+ All Categories
Home > Documents > Seismic reflection and seismic refraction surveying in ...

Seismic reflection and seismic refraction surveying in ...

Date post: 15-Oct-2021
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
70
Transcript
Page 1: Seismic reflection and seismic refraction surveying in ...
Page 2: Seismic reflection and seismic refraction surveying in ...

LIBRARY.

Page 3: Seismic reflection and seismic refraction surveying in ...

JUN 1 2 1997

, ucvjl ourtVEY

Page 4: Seismic reflection and seismic refraction surveying in ...

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/seismicreflectio136heig

Page 5: Seismic reflection and seismic refraction surveying in ...

i

l.GS

EN 136

[3 J1

Seismic Reflection andSeismic Refraction Surveyingin Northeastern Illinois

Paul c. ^

ILUNOIS

SURVEY

rtiMfQi

ENVIRONMt

Department

ILLINOIS ST

Heigold

GEOLOGIC' LIBRAE

ENTAL GEO

of Energy ar

ATE GEOLC

;ai

r

LOGY 136

id Natural F

)GICAL SUResources

3VEY

Page 6: Seismic reflection and seismic refraction surveying in ...

ILLINOIS STATE GEOLOGICAL SURVEY

3 3051 00005 4738

Page 7: Seismic reflection and seismic refraction surveying in ...

Seismic Reflection andSeismic Refraction Surveying

in Northeastern Illinois

Paul C. Heigold

ILLINOIS GEOLOGICAL

SURVEY LIBRARY

ENVIRONMENTAL GEOLOGY 136

ILLINOIS STATE GEOLOGICAL SURVEYMorris W. Leighton, Chief

Natural Resources Building

615 East Peabody Drive

Champaign, Illinois 61820

Page 8: Seismic reflection and seismic refraction surveying in ...

Acknowledgment

Funding for this study was provided by the Department of Energy and Natural Resources(Contract ENR-5).

Printed by authority of the State of Illinois/1990/750

Page 9: Seismic reflection and seismic refraction surveying in ...

CONTENTS

Abstract v

Preface vi

Part I Seismic Reflection Profiling

Introduction 3

Geologic Setting 3Field Techniques and Instrumentation 6

Data Processing 7

Interpretation 9

Dauberman Road Seismic Reflection Line 1

1

Fermilab Seismic Reflection Line 21

Bristol Seismic Reflection Line 22Lily Lake Seismic Reflection Line 23

Conclusions 24References 25Appendixes 26A Recording Parameters and Processing Sequence of DaubermanRoad Seismic Reflection Line 26

B Recording Parameters and Processing Sequence of Fermilab

Seismic Reflection Line 27C Recording Parameters and Processing Sequence of Bristol

Seismic Reflection Line 29D Recording Parameters and Processing Sequence of Lily

Lake Seismic Reflection Line 30

Figures

1 Location of seismic reflection lines 2

2 Stratigraphic column of bedrock units in Northern Illinois 43 Regional geologic setting 64 Drift thickness map of the study area 7

5 Geologic map of the study area 8

6 Location of key drillholes used to constrain interpretation of seismic reflection sections 9

7 Stratigraphic column and interval velocities from test hole SSC-1 1

8 Stratigraphic column and interval velocities from test hole SSC-2 1

2

9 Stratigraphic column and interval velocities from test hole SSC-3 13

1 Synthetic seismogram constructed from sonic and density logs 1

4

1

1

Interval velocities from deep hole in Du Page County 15

1

2

Dauberman Road seismic reflection sections 1

6

1

3

Fermilab seismic reflection sections 1

8

1

4

Bristol seismic reflection sections 1

9

15 Lily Lake seismic reflection section 20

Part II Seismic Refraction Profiling

Introduction 33Seismic Refraction Method 34Equipment 35Field Procedures 35Processing of Seismic Refraction Data 36Results 36Summary 37References 39Appendix A Results of Seismic Refraction Profiling 40

Page 10: Seismic reflection and seismic refraction surveying in ...

