+ All Categories
Home > Documents > Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13...

Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13...

Date post: 26-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
18
Sediment mobilisation in Lake Alaotra catchment, Madagascar Vao Fenotiana Razanamahandry, Liesa Brosens, Marjolein Dewaele, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, Nils Broothaerts, Gert Verstraeten, Gerard Govers, Steven Bouillon. KU Leuven, Leuven, Belgium/University of Antananarivo, Antananarivo, Madagascar.
Transcript
Page 1: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Sediment mobilisation in Lake Alaotra catchment, MadagascarVao Fenotiana Razanamahandry, Liesa Brosens, Marjolein Dewaele, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, Nils Broothaerts, Gert Verstraeten, Gerard Govers, Steven Bouillon. KU Leuven, Leuven, Belgium/University of Antananarivo, Antananarivo, Madagascar.

Page 2: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Project MaLESA

1.Initiation of Lavaka 2.Carbon and Sedimenttransport

3.Sedimentary archives and Environmental reconstruction

Page 3: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

LAVAKA (Malagasy word) = “gullies”, is a part of erosion features that occurs

in many regions of Madagascar

High erosion rate in Madagascar: human driven?

Global Rainfall Erosivity Map (Source: European Soil Data Centre, 2017)

Background and research question

Page 4: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Lavaka-prone regions in Madagascar

Source:The Geological Society of America, 2010

Lake Alaotra: largest lake in Madagascar

Background and research question

Page 5: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Tracing sediment and organic carbon transfer in lake Alaotra regionsources, mobilisation and deposition.

Proxies: Organic carbon (OC) content and d13C of OC

Hillslopes

River

Reservoirs/lakesediments

APPROACHES

Page 6: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Isotope fractionation of Soil organic carbon gives an information about past vegetation

above ground

Organic carbon fluxes and d13C of plants and soils:

APPROACHES

Page 7: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

soil profiles (grassland and forest hillslopes)

lake sediment cores marshes core floodplain cores riverine and lacustrine water

sampling ( regular sampling)

Study area: Lake Alaotra catchment and sampling points

Page 8: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

%OC

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Depth (cm)

0

50

100

150

200

PPL V

PPL B

PPL C

PPL M

PPL UM

PPL T

%OC

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Depth (cm)

0

50

100

150

200

PNL V

PNL B

PNL C

PNL M

PNL UM

PNL T

%OC

0 1 2 3 4 5 6

Depth (cm)

0

50

100

150

200

F1 V

F1 B

F1 C

F1 M

F1 UM

F1 T

%OC

0 1 2 3 4 5 6

Depth (cm)

0

50

100

150

200

F2 V

F2 B

F2 C

F2 M

F2 UM

F2 T

Grassland soil : OC content extremely low and decreases with depth

Forest soil profiles: OC% decreases with depth, OC % forest soil > OC % of grassland (OC stock of forest is two times higher)

93Ton/ha

OC

181Ton/ha

OC

Figure 1 : Organic carbon content of soil profiles : 2 grassland profiles (a and b) and 2 forest soil profiles (c and d)

(a) (b) (c) (d)

RESULTS

Page 9: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

9

13C

-26 -24 -22 -20 -18 -16 -14

Depth (cm)

0

50

100

150

200

PNL V

PNL B

PNL C

PNL M

PNL UM

PNL T

13C

-26 -24 -22 -20 -18 -16 -14

Depth (cm)

0

50

100

150

200

PPL V

PPL B

PPL C

PPL M

PPL UM

PPL T

13C

-28 -26 -24 -22 -20

Depth (cm)

0

50

100

150

200

F1 V

F1 B

F1 C

F1 M

F1 UM

F1 T

13C

-28 -26 -24 -22 -20

Depth (cm)

0

50

100

150

200

F2 V

F2 B

F2 C

F2 M

F2 UM

F2 T

d13C of Grassland soil profiles decreases with depth and is between C3

and C4 signatured13C of Forest soil profiles increases with depth and is consistent with

long-term C3 cover

Figure 2 : d13C of Organic carbon of soil profiles : 2 grassland soil profiles (a and b) and 2 forest soil profiles (c and d)

(a) (b) (c) (d)

RESULTS

Page 10: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

OC(%)

0 10 20 30 40

Depth

(cm

)

0

4

8

12

16

20

24

28

32

36

40

44

48

13C(‰)

-20 -18 -16 -14

0

4

8

12

16

20

24

28

32

36

40

44

48

Figure 3: Characteristics of organic carbon of lake sediment core in the south of the lake “T2”(a) Organic carbon content plotted against core depth,(b) δ13C of organic carbon plotted against core depth.

(b)(a)

RESULTS

OC of lake sediment core “T2” higher than soil OC and δ13C ranges between -20 to -14 ‰

Page 11: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

OC (%)

0 5 10 15 20 25

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

13C (‰)

-22 -20 -18 -16 -14

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 4: Characteristics of organic carbon of lake sediment core in the south of the lake “Alaotra 1”(a) Organic carbon content plotted against core depth,(b) δ13C of organic carbon plotted against core depth.

