo

    Vb

    (500hPa)

    Vth

    Koude kant

    Warme kant

    CAE NLS TB sect7 20

    Vo

    500hPa

    wind

    A

    Bij A is KOU-ADVECTIE

  • 7/28/2019 Section 7 TB meteo

    24/56

    CAE NLS TB sect7 24

    Positie B (dia 22)

    CAE NLS TB sect7 20

    Vo

    500hPa

    wind

    A

    Vo

    Vb

    (500hPa)

    Bij B is WARMTE-ADVECTIE

    Koude kant

    Warme kant

  • 7/28/2019 Section 7 TB meteo

    25/56

    CAE NLS TB sect7 25

    Samenvatting:

    1) Thermische wind waait // isothermen

    Op NH kou links, warmte rechts

    Op ZH andersom

    Echte wind NH :2) Krimpen naar boven= Kou-advectie

    3) Ruimen naar boven = Warmte advectie

    4) Als temperatuurverdeling meewerkt

    (Vth is positief) neemt de wind van beneden

    naar boven TOE! (anders af!!)

    Uitleg Jetstream

  • 7/28/2019 Section 7 TB meteo

    26/56

    CAE NLS TB sect7 26

    Uitleg Jetstream

  • 7/28/2019 Section 7 TB meteo

    27/56

    CAE NLS TB sect7 27

    The jetstream

    Definition:

    Jet streamsare strong, narrow currents of air with speeds

    greater than 60kts.

    They are characterized by strong horizontal and vertical

    windshear.Velocity in center(the jet core):

    General about 100 kts

    Over North Atlantic and Europe*: 200 ktsOver north west Pacific in winter: > 300 kts

    A jet stream is usually some thousands of kms in length,

    hundreds of kms in width and some kms in depth.

  • 7/28/2019 Section 7 TB meteo

    28/56

    CAE NLS TB sect7 28

    Lenght scale: in this case

    30 x 60 nm ~ 3500km

  • 7/28/2019 Section 7 TB meteo

    29/56

    CAE NLS TB sect7 29

    Horizontal scale: in this

    case 7x60 nm ~ 800 km

    Stornoway

  • 7/28/2019 Section 7 TB meteo

    30/56

    CAE NLS TB sect7 30

    Vertical scale Jetstream

    Ca. 20.000ft6 km

    in this case

    Maxwind?

    Level?

  • 7/28/2019 Section 7 TB meteo

    31/56

    CAE NLS TB sect7 31

    Cross section of a jet stream:

    Ca 5 km

    Ca 500 km

    And a few thousends km long..

  • 7/28/2019 Section 7 TB meteo

    32/56

    CAE NLS TB sect7 32

    Noordelijke Zomer

    zwakker,

    noorderlijker

    geen arctische jet

    Equatoriale jet uit

    oosten!

  • 7/28/2019 Section 7 TB meteo

    33/56

    CAE NLS TB sect7 33

    The jetstream has the same direction as the VT

    Jetstream in the back, cold air at left side and warm air at the right

    In the figure, jetstream is coming towards us. (NH)

    ?

  • 7/28/2019 Section 7 TB meteo

    34/56

    CAE NLS TB sect7 34

    Conclusions: The maximum wind speed, thejet co reof the jet stream, is found

    - at the level ofequal HORIZONTAL temperature

    - on the warm side of the frontal zone (in warm air!)

    - at altitudes just above the tropopause of the cold air, beneath the

    warm tropopause, in the tropopause break.

    The projection of the core on the surface lies in the cold airmass*.

    The jet is caused by strong horizontal temperature gradients,

    concentrated near the boundaries of air masses (fronts).

  • 7/28/2019 Section 7 TB meteo

    35/56

    CAE NLS TB sect7 35

    Clear air turbulance ( CAT )

    The greatest risk of CAT is at the cold side of thejetstream.

    Why??

  • 7/28/2019 Section 7 TB meteo

    36/56

    CAE NLS TB sect7 36

    300 hPa is jet core (kern)

    400 hPa is jet axis (as)

    Jet core and axis

    jet

    Core: absolute maxwind of jet

    Axis: maxwind on a certain level

    100kt

    80kt

    What is the maxwind in the core?

    And on 400 hPa?

  • 7/28/2019 Section 7 TB meteo

    37/56

    CAE NLS TB sect7 37

    Jet STREAKS

    Core

    They travel in the jet core downwind with up to 20 kts.