Figures

1 Index map-location of seismic refraction profiles 332 Shot and geophone arrays used with FRAC and SIPT programs 353 Bedrock topography map of study area 38

Table1 Cable length and geophone intervals for estimated depth to bedrock in the study area 34

Page 11: Seismic reflection and seismic refraction surveying in ...

Abstract

As part of the Illinois State Geological Survey's comprehensive investigations to locate the most

suitable site for construction of the proposed Superconducting Super Collider, approximately 17

miles of high resolution seismic reflection profiling and approximately 80 miles of seismic refrac-

tion profiling were performed.

Seismic reflection profiling was used to define the stratigraphy and structural geology of the

proposed SSC site. The primary target of this profiling was the dolomite of the Ordovician Galena

and Platteville Groups, since the tunnel that would have housed the proposed SSC would have

been located in these rocks. In addition, the seismic reflection profiling provides a view of con-

tinuous sections of rocks to considerable depths, and thus, detailed information about the rocks of

northeastern Illinois unavailable from discrete drill holes.

Seismic refraction profiling was used to examine the geologic framework of near-surface deposits

at the proposed SSC site to aid in the construction of the SSC tunnel and the location of its atten-

dant vertical service shafts. The kinds of information provided by this profiling-depth to bedrock

(drift thickness) and lithology of both the drift and the bedrock surface-are relevant in many other

areas: for example, in other types of construction, evaluation of groundwater, aggregates

(crushed stone), and sand and gravel resources, and location of waste disposal sites.

Page 12: Seismic reflection and seismic refraction surveying in ...

Preface

The seismic exploration, conducted as part of the Illinois State Geological Survey's comprehen-

sive investigation to locate the most suitable site for the construction of the Superconducting

Super Collider, was carried out in two parts. The first part consisted of approximately 17 miles of

high-resolution seismic reflection profiling. The results of this profiling, together with information

gathered from available discrete drill holes, were used to define the stratigraphy and structural

geology of the site proposed for the SSC. The primary target of the seismic reflection profiling

was the dolomite of the Ordovician Galena and Platteville Groups, since the tunnel housing the

proposed SSC would have been located in these strata. The second part consisted of ap-

proximately 80 miles of seismic refraction profiling to examine the depth and configuration of the

bedrock surface, and the velocities of both the bedrock surface and the superjacent glacial drift

from which inferences can be made about the nature of these rocks. These kinds of information

were relevant not only to the construction of the SSC tunnel, but also to the location of its atten-

dant vertical service shafts.

The information gathered from the seismic exploration, although particularly relevant to the

proposed SSC, was beneficial for all of northeastern Illinois. The seismic reflection profiling

provided information applicable to the overall understanding of the stratigraphic and structural

relationships in northeastern Illinois. The seismic refraction profiling provided data that were usedto improve existing maps of depth to bedrock and bedrock geology, which are used in construc-

tion, evaluation of groundwater, aggregate (crushed stone), and sand and gravel resources, andlocation of waste disposal sites in this part of Illinois.

VI

Page 13: Seismic reflection and seismic refraction surveying in ...

I Seismic Reflection Profiling

Page 14: Seismic reflection and seismic refraction surveying in ...

R6E

T41

N

T|

40 I

N

I

R7E R8E

Lily Lake

'r- 80

j

j— 180

;

|— 280

(—380

-470

R9E

Cook Co. _DuPage Co.

T39 j

N

38N

T|

37,N

No. 1

No. 2

•SSC-1

Dauberman L205j1—305

f-k: 375

Daubermanj

j—ff5

I f—255

:1—355L«—395

T--510j~ 610{—710

810=^910

—1010— 1110

—12101310

1410— 1510L1610

SSC-3

DaubermanNo. 3

i 110

210 NAL 1

NAL 2190^-110^210 -J310

410

D

J NAL 3

SSC-2»f+-5ioI590^

250

350450

Bristol No. 3

Kane Co. Du Page Co.