RESULTS

OC of lake sediment core “Alaotra 1” are higher than soil and δ13C ranges between -22 to -14 ‰

Page 12: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

OC (%)

0 5 10 15 20 25

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

13C (‰)

-22 -20 -18 -16 -14

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 5: Characteristics of organic carbon of lake sediment core in the south of the lake “Alaotra 2”(a) Organic carbon content plotted against core depth,(b) δ13C of organic carbon plotted against core depth.

(b)(a)

OC of lake sediment core “Alaotra 2” are higher than soil and δ13C ranges between -22 to -14 ‰

RESULTS

Page 13: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Sediment core

1) Marshes vegetation and Peat

Internal primary productionSuspended organic material

2) Fluvial input and hillslope erosion

OC : 0.4-1.8%δ13C : - 24 to -18‰

OC %: 10% -60%δ13C : - 24 to -14‰

OC: 5-35% δ13C :-22 to-14‰

POC : 10-33 %δ13C : - 29 to -24‰POC/chl a: 5373) High Primary production

Figure 6: Characteristic of organic carbon from the 3 potential sources of OC in the lake sediment core of Lake Alaotra.

3 potential sources of OC in lake sediment core of Lake Alaotra

RESULTS

Page 14: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Application of isotopic mixing model (MixSIAR) on Lake Sediment core “T2” Marshes are the primary sources of organic carbon

(a) (b) (c) (d) (e)

Figure 7: Estimated proportion of organic carbon from potential sources in lake sediment core “T2” by using d13C of organic carbon,

(a) Organic carbon content plotted against core depth and age (cal a BP),(b) δ13C plotted against core depth,(c) Proportion of Soil-derived organic carbon plotted against core depth,(d) Proportion of Marshes-derived organic carbon plotted against core depth,(e) Proportion of internal primary

production-derived organic carbon in lake sediment core plotted against core depth.

OC (%)

0 10 20 30 40

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

13C (‰)

-20 -18 -16 -14 -12

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

Page 15: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Application of isotopic mixing model (MixSIAR) on lake sediment core “Alaotra 1”Marshes are the primary sources of organic carbon

OC (%)

0 5 10 15 20 25

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

13C (‰)

-22 -20 -18 -16 -14

Dep

th (

cm

)0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 8: Estimated proportion of organic carbon from potential sources in lake sediment core by “Alaotra 1 ” by using d13C of organic carbon,(a) Organic carbon content plotted against core depth,(b) δ13C plotted against core depth(c) Proportion of Soil-derived, organic carbon plotted against core depth,(d) Proportion of Marshes-derived organic carbon plotted against core depth,(e) Proportion of internal

primary production-derived organic carbon in lake sediment core plotted against core depth.

(a) (b) (c) (d) (e)

OC (%)

0 5 10 15 20

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

13C (‰)

-22 -20 -18 -16 -14

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

De

pth

(cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

154

Age (cal a BP)

363

573

858

1176

1495

1813

1964

2044

2124

5417

10087

15691

18960

Page 16: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Application of isotopic mixing model (MixSIAR) on lake sediment core “Alaotra2” Marshes are the primary sources of organic carbon

OC (%)

0 5 10 15 20 25

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

13C (‰)

-22 -20 -18 -16 -14

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0.0 0.5 1.0

Dep

th (

cm

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 9: Estimated proportion of organic carbon from potential sources in lake sediment core “Alaotra 2 ” by using d13C of organic carbon,(a) Organic carbon content plotted against core depth,(b) δ13C plotted against core depth,(c) Proportion of Soil-derived organic carbon plotted against core depth,(d) Proportion of Marshes-derived organic carbon plotted against core depth,(e) Proportion of internal

primary production-derived organic carbon in lake sediment core plotted against core depth.

(a) (b) (c) (d) (e)

Page 17: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

Floodplain are likely a key sink of soil-derived sediment

%OC

0.01 0.1 1 10

13C

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

Grassland Soil

Forest Soil

Floodplain AND1

Floodplain MAR1

Floodplain AND2

Figure 10: δ13C plotted against organic carbon content of grassland and forest soil profiles and floodplain cores.

Page 18: Sediment mobilisation in Lake Alaotra catchment, Madagascar0.01 0.1 1 10 13 C-30-28-26-24-22-20-18-16-14-12 Grassland Soil Forest Soil Floodplain AND1 Floodplain MAR1 Floodplain AND2

• Soil in the grassland and forest hillslope has a lower OC content (0-2% for grassland soil)

• d13C of Grassland soil profiles: indicates a shift of C3 to C4 vegetation

• Lake sediment core has a high organic carbon content.

• Majority of lake sediment OC is not soil-derived, but originates from surrounding marshes.

• Floodplains are likely a key sink for soil-derived sediments.

d13C and OC tracers give an information on environmental change : carbon content change and marshes vegetation,

not Insufficient to understand the entire sediment and carbon transfer in the Malagasy landscape

Consider another proxies : pollen or charcoal in lake sediment core .

CONCLUSIONS


Recommended