+ All Categories
Home > Documents > Sectional category weight and topological...

Sectional category weight and topological...

Date post: 09-Jun-2018
Category:
Upload: phungnhu
View: 218 times
Download: 0 times
Share this document with a friend
47
Sectional category weight and topological complexity (joint with Michael Farber) Mark Grant [email protected] BMC Swansea 2007 – p.1
Transcript
Page 1: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Sectional category weight andtopological complexity

(joint with Michael Farber)

Mark [email protected]

BMC Swansea 2007 – p.1

Page 2: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

BMC Swansea 2007 – p.2

Page 3: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

BMC Swansea 2007 – p.2

Page 4: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

BA

BMC Swansea 2007 – p.2

Page 5: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

B

BMC Swansea 2007 – p.2

Page 6: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

B

BMC Swansea 2007 – p.2

Page 7: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

B

BMC Swansea 2007 – p.2

Page 8: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������

B B

BMC Swansea 2007 – p.2

Page 9: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Path-connected spaceX of configurations (ofmechanical system, robot,...)

Find algorithm which has as inputA,B ∈ X (initialand final states) and as output a pathγ : I → X withγ(0) = A andγ(1) = B

Corresponds to finding a sections : X ×X → XI

of the path fibration

π : XI → X ×X, π(γ) = (γ(0), γ(1))

BMC Swansea 2007 – p.2

Page 10: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Theorem (Farber) There exists acontinuous sections of π if and only ifX is contractible

BMC Swansea 2007 – p.3

Page 11: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Theorem (Farber) There exists acontinuous sections of π if and only ifX is contractible

A subsetU ⊆ X ×X is called alocal domain ifthere is a continuous mapσ : U → XI withπ ◦ σ = IdU

BMC Swansea 2007 – p.3

Page 12: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Theorem (Farber) There exists acontinuous sections of π if and only ifX is contractible

A subsetU ⊆ X ×X is called alocal domain ifthere is a continuous mapσ : U → XI withπ ◦ σ = IdU

Definition TheTopological Complexity of X,TC(X) is the min.k s.t.X ×X = U1 ∪ · · · ∪ Uk

where a) TheUi are local domainsb) i 6= j ⇒ Ui ∩ Uj = ∅c) EachUi is an ENR

BMC Swansea 2007 – p.3

Page 13: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

The Motion Planning problem

Theorem (Farber) There exists acontinuous sections of π if and only ifX is contractible

A subsetU ⊆ X ×X is called alocal domain ifthere is a continuous mapσ : U → XI withπ ◦ σ = IdU

Definition TheTopological Complexity of X,TC(X) is the min.k s.t.X ×X = U1 ∪ · · · ∪ Uk

where a) TheUi are local domainsb) i 6= j ⇒ Ui ∩ Uj = ∅c) EachUi is an ENR

Theorem (Farber)X ≃ Y ⇒ TC(X) = TC(Y )

BMC Swansea 2007 – p.3

Page 14: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Why study TC?

Practical applications in design of automatedmechanical systems

BMC Swansea 2007 – p.4

Page 15: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Why study TC?

Practical applications in design of automatedmechanical systems

Connection with immersion problem:Thm (Farber, Tabachnikov, Yuzvinsky)

TC(RP n) =

{

In n = 1, 3, 7,

In + 1 else

whereIn is the smallest dim of Euclidean space inwhichRP n immerses

BMC Swansea 2007 – p.4

Page 16: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Why study TC?