Kendall Co.

Bristol No. 1J"110

210

Will Co.

12 mi.

18 km.

Figure 1 Location of seismic reflection lines.

Page 15: Seismic reflection and seismic refraction surveying in ...

Introduction

The Illinois State Geological Survey's comprehensive investigations to locate the most suitable

site for the construction of the Superconducting Super Collider (SSC), a proton accelerator, in-

cluded approximately 17 miles of high-resolution seismic reflection profiling at four discrete loca-

tions around the proposed ring (fig. 1). Since it was proposed that the SSC be place in a 10-foot

diameter tunnel in dolomites of the Ordovician Galena and Platteville Groups underlying the site,

these strata were the primary target of the seismic reflection profiling (fig. 2). In addition to infor-

mation on Ordovician strata, seismic reflection sections generated at three of the locations con-

tain information about sediments as old as Late Cambrian (Mt. Simon); a section generated at a

fourth location contains information about Precambrian-age rocks (fig. 2).

Two of the locations where seismic reflection profiling was done, along Dauberman Road in T38

and 39N, R6E, Kane County and near the Fermi National Accelerator Laboratory in T39N, R9E,

Du Page County (fig. 1), were chosen because experimental chambers associated with the SSC

were to be sited there. The other two locations, near the town of Bristol in T39N, R7E, Kendall

County, and near the town of Lily Lake in T40 and 41 N, R7E, Kane County (fig. 1), were chosen

to investigate the possibility of faulting. At the Bristol location, small-scale faulting was suspected

from the results of previous test drilling and geologic mapping in the area. At the Lily Lake loca-

tion, large-scale basement faulting had been suggested by McGinnis (1966), on the basis of main-

ly gravity and magnetic data.

The high-resolution seismic reflection data, gathered by Walker Geophysical Company of Essex,

Iowa, proved to be a viable way to address specific stratigraphic and geological structure

problems associated with the proposed location of the SSC, and also a way to obtain information

about the rocks of northeastern Illinois, unavailable from discrete drill holes.

Geologic Setting

The geologic setting of the area in northeastern Illinois where the high-resolution seismic reflec-

tion work was done has been discussed at length in previous geological-geotechnical studies for

siting the SSC in Illinois (Kempton et al. 1985; Vaiden et al. 1988). Geologic aspects from these

studies pertinent to the acquisition, reduction, and interpretation of the seismic reflection data are

discussed briefly in this report.

The study area is located on the Kankakee Arch, a broad positive structure that separates the

Michigan and Illinois Basins and connects the Wisconsin Arch to the Cincinnati and Findlay Ar-

ches (fig. 3). In the study area the Kankakee Arch plunges gently to the southeast.

Along the four seismic reflection lines, the elevation of the earth's surface varies from about 650

feet to just beyond 1 ,000 feet above mean sea level. Glacial drift, ranging in thickness from 25 to

more than 200 feet (fig. 4) overlies the Paleozoic bedrock surface (fig. 5). At some places the

bedrock surface is dissected by valleys that commonly contain thick, coarse-grained sediments

that serve as excellent conduits for shallow groundwater supplies. The presence of these valleys

and the contained groundwater were important factors to be considered in the location and con-

struction of the proposed SSC tunnel and attendant structures.

