+ All Categories
Home > Documents > Seismic performance quantification of steel corrugated ...

Seismic performance quantification of steel corrugated ...

Date post: 11-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
46
SUNY Buffalo 24 June 2008 SUNY Buffalo 24 June 2008 Seismic performance quantification of steel corrugated shear wall system Laszlo Gergely Vigh, (Geri) Laszlo Gergely Vigh, (Geri) Visiting scholar, Stanford, CA Asst. Prof., Budapest University of Technology and Economics, Dept. Of Structural Engineering, Hungary and Professor Gregory Deierlein, Professor Eduardo Miranda, Abbie Liel (Stanford) Stephen Tipping (Tipping Mar + Associates) Thanks are due to: The Thomas Cholnoky Foundation, Inc.
Transcript

SUNY Buffalo

24 June 2008

SUNY Buffalo

24 June 2008

Seismic performance quantification of steel corrugated shear wall systemLaszlo Gergely Vigh, (Geri)Laszlo Gergely Vigh, (Geri)Visiting scholar, Stanford, CAAsst. Prof., Budapest University of Technology and Economics,Dept. Of Structural Engineering, Hungary

andProfessor Gregory Deierlein,Professor Eduardo Miranda,Abbie Liel (Stanford)Stephen Tipping (Tipping Mar + Associates)

Thanks are due to:The Thomas Cholnoky Foundation, Inc.

Little background…

• Hard to work at Dept. of Structural Engineering

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Little background…

• Hard to work at Dept. of Structural Engineering

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Little background…

• Hard to work at Dept. of Structural Engineering

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Little background…

• Budapest University of Technology and Economics

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Source: www.bme.hu

Little background…

• Budapest University of Technology and Economics

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Little background…

• Budapest University of Technology and Economics:

- 8 faculties and several innovation centers- Faculty of Civil Engineering :

• 10 departments

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

• Dept. of Structural Engineering:•staffs: 57 (incl. appr. 25 of asst. prof – prof)•22 BSc, 16 MSc courses + optionals

Little background…

• Dept. of Structural Engineering

1. Education2. Research – national research funds, and ‘selfish’

researches3. Industry & University

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

3. Industry & University• R&D• Co-designer• Expert• Independent checks• Laboratory and site testing – Accredited laboratory

4. Student life…

SUNY Buffalo

24 June 2008

SUNY Buffalo

24 June 2008

Seismic performance quantification of steel corrugated shear wall systemscorrugated shear wall systems

Shear wall system

• corrugated sheet• boundary elements• screwed connection

Tipping Mar and Associates, Berkeley, CA

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Shear wall system

• corrugated sheet• boundary elements• screwed connection

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Seismic performance quantification by ATC-63

• performance quantification by cyclic testsor

• Applied Technology Council, Project 63• achieves primary life safety performance objective by

requiring an acceptably low probability of collapse• R, ΩΩΩΩ , C factors

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

• R, ΩΩΩΩ0, Cd factors

1) idealized archetypical systems: realization, design (assume R)2) analytical model development and calibration3) nonlinear static (pushover) analysis ΩΩΩΩ0

4) nonlinear incremental dynamic analysis (IDA)5) fragility curves;

adjusted collapse margin ratio (ACMR) vs. acceptabl e ACMR↓

R, Cd

Experimental results

• Stojadinovic et al. at UC Berkeley• 44 specimens

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Experimental results

• pinching hysteresis behavior

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Experimental results

• failure modes

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Experimental results

• failure modes

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Shear wall behavior –estimation of monotonic backbone curve

• challenge:- cyclic behavior is path-dependent- calibration to test results – we should know the monotonic behavior

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

rigid

nonlin. spring

rigid lean

ing

colu

mn

Shear wall behavior –estimation of monotonic backbone curve

• modelling technique

ANSYS

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

ANSYSshell, beam &

spring elements

Shear wall behavior –estimation of monotonic backbone curve

• single screw connection behavior

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Source: Dubina et al.