Practical applications in design of automatedmechanical systems

Connection with immersion problem:Thm (Farber, Tabachnikov, Yuzvinsky)

TC(RP n) =

{

In n = 1, 3, 7,

In + 1 else

whereIn is the smallest dim of Euclidean space inwhichRP n immerses

Interesting in its own right, for exampleProblem (Farber) For an abstract groupG computeTC(G) = TC(K(G, 1))

BMC Swansea 2007 – p.4

Page 17: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Schwarz genus

Let p : E → B be a fibration

BMC Swansea 2007 – p.5

Page 18: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Schwarz genus

Let p : E → B be a fibration

Definition TheSchwarz genus of p, genus(p), ismin.k s.t.B = U1 ∪ · · · ∪Uk with eachUi open inBand local sectionssi : Ui → E (with p ◦ si = IdUi

)

BMC Swansea 2007 – p.5

Page 19: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Schwarz genus

Let p : E → B be a fibration

Definition TheSchwarz genus of p, genus(p), ismin.k s.t.B = U1 ∪ · · · ∪Uk with eachUi open inBand local sectionssi : Ui → E (with p ◦ si = IdUi

)

Theorem (Farber) For nice spacesX,

TC(X) = genus(π : XI → X ×X)

BMC Swansea 2007 – p.5

Page 20: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Schwarz genus

Let p : E → B be a fibration

Definition TheSchwarz genus of p, genus(p), ismin.k s.t.B = U1 ∪ · · · ∪Uk with eachUi open inBand local sectionssi : Ui → E (with p ◦ si = IdUi

)

Theorem (Farber) For nice spacesX,

TC(X) = genus(π : XI → X ×X)

Other examples includecat(X) = genus(p : PX → X)wherep is Serre path fibration, and work of S Smale andV Vassiliev on complexity of algorithms for solvingpolynomial equations

BMC Swansea 2007 – p.5

Page 21: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

AssumeH∗(X ×X) ∼= H∗(X) ⊗H∗(X) asalgebras, where product on the right is

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ

BMC Swansea 2007 – p.6

Page 22: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

AssumeH∗(X ×X) ∼= H∗(X) ⊗H∗(X) asalgebras, where product on the right is

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ

Let I = ker(

∪ : H∗(X) ⊗H∗(X) → H∗(X))

beideal ofzero-divisors

BMC Swansea 2007 – p.6

Page 23: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

AssumeH∗(X ×X) ∼= H∗(X) ⊗H∗(X) asalgebras, where product on the right is

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ

Let I = ker(

∪ : H∗(X) ⊗H∗(X) → H∗(X))

beideal ofzero-divisors

ThenTC(X) > cup-length(I)

BMC Swansea 2007 – p.6

Page 24: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

AssumeH∗(X ×X) ∼= H∗(X) ⊗H∗(X) asalgebras, where product on the right is

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ

Let I = ker(

∪ : H∗(X) ⊗H∗(X) → H∗(X))

beideal ofzero-divisors

ThenTC(X) > cup-length(I)

More generallygenus(p) > cup-length(ker p∗) forany fibrationp (Schwarz)

BMC Swansea 2007 – p.6

Page 25: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

Main result: The above lower bound forTC can besharpened using cohomology operations

BMC Swansea 2007 – p.7

Page 26: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

Main result: The above lower bound forTC can besharpened using cohomology operations

Fadell, Husseini (92)- Improved classical cup-lengthlower bd for LS-cat by assigning an integer weightcwgt(u) to u ∈ H∗(X) and noting that ifu1 · · · uk 6= 0 then

cat(X) >k

i=1

cwgt(ui)

BMC Swansea 2007 – p.7

Page 27: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Lower bounds for TC

Main result: The above lower bound forTC can besharpened using cohomology operations

Fadell, Husseini (92)- Improved classical cup-lengthlower bd for LS-cat by assigning an integer weightcwgt(u) to u ∈ H∗(X) and noting that ifu1 · · · uk 6= 0 then

cat(X) >k

i=1

cwgt(ui)

This can be generalised togenus(p : E → B) andapplied toTC = genus(π)

BMC Swansea 2007 – p.7

Page 28: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Sectional category weight

p : E → B fibration,u ∈ H∗(B) (any coefficients)

BMC Swansea 2007 – p.8

Page 29: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Sectional category weight

p : E → B fibration,u ∈ H∗(B) (any coefficients)