Bedrock in the study area consists of Cambrian, Ordovician, and Silurian strata that have a com-

bined thickness of approximately 4,000 feet (fig. 2). The oldest sedimentary rocks in the area

belong to the Mt. Simon Sandstone (Upper Cambrian). This poorly sorted, coarse-grained

sandstone, which ranges in thickness from 1 ,400 to 2,600 feet in northeastern Illinois, rests un-

conformably on Precambrian basement. Other major unconformities occur at the bases of the An-

cell Group (Ordovician) and the Silurian, and the bedrock surface (fig. 2). The Upper Ordovician

and Silurian formations in northeastern Illinois dip gently eastward into the Michigan Basin, but

the Cambrian and older Ordovician formations dip gently and thicken southward toward the Il-

linois Basin (Buschbach 1964). The bedrock surface of the study area (fig. 5) comprises Silurian

carbonates and shales and minor amounts of dolomite of the Maquoketa Group (Upper Or-

dovician).

Page 16: Seismic reflection and seismic refraction surveying in ...

1]30UV uaiqj np eiJiEjj

& ®x!

Mv . ,:

NVIQVNVD

NVIDIAOQdO

Page 17: Seismic reflection and seismic refraction surveying in ...

© CJ

O»M©O1ft

CO

=3

COa>.

O

ac

C/3

VICD

3c

*->

SI

3

>>CO

ao£

Z05 c qj

a."cy

c ow >>

et

O"3-C

CO >» Q s

<

oCO

0)

E

£

o>.

r:

.2oCO

C1>71

coCO

J!3O

T3c o "5

7]

3O_ «

0- J Q < pa VI o t/j vi « U J U O J H J?

csEv.

i

:

1

1 1•

ill

jjj llll

mi 1

X <

<<

®®

. . . . ' • •1 1

• • **"•"1 *f . ^»-.•....

•/;!>:: v>:.j!j -v."-:::• •

- •'

• *y\ N '*

- • • •

• • •

' *.'.'.'.'.'! '''.'. • • •• - • . - •

' * *\

' ^nvxioho "

1 LU

NviaaiAivo 1

o:i Q.

to

O

.Cco

iioi: in w o A© r= ri ©

to

c3js:o

CD oU)CD D

CD-1 -OO ^^><1> OQ. cO EC 3b Oo ou o-C r

Q.c 2n D)CD

3 CO

cCO

<>

CM

a>

IIHH

I

/>X >,

~z -^ ^- c _H

A'UHt||V -MWX KjaijonhBj^ EUj[nQ VJB|d

>. = a a

w c c .- 5E t -c c _*

. J. J3 ^ E

Q J .Xc

\x*

C - -= 32

C oS

3 ~ 3 SS (X

rr

O)

Page 18: Seismic reflection and seismic refraction surveying in ...

Elevation (ft) of the topof Trenton Ls. or equivalents

j Outcrop of strata below top of Trenton

] Paleozoic rock overlappedby Mesozoic and younger strata

in Mississippi Embayment

Figure 3 Regional geologic setting.

Field Techniques and Instrumentation

Field parameters for the high-resolution seismic reflection profiling were chosen on the basis of

calculation, experience, and testing. Since detailed structural and stratigraphic information was re-

quired for the construction of the proposed SSC tunnel, close-source and receiver spacing, high

common depth- point (CDP) fold, and a fast sample rate for wide-band recording were necessary

to obtain good quality data in noisy suburban areas. One line crossed an interstate highway, and

all lines ran along heavily traveled roads. The actual field parameters used are summarized in ap-

pendixes A, B, C, and D.

Page 19: Seismic reflection and seismic refraction surveying in ...

R 8 E R 9 E

100

R 4 E R 5 E

-1 50- contour interval 50 feet;

datum is mean sea level

.25- contour of 25 feet also shown 18 km.

Figure 4 Drift thickness map of the study area.

The recording instrument was a Texas Instrument DFSV. Single hydrophone receivers (Mark

Products P-44 1 Hz) were placed in shot holes about 1 feet below the water table, generally 1

to 25 feet below the ground surface. The energy source used on three of the lines (DaubermanRoad, Bristol, and Fermilab) was a downhole air gun (Bolt Model DHSS 550) equipped with a

chamber, 10 in.3

, operated at a nominal pressure of 1 ,800 lbs/in.2

. The optimum locations for

firing the air gun were at the top of the water table or a few feet deeper. On the fourth seismic

reflection line (Lily Lake), where information about Precambrian rocks was required, the energy

source was 0.33 to 1 .00 lbs. of dynamite.

