+ All Categories
Home > Documents > Seismic fluid-structure interaction in advanced reactors Seismic Fluid-Structure... · Seismic...

Seismic fluid-structure interaction in advanced reactors Seismic Fluid-Structure... · Seismic...

Date post: 21-Oct-2019
Category:
Upload: others
View: 21 times
Download: 0 times
Share this document with a friend
23
Seismic fluid-structure interaction in advanced reactors Chingching Yu, Faizan Mir, Andrew Whittaker University at Buffalo Michael Cohen TerraPower Justin Coleman Idaho National Laboratory Philippe Bardet George Washington University
Transcript

Seismicfluid-structureinteractioninadvancedreactors

ChingchingYu,FaizanMir,AndrewWhittakerUniversityatBuffalo

MichaelCohenTerraPower

JustinColemanIdahoNationalLaboratory

PhilippeBardetGeorgeWashingtonUniversity

Outline

•  Introduction• SeismicFSImodels• Response-historyanalysisoftestspecimen• Futurework• Summaryandconclusions

DOENPHMeeting;October23and24,2018

Introduction

•  Liquidmetalreactors•  Liquidmetalsasthefluid•  Verifiedandvalidatednumericalmodels

Gluekler(1997)

DOENPHMeeting;October23and24,2018

Load-cell

Supporting frame

Reactor vessel

Earthquake simulator

Load cell

Supporting frame

Test vessel

Introduction

• Numericalmodelsofliquidmetalreactors•  Three-directionalseismicmotions•  VerifiedusinganalyticalsolutionsofFSIresponse•  Tobevalidatedusingdatafromearthquakesimulatortestsona1/10scalemodelinQ1andQ22019

2 m

1.6 m

269ft.

381ft.

269ft.

381ft.

82 m 116 m

Node 1

Node 1

RC containment

RV support

1/10scalemodelofreactorvessel

Nuclearbuildingandreactorvessel

1.SolversinLS-DYNA(2017)

ALEmodel ICFDmodel

Eulerianfluiddomain

AdaptedLagrangianfluidmesh

Numericalmodels,reactorvessel

• Arbitrary-Lagrangian-Eulerian(ALE)formulation1

•  Incompressiblecomputationalfluiddynamics(ICFD)formulation1

DOENPHMeeting;October23and24,2018

Analyticalsolutions

• Base-supportedtank•  Jacobsen(1949),Housner(1957),ChalhoubandKelly(1988),Veletsos(1984),etc.

• Head-supportedtank(reactorvessel)•  MethodofanalysismodifiedfromVeletsos(1984)

Base-supportedtank Head-supportedtank

Analyticalsolutions

•  Impulsive:fluidaccelerateswithcontainingtank•  Fluidboundarymoveswiththewalloftank•  Pressureontheoriginalfreesurfaceiszero

• Convective:fluidisfreetoslosh•  Pressuregeneratedbythefluidwaveisconsidered

Convective

Impulsive

Orig.freesurface

DOENPHMeeting;October23and24,2018

Basesupported,ICFDverification

•  Input:a(t)=a0sin(2πft)inX-direction•  a0=0.1g,f=20Hz,duration=0.5sec

• Output:max.pressureonthewalloftank•  Rigidtank:peakpressure•  Flexibletank:peakpressureinsteady-state

1.6m

2m

Fluidheightof0.6m Fluidheightof1.2m Fluidheightof1.8m

Thickness:5mm

Basesupported,ICFDverification

• Rigidtank•  ICFD:solidlines•  Analyticalsolution(Veletsos1984):dashedlines

Basesupported,ICFDverification

•  Flexibletank•  Veletsossolutionextendedto8modes

Fluidheightof0.6m Fluidheightof1.8m

Basesupported,ICFDverification

•  Flexibletank•  Veletsossolutionextendedto8modesFluidheightof0.6m Fluidheightof1.8m

ICFD ALE

Headsupported,ICFDverification

•  FlexibletankFluidheightof0.6m Fluidheightof1.8m

FSImodels,internalcomponents

•  Testspecimen:aluminumpipes•  1large(D:302mm,L:1.4m):upperinternalstructure•  6medium(D:165mm,L:1.1m):primarysodiumpump•  4small(D:535mm,L:0.8m):directheatexchanger

SideviewTopview

Internalcomponentsandfluid

Waterbetweentwopipes

Internals,ICFDverification

• AnalyticalsolutionfromChungandChen(1977)•  Twoconcentricpipeswithwaterinbetween1.Uncoupled:flexibleouter+rigidinner2.Uncoupled:rigidouter+flexibleinner3.Coupled:flexibleouter+flexibleinner

Modalfrequency

(Hz)

Case1 Case2 Case3

outer inner in-phase1 out-of-phase1

Analytical 61 40 87 36

ICFD 63 43 87 38

1.Coupledvibrationoftheinnerandouterpipesin-phase out-of-phase

RHAoftestarticle

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.2m

WithcentralinternalWithoutcentralinternal

Fluiddepth(mm) Fluiddepth(mm)

10

RHAoftestarticle

WithcentralinternalWithoutcentralinternal

Pressure(mN/mm2) Pressure(mN/mm2)

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.2m

10

RHAoftestarticle

• Centralinternal•  Insignificantchangetopressureontankwall

• Designandqualificationofinternals

+x-x

w/ internal, +x w/ internal, -x

w/o internal, +x w/o internal, -x

t=4sec

RHAoftestarticle

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.8m

10

+x

+xaxis+xaxis

RHAoftestarticle

•  Inputgroundmotiontimeseries•  4setsthree-componentmotions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.8m

10

Upper250mmofthevessel Lower350mmofthevessel

VMstress(kPa)

Futurework

•  Earthquakesimulatortests•  1/10scalemodelofaprototype,waterasfluid•  Includescentralandoff-centerinternalcomponents•  Three-directionalseismicinputs:DBEandBDBE•  Characterizebenefitsofseismicisolation

Unit:mmUnit:mm

Summaryandconclusions

• VerificationofICFDandALEmodelsutilizedabase-supportedtank,ahead-supportedtank,andsubmergedinternalcomponents

• AnalyticalsolutionsforseismicFSIinhead-supportedtanksdevelopedbymodifyingVeletsos(1984)forbase-supportedtanks

•  ICFDmodelusedtodesigntestarticleforearthquakesimulatortests

DOENPHMeeting;October23and24,2018

Acknowledgments

• USDepartmentofEnergy•  RobertSpears•  BryanButikofer•  AlanTrost

•  TerraPower•  CharlesGrummer

•  RyanChristensen•  JamesNikola

DOENPHMeeting;October23and24,2018

Load-cell

Supporting frame

Reactor vessel

Earthquake simulator

Load cell

Supporting frame

Test vessel


Recommended