    120 kt

    140 kt140 kt

  • 7/28/2019 Section 7 TB meteo

    38/56

    CAE NLS TB sect7 38

    Classification of jet streams

    Richting?

  • 7/28/2019 Section 7 TB meteo

    39/56

    CAE NLS TB sect7 39

    1. The Arctic Jet

    associated with the arctic front

    influences the weather over Europe only in winter

    jet core at around 60north

    height of the core varies between 300 and 400hPa,

    sometimes lower

    wind speed reaches values between 75 and 130kt

    direction is westerly

  • 7/28/2019 Section 7 TB meteo

    40/56

    CAE NLS TB sect7 40

    2. The Polar Jet

    associated with the polar front

    observed all the year around

    great variation between one jet and another

    height of the core usually between 300 and 200 hPa

    wind speed highly variable with on average 125kts in winter

    and 65kts in summer

    direction: all possible, Wly dominant

    situated between 40 and 60N in winter and between 60

    and 80N in summer

  • 7/28/2019 Section 7 TB meteo

    41/56

    CAE NLS TB sect7 41

    Polar Jet is often interrupted. Parts with strong winds alternate

    with intervals with weak winds.

  • 7/28/2019 Section 7 TB meteo

    42/56

    CAE NLS TB sect7 42

  • 7/28/2019 Section 7 TB meteo

    43/56

    CAE NLS TB sect7 43

  • 7/28/2019 Section 7 TB meteo

    44/56

    CAE NLS TB sect7 44

    3. The Subtropical Jet

    notassociated with a front ( keeping impulse moment)

    between 25 and 40north in winter and 40-45north in summer

    height of the core around 200 hPa

    wind speed reaches values between 80kt in summer and

    140ktin winter

    direction is westerly

  • 7/28/2019 Section 7 TB meteo

    45/56

    CAE NLS TB sect7 45

    4. The Equatorial Easterly Jet

    notassociated with a front (temp. diff. at higher levels only)

    between 12 and 15N only in summer NH

    height of the core between 100 and 150 hPa

    wind speed around 60kt, seldom 100kt

    direction is easterly*

  • 7/28/2019 Section 7 TB meteo

    46/56

    CAE NLS TB sect7 46

    Equatorial Easterly Jet in June-July-August

  • 7/28/2019 Section 7 TB meteo

    47/56

    CAE NLS TB sect7 47

    5. The Polar Night Jet

    notassociated with a front (temp. diff. at higher levels only)

    near 70N and S in winter

    height of the core near 25 hPa(80.000 ft)

    wind speed around 60kt

    direction is westerly

    Temperatures up to70 on cruising levels!*

  • 7/28/2019 Section 7 TB meteo

    48/56

    CAE NLS TB sect7 48POSITIONS OF JET STREAMS IN THE NORTHERN HEMISPHERE

  • 7/28/2019 Section 7 TB meteo

    49/56

    CAE NLS TB sect7 49

    Ad ti ?

  • 7/28/2019 Section 7 TB meteo

    50/56

    CAE NLS TB sect7 50

    Advection?

    568 572NH

    Wind?-40

    -45 No advection

    Ad ti ?

  • 7/28/2019 Section 7 TB meteo

    51/56

    CAE NLS TB sect7 51

    Advection?

    568 572NH

    Wind -40

    -45

    WAA

    Ad ection?

  • 7/28/2019 Section 7 TB meteo

    52/56

    CAE NLS TB sect7 52

    Advection?

    568572NH Wind?

    -40

    -45

    CAA

    O f i W t f k d ti

  • 7/28/2019 Section 7 TB meteo

    53/56

    CAE NLS TB sect7 53

    Oefening Warmte of kou-advectie

    Bereken en/of teken Vth

    Welke advectie, KA of WA

    E i j d i

  • 7/28/2019 Section 7 TB meteo

    54/56

    CAE NLS TB sect7 54

    Exercise:jetstream, advection, temps

    draw isohypsen on 400 hPa chart (delta h = 4 dam)

    draw istherms (in red or diff. Colour) (delta T = 5C)

    where is CAA and where is WAA?

    Temps

    La Coruna 08001 Emden 10200

    T 500 .. .

    Tropopause .. .

    T 36000`. .

    Tsfc *

    WX? .. ..

    Advection?. .

  • 7/28/2019 Section 7 TB meteo

    55/56

    CAE NLS TB sect7 55

  • 7/28/2019 Section 7 TB meteo

    56/56

    CAE NLS TB t7 56


Recommended