Data Processing

Data processing sequences began with an amplitude spectrum analysis. Since frequencies morethan 400 Hz were at least -40dB, the data were resampled from 0.5 to 1 .0 milliseconds. Record

length was 1 .0 second, but on all lines except the Lily Lake line only 0.5 or 0.6 second wereprocessed. On the Lily Lake line, 1 .0 second was processed. Initial stacking velocities were

derived from available sonic logs. Subsequent stacking velocities were obtained from velocity

analysis of the seismic data. The seismic sections were not migrated. Additional information on

the data processing is given in appendixes A, B, C, and D.

Page 20: Seismic reflection and seismic refraction surveying in ...

PENNSYLVANIAN (shale, sandstone, limestone)

DEVONIAN (shale, sandstone, limestone)

SILURIAN (undiff.; dolomite)

ORDOVICIAN

T-] Maquoketa (shale)

2H Galena (dolomite)

10 mi

20 km

Figure 5 Geologic map of the study area.

E:::::i Platteville (dolomite)

Ijjjjjiij Ancell (sandstone)

fjgijgijj Prairie du Chien (sandstone and dolomite)

1 CAMBRIAN (undiff.; sandstone and dolomite)

8

Page 21: Seismic reflection and seismic refraction surveying in ...

R 7 E R 9 E

DE KALB KANE COOK

>o r 40

14

D C?13

12

24A

15

27A

>0 ssdW)'

A 26

30

O?

17DD11

25A23

KENDALL

08

dl° I

A 21

16 A20 WILL

A19

A18 I

R 4 E R 5 E R 8 E R 9 E

O 1984 Test Hole

D 1985 Test Hole

A 1986 Test Hole

4t 8 in. Test Hole, 1986

Figure 6 Location of key drillholes used to constrain interpretation of seismic reflection sections.

Interpretation

A considerable amount of geologic information is available for the region in which these seismic

reflection lines were run. This information includes reports on local and regional studies con-

ducted by the ISGS, graduate student theses, logs and samples of water wells and engineering

borings in the ISGS files, and records of subsurface drilling and sampling programs conducted for

water resource studies of northeastern Illinois (Kempton et al. 1985; Vaiden et al. 1988). Studies

by Buschbach (1964), Willman (1973), Willman and Kolata (1978), Willman et al. (1975), Willman

and Frye (1970), Willman (1971), Horberg (1950), Kolata and Graese (1983), Lineback (1979),

Piskin and Bergstrom (1967, 1975), and Willman et al. (1967) were particularly useful in inter-

pretation of the seismic reflection sections.

Three 8-inch diameter holes near the Dauberman Road and Fermilab seismic reflection line were

included in the test drilling and coring program conducted for siting the SSC in Illinois (fig. 6). The8-inch diameter was chosen to accommodate sondes used in downhole geophysical logging.

Sonic and density logs were particularly important to the interpretation of the seismic reflection

sections. Sonic logs from the three 8-inch holes were used to calculate interval velocities (figs. 7,

Page 22: Seismic reflection and seismic refraction surveying in ...

Depth

(ft)

Elevation

above MSLVelocity (ft/sec)

(ft) 10000i

20000i

100-

200-

300 I

400

500-

600"

700-

800-

900-

/

/

/-/-/--/-/ ~

7~

7 77~Z7

,

E 7a /

/T//, / , /ZZZ^77^

77". X .7".