• literature• EC3• published experimental data

Shear wall behavior –estimation of monotonic backbone curve

• single screw connection behavior

Screw characteristics

4000

5000

6000

7000

For

ce [k

N]

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0

1000

2000

3000

4000

0 1 2 3 4 5 6

Slip [mm]

For

ce [k

N]

elasto-plastic (no hardening)

mat. hard. - actual sigma-eps

Shear wall behavior –estimation of monotonic backbone curve

• single screw connection behavior

Screw characteristics

4000

5000

6000

7000

For

ce [k

N]

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0

1000

2000

3000

4000

0 2 4 6 8 10 12 14 16 18 20

Slip [mm]

For

ce [k

N]

with drop

no drop

no drop, adjusted

0

20

40

60

80

100

120

0 25 50 75 100

Drift [mm]

Load

[kN

]test averageenvelope

adjusted FEMbackbone

FEM with rigidconnection

estimatedcapping point

Shear wall behavior –estimation of monotonic backbone curve

• analysis of tested shear walls

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Shear wall behavior –estimation of monotonic backbone curve

• extension to longer walls

Group #14 - Wall length effect

500

600

all models include nonlinear screw

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0

100

200

300

400

0 20 40 60 80 100 120

Drift [mm]

Load

[kN

]

test, avg.

adjusted FEM

4 ft - eq. orthotropic

8 ft - eq. orthotropic

16 ft - eq. orthotropic

1

behavior and imperfection

Model calibration

• OpenSees• Ibarra – Medina – Krawinkler model

Load

Mat. #2

Combined mat.

Fy 2

Fu

αH2

αH = αH2

0

40

80

120

-80 -40 0 40 80Load

[kN

]

Fmax

βpFmax

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Drift, δδδδ

Mat. #1

δy 1 δy 2 δm

Fy 1residual

αC

αH1 = 0-120

-80

-40

-80 -40 0 40 80

Drift [mm]

Load

[kN

]

δp

αpδp

-120

-80

-40

0

40

80

120

-150 -100 -50 0 50 100 150

Drift [mm]

Load

[kN

]

γA γS

γK

γD

-100

-80

-60

-40

-20

0

20

40

60

80

100

-150 -100 -50 0 50 100 150

Drift [mm]

Load

[kN

]

#29 (group #14)

#26 (group #8)

#18 (group #1)

group #14 test avg.

group #8 test avg.

group #1 test avg.

Model calibration

• calibration: GA

encoding: sequence e.g.: possible values of

γ A = [10 15 … 240 250]1xN

alleles for γ A : 1..N

variables:

α C , α p , β p , γ A , γ S , γ D , γ K

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

popu

latio

n si

ze:

20 selection: roulette wheel

crossover :simple (4)

arithmetic (4)heuristic (4)

mutation:multi-non-uniform (8)

alleles for γ A : 1..N

(i.e. based on the sequence number of the possible values)encoding for a chromosome:

[2 4 12 1 55 8 8]elitism

Model calibration

• final – uniform – model

0

5

10

15

20

25

Load

[kN

]

Spec #18

-50

0

50

100

Load

[kN

]

Spec #42

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

-200 -100 0 100 200-25

-20

-15

-10

-5

Drift [mm]

Load

[kN

]

-200 -100 0 100 200-60

-40

-20

0

20

40

60

Drift [mm]

Load

[kN

]

Spec #44

-200 -100 0 100 200-100

Drift [mm]

0

5

10

15

20

25

Load

[kN

]

Spec #18

-50

0

50

100

Load

[kN

]

Spec #42

Model calibration

• final – uniform – model

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

-200 -100 0 100 200-25

-20

-15

-10

-5

Drift [mm]

Load

[kN

]

-200 -100 0 100 200-60

-40

-20

0

20

40

60

Drift [mm]

Load

[kN

]

Spec #44

-200 -100 0 100 200-100

Drift [mm]

Building archetypes

• Archetype definitions• building function, configurations• number of stories• seismic zone

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Building archetypes

• Archetype definitions R = 4 High seismic (SDC Dmax)

SS = 1.5, S1 = 0.9 (SDS = 1.0, SD1 = 0.6)

Afloorseismic weight

Appr. period

Upper limit of period

SMT

(at Ta)Cs

Design base shear

wall length

[sqft] [psf] [s] [s] [g] [-] [kip] [ft]

1 1 Commercial 1600 30 0.112 0.16 1.50 0.25 12 12

5 2 Commercial 1600 30 0.19 0.27 1.50 0.25 24 24

Archetype Story # Function

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

9 3 Commercial 1600 30 0.26 0.36 1.50 0.25 36 20

2 1 1&2 Family 500 10 0.112 0.16 1.50 0.25 1.25 8

6 2 1&2 Family 500 10 0.19 0.27 1.50 0.25 2.5 8

10 3 Multi-Family 500 30 0.26 0.36 1.50 0.25 11.25 12

13 4 Multi-Family 500 30 0.32 0.45 1.50 0.25 15 16

15 5 Multi-Family 500 30 0.38 0.53 1.50 0.25 18.75 20

Building archetypes

• seismic design− based on assumed R− simplified proc: equivalent static loading

EQ loading demand, Vu

wall type Vnom VASD VLRFD

Story [kip] [lbs] [plf] (group#) [plf] [plf] [plf]