Definition Thesectional category weight of u wrt p,wgtp(u), is min. k. s.t. wheneverf : Y → B is amap withgenus(f ⋆p) ≤ k thenf ∗(u) = 0

BMC Swansea 2007 – p.8

Page 30: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Sectional category weight

p : E → B fibration,u ∈ H∗(B) (any coefficients)

Definition Thesectional category weight of u wrt p,wgtp(u), is min. k. s.t. wheneverf : Y → B is amap withgenus(f ⋆p) ≤ k thenf ∗(u) = 0

Proposition If u1 · · · uk 6= 0 then

genus(p) > wgtp(u1 · · ·uk) ≥k

i=1

wgtp(ui)

BMC Swansea 2007 – p.8

Page 31: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Sectional category weight

p : E → B fibration,u ∈ H∗(B) (any coefficients)

Definition Thesectional category weight of u wrt p,wgtp(u), is min. k. s.t. wheneverf : Y → B is amap withgenus(f ⋆p) ≤ k thenf ∗(u) = 0

Proposition If u1 · · · uk 6= 0 then

genus(p) > wgtp(u1 · · ·uk) ≥k

i=1

wgtp(ui)

Proposition wgtp(u) ≥ 1 if and only if p∗(u) = 0

BMC Swansea 2007 – p.8

Page 32: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

In particular theTC-weight of u ∈ H∗(X ×X) iswgtπ(u), whereπ : XI → X ×X is the pathfibration. If u1 · · ·uk 6= 0 ∈ H∗(X ×X) thenTC(X) >

wgtπ(ui)

BMC Swansea 2007 – p.9

Page 33: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

In particular theTC-weight of u ∈ H∗(X ×X) iswgtπ(u), whereπ : XI → X ×X is the pathfibration. If u1 · · ·uk 6= 0 ∈ H∗(X ×X) thenTC(X) >

wgtπ(ui)

We haveπ∗(u) = 0 ⇔ △∗(u) = 0, sowgtπ(u) ≥ 1if and only if u is a zero-divisor

BMC Swansea 2007 – p.9

Page 34: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

In particular theTC-weight of u ∈ H∗(X ×X) iswgtπ(u), whereπ : XI → X ×X is the pathfibration. If u1 · · ·uk 6= 0 ∈ H∗(X ×X) thenTC(X) >

wgtπ(ui)

We haveπ∗(u) = 0 ⇔ △∗(u) = 0, sowgtπ(u) ≥ 1if and only if u is a zero-divisor

Hence the previous lower bound can be sharpenedby finding indecomposablesu with wgtπ(u) ≥ 2

BMC Swansea 2007 – p.9

Page 35: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

Let θ : H∗(−;R) → H∗+i(−;S) be a stable cohomologyoperation

BMC Swansea 2007 – p.10

Page 36: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

Let θ : H∗(−;R) → H∗+i(−;S) be a stable cohomologyoperation

Defineexcess of θ, e(θ), to be the largestn stθ(u) = 0 for all u with dim(u) < n

e.g.e(Sqi) = i, e(Pi) = 2i ande(β) = 1

BMC Swansea 2007 – p.10

Page 37: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

Let θ : H∗(−;R) → H∗+i(−;S) be a stable cohomologyoperation

Defineexcess of θ, e(θ), to be the largestn stθ(u) = 0 for all u with dim(u) < n

e.g.e(Sqi) = i, e(Pi) = 2i ande(β) = 1

Theorem (Farber, G) Supposee(θ) = n andu ∈ Hn(X;R). Then the element

θ(u) = 1 × θ(u) − θ(u) × 1 ∈ Hn+i(X ×X;S)

haswgtπ(θ(u)) ≥ 2

BMC Swansea 2007 – p.10

Page 38: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

The proof is a simple Mayer-Vietoris argument, using thefollowing Lemma:

BMC Swansea 2007 – p.11

Page 39: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Applications to TC

The proof is a simple Mayer-Vietoris argument, using thefollowing Lemma:

Lemma Let f = (ϕ,ψ) : Y → X ×X be a mapwhereϕ, ψ denote the projections off onto thefactors ofX ×X. Thengenus(f ⋆π) ≤ 2 if and onlyif Y = A ∪ B, whereA andB are open inY andϕ|A ≃ ψ|A, ϕ|B ≃ ψ|B

BMC Swansea 2007 – p.11

Page 40: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Example: Lens spaces

Lnp = S2n+1/Zp, p odd prime

BMC Swansea 2007 – p.12

Page 41: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Example: Lens spaces

Lnp = S2n+1/Zp, p odd prime

H∗(Lnp ; Zp) ∼= ΛZp

[x] ⊗ Zp[y]/(yn+1)

Here|x| = 1, |y| = 2 andy = βx whereβ : Hn(−; Zp) → Hn+1(−; Zp) is mod p Bockstein

BMC Swansea 2007 – p.12

Page 42: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Example: Lens spaces

Lnp = S2n+1/Zp, p odd prime

H∗(Lnp ; Zp) ∼= ΛZp

[x] ⊗ Zp[y]/(yn+1)

Here|x| = 1, |y| = 2 andy = βx whereβ : Hn(−; Zp) → Hn+1(−; Zp) is mod p Bockstein

Compute(x⊗ x)y2n = (−1)n(

2nn

)

xyn ⊗ xyn inH∗(Ln

p) ⊗H∗(Lnp)

BMC Swansea 2007 – p.12

Page 43: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Example: Lens spaces

Lnp = S2n+1/Zp, p odd prime

H∗(Lnp ; Zp) ∼= ΛZp

[x] ⊗ Zp[y]/(yn+1)

Here|x| = 1, |y| = 2 andy = βx whereβ : Hn(−; Zp) → Hn+1(−; Zp) is mod p Bockstein

Compute(x⊗ x)y2n = (−1)n(

2nn

)

xyn ⊗ xyn inH∗(Ln

p) ⊗H∗(Lnp)

HenceTC(Lnp) > 1 + 2(2n) = 4n+ 1 provided

p ∤(

2nn

)

. In factTC(Lnp) = 4n+ 2 in such cases

BMC Swansea 2007 – p.12

Page 44: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Further work

Theorem (G) Letp : E → B be a fibration, andsuppose the Massey product〈α, β, γ〉 is defined andnon-zero. Thengenus(p) > wgtp(β) + min{wgtp(α),wgtp(γ)}

BMC Swansea 2007 – p.13

Page 45: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Further work

Theorem (G) Letp : E → B be a fibration, andsuppose the Massey product〈α, β, γ〉 is defined andnon-zero. Thengenus(p) > wgtp(β) + min{wgtp(α),wgtp(γ)}

WhenX = S3 −B, complement of Borromeanrings, this givesTC(X) > 3 whilecup-length(I) = 2

BMC Swansea 2007 – p.13

Page 46: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Further work

Theorem (G) Letp : E → B be a fibration, andsuppose the Massey product〈α, β, γ〉 is defined andnon-zero. Thengenus(p) > wgtp(β) + min{wgtp(α),wgtp(γ)}

WhenX = S3 −B, complement of Borromeanrings, this givesTC(X) > 3 whilecup-length(I) = 2

Conjecture If u ∈ Hn(X) hascwgt(u) ≥ 2 thenu ∈ Hn(X ×X) haswgtπ(u) ≥ 2, for n in a rangedepending onconn(X)(true ifX is simply-connected)

BMC Swansea 2007 – p.13

Page 47: Sectional category weight and topological complexityhomepages.abdn.ac.uk/mark.grant/pages/resources/BMC2007MG.pdf · Sectional category weight and topological complexity (joint with

Thanks for listening!

BMC Swansea 2007 – p.14


Recommended