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

[kip] [lbs] [plf] (group#) [plf] [plf] [plf]

R 6250 312 1 1173 469 657

4 11250 563 1 1173 469 657

3 15000 750 25 1505 602 843

2 17500 875 7 1836 734 1028

1

6250 lbs

1250

2500

3750

5000

18750 937 7 1836 734 1028

Analytical model

• 2D truss structure

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

rigid

nonlin. spring

rigid lean

ing

colu

mn

Pushover analysis

250

300Archetype #15

Vmax

Vmax

= 214 kN; Vdesign

= 84 kN

Ω0 = 2.57

δy = 60.7 mm; δ

u = 165.2 mm

µC

= 2.72

T = 0.526 s

Vmax

= 214 kN (roof displ. = 138 mm)

Archetype #15

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0 50 100 150 200 250 3000

50

100

150

200

Vdesign

Roof displacement [mm]

Bas

e sh

ear

forc

e [k

N]

Vmax

V60%

δy

V80%

δu

ΩΩΩΩ 0 = 2.57

T = 0.526 sSSF = 1.20

Pushover analysis

design base shear

0 6.1 m

(displ. factor x10)

IDA analysis

0 5 10 15 20 25 30-0.5

0

0.5

1

Time [s]

ag [g

]

Ground acceleration

50

100

Drif

t [m

m]

Floor #1 interstory drift(displ. factor x10)

• each archetype• 44 EQ records• nonlin. dyn. analysis• max. interstory drift

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08 0 5 10 15 20 25 30-50

0

Time [s]

Drif

t [m

m]

0 5 10 15 20 25 30-50

0

50

Time [s]

Drif

t [m

m]

Floor #4 interstory drift

0 5 10 15 20 25 30-200

-100

0

100

200

Time [s]

d [m

m]

Roof displacement

IDA analysisS

UN

Y B

uffa

lo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

IDA analysis

• each archetype• each record• scaled up to collapse

5

Archetype #15 1

Archetype #15

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

2

2.5

3

3.5

4

4.5

SMT = 1.5g (at T = 0.526s)

SCT,median = 2.93g

Interstory drift [%]

SC

T [g

]

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SMT = 1.5g (at T = 0.526s)

SCT,median = 2.93g

CMR = 1.956σσσσx

2 = 0.96σσσσx = 0.98

SCT [g]

Pro

babi

lity

[-]

(adjusted) collapse margin ratio

IDA analysis

• or…

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

Discussion

• comparison to wooden shear wall

K01

r1·K01

r2·K0

1

KP

1F0

Force, F

40

80

120

Fmax

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

r3·K0

1

r4·K01FI

Displacement, ∆

∆u

∆max = β·∆un

∆un

KP = K0·[(F0/K0)/∆max]α

F = (F0 + r1·K0 ·∆) ·[1 – exp(-

Fu + r2·K0 ·(∆ - ∆u), ∆ ≥ -120

-80

-40

0

-80 -40 0 40 80

Drift [mm]

Load

[kN

]

δp

αpδp

βpFmax

Discussion

• comparison to wooden shear wall

5.0

6.0

7.0 a

t T

= 0

.19

sec

(g)

CMR = 2.15/1.50 = 1.43

0.26

4

4.5

5Archetype #5

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0.0

1.0

2.0

3.0

4.0

0 1 2 3 4 5 6 7 8 9 10Maximum Interstory Drift Ratio (%)

Med

ian

Sa

at T

= 0

.19

sec

(g)

SCT(T = 0.26 s) = 2.15 g

SMT(T = 0. 26 s) = 1.50 g

X 1.43

0.26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

2

2.5

3

3.5

SMT = 1.5g (at T = 0.265s)

SCT,median = 3.05g

Interstory drift [%]S

CT [g

]

• in general, very similar results

Further observations

• Effect of ‘scaling’ fundamental period

3

4

5

SCT,median = 2.43g [g]

Archetype #19

3

4

5

SCT,median = 2.93g

[g]

Archetype #19

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0 5 10 150

1

2

3

SMT = 1.2g (at T = 0.749s)

SCT,median = 2.43g

Interstory drift [%]

SC

T [g

]

0 5 10 150

1

2

3

SMT = 1.5g (at T = 0.495s)

Interstory drift [%]S

CT [g

]

a) scaled at Tupper = 0.749 s b) scaled at Tmodel = 0.495 s

Further observations

• Effect of ‘scaling’ fundamental period

3

4

5

SCT,median = 2.45g [g]

Archetype #17

3

4

5

SCT,median = 2.98g

[g]

Archetype #17

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

0 5 10 150

1

2 SMT = 1.49g (at T = 0.603s)

SCT,median = 2.45g

Interstory drift [%]

SC

T [g

]

0 5 10 150

1

2 SMT = 1.5g (at T = 0.423s)

Interstory drift [%]S

CT [g

]

a) scaled at Tupper = 0.604 s b) scaled at Tmodel = 0.423 s

Further observations

• Model parameter sensitivity

• capping displ. 50 75 mmcapping slope -0.15 -0.05 +6%

• .ααααP 0.75 0.40

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

• .ααααP 0.75 0.40ββββP 0.25 0.21 +8%

• adjusted initial stiffness +6%

• 1.4 x strength +30%

Performance quantification

• check R = 4 High seismic (SDC Dmax)SS = 1.5, S1 = 0.9 (SDS = 1.0, SD1 = 0.6)

ΩΩΩΩ0 µµµµC SSFSMT

(Tupper )SFanchor ββββtot ŜCT CMR ACMR

[-] [-] [-] [g] [-] [-] [g] [-] [-]

1 1 Commercial 2.38 6.25 1.31 1.50 2.1 0.70 2.79 1.86 2.44 >

Archetype Story # Function

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

5 2 Commercial 2.40 4.37 1.26 1.50 1.89 0.70 3.06 2.04 2.57 >

9 3 Commercial 2.39 3.36 1.22 1.50 1.98 0.70 2.88 1.92 2.34 >

Mean 2.45 >

2 1 1&2 Family 9.91 6.31 1.31 1.50 2.1 0.70 6.00 4.00 5.24 >

6 2 1&2 Family 4.91 4.95 1.27 1.50 1.89 0.70 4.63 3.09 3.92 >

10 3 Multi-Family 2.52 4.06 1.25 1.50 1.98 0.70 3.16 2.11 2.64 >

13 4 Multi-Family 2.56 3.00 1.20 1.50 2 0.70 2.94 1.96 2.35 >

15 5 Multi-Family 2.57 2.72 1.20 1.50 2.1 0.70 2.93 1.96 2.35 >

Mean 3.30 >

Performance quantification

• even for taller buildingsR = 4 High seismic (SDC Dmax)

SS = 1.5, S1 = 0.9 (SDS = 1.0, SD1 = 0.6)

ΩΩΩΩ0 µµµµC SSFSMT

(Tupper )SFanchor ββββtot ŜCT

[-] [-] [-] [g] [-] [-] [g]

Archetype Story # Function

2 1 1&2 Family 9.91 6.31 1.31 1.50 2.1 0.70 6.00

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

6 2 1&2 Family 4.91 4.95 1.27 1.50 1.89 0.70 4.63

10 3 Multi-Family 2.52 4.06 1.25 1.50 1.98 0.70 3.16

13 4 Multi-Family 2.56 3.00 1.20 1.50 2 0.70 2.94

15 5 Multi-Family 2.57 2.72 1.20 1.50 2.1 0.70 2.93

17 6 Multi-Family 2.57 2.48 1.22 1.49 2.49 0.70 2.45

18 7 Multi-Family 2.08 2.40 1.22 1.33 2.37 0.70 2.54

19 8 Multi-Family 2.34 2.34 1.22 1.20 2.46 0.70 2.43

21 10 Multi-Family 2.42 2.31 1.23 1.02 2.49 0.70 2.25

Performance quantification

• R = 4 !

• results and component behavior are very similar to wooden shear wall – as good as wood

• R = 6 is in code for wooden shear wall• additional finishing, partition walls?

+

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

• additional finishing, partition walls?

• short period bldgs!• ASD design strength derivation from test

• uncertainties in the monotonic backbone estimation

-

+/-

Performance quantification

conventional R factor vs. ATC -63

SU

NY

Buf

falo

24Ju

ne 2

008

SU

NY

Buf

falo

24Ju

ne20

08

conventional R factor vs. ATC -63

?

SUNY Buffalo

24 June 2008

SUNY Buffalo

24 June 2008

Thank you for your attention!

But don’t go anywhere…


Recommended