A

A

A

'AA AA A AA A A A AA A AA A:d

841

701

562

331

Bo

_230

So o5 toc -a

157

•99

Clay, poor samplesGravel, coarse (1??-140 ft)

Dolomite, argillaceous, gray blue; shale, dolomitic (140-180 ft)

Shale, dark olive gray (180-279 ft)

Dolomite, pale yellow brown, fine to medium grained

(279-510 ft)

Dolomite, light brown, fine grained (510-611 ft), bluish

(510-530 ft), grayer (535-611 ft)

Sandstone, fine to medium-grained (611-684 ft)

Sandstone, fine to medium grained, rounded; chert (684-940 ft); cemented sand;

shale partings (684 ft, 888-896 ft)

Chert, white; sandstone, white, cemented; dolomite, pink; shale, gray; (940-955 ft)

Kress Mbr L Chert, oolitic, gray; siltstone, brown, red; shale tan, brown, gray green (955-985 ft)

994 TD

-144Eminence Fm Dolomite, light pinkish tan, sandy (985-994 ft)

Figure 7 Stratigraphic column and interval velocities from test hole SSC-1

.

10

Page 23: Seismic reflection and seismic refraction surveying in ...

8, and 9). The sonic and density logs run in test hole SSC-2 near the Fermilab line were used to

construct a synthetic seismogram (fig. 10).

All the large-diameter test holes bottomed out just below the base of the Ancell Group. Holes

SSC-1 and SSC-3, near the Dauberman Road line, bottomed out in the Eminence Formation

(Upper Cambrian) and Oneota Formation (Lower Ordovician), respectively; SSC-2, near the Fer-

milab line, bottomed out in the Shakopee Formation (figs. 7, 8, and 9). Because proposed ex-

perimental chambers were to be located along Dauberman Road and near Fermilab, the large

diameter holes were drilled only to depths necessary to provide information about the tunnel andthe experimental chambers.

Velocity and density information useful in interpreting the portions of the seismic reflection sec-

tions deeper than the base of the Ancell came from sonic and density logs. These logs were run

in 1986 in a deep hole that penetrated basement in Section 9, T39N, R9E, in Du Page County,

just a few miles from the north end of the Fermilab seismic reflection line (fig. 1 1). As mentioned

above, the Dauberman Road, Bristol, and Fermilab sections provided information about the rock

to the depth of the Mt. Simon Formation (Upper Cambrian), whereas the Lily Lake section

provided information to the depth of Precambrian rocks.

On the seismic reflection sections shown in this report (figs. 12, 13, 14, and 15), several reflec-

tions were associated with geologic interfaces where large acoustic impedance contrasts are

known to exist. The strength, coherence, and continuity of these reflections can vary appreciably

for several reasons, many of which are geologically significant. However, given the proximity of

the seismic reflection lines in this study, enough of these reflections can be consistently traced

across these sections to interpret confidently the salient stratigraphic and structural nature of the

geologic formations.

Dauberman Road Seismic Reflection Line

The seismic reflection line along Dauberman Road in T38 and 39, R6E, Kane County, Illinois

(figs. 1 and 1 2) was shot from north to south in three segments, D1 , D2, and D3; their lengths

were 1 .47, 1 .82, and 4.68 miles, respectively. Because parts of the segments overlapped, the

total line was approximately 7.5 miles long.

Field parameters and the processing sequence for each segment of the Dauberman Road line

are given in appendix A. Although the record length for each segment was 1 .0 second, only 0.5

second was processed for the segments D1 and D2, and only 0.6 second was processed for seg-

ment D3. These section lengths were adequate given the purpose of this line, which was to ex-

amine the Ordovician strata in which the experimental chambers were to be constructed. Thesesections do not contain information about the lower Mt. Simon Formation (Upper Cambrian) or

subjacent Precambrian rocks.

Topographic elevation of the earth's surface along the Dauberman Road line, although somewhatirregular, generally decreases from a high of approximately 840 feet above mean sea level near

the north end of segment D1 to a low of approximately 700 feet above sea level near the south

end of segment D3.

The glacial drift along this line varies in thickness from more than 100 feet to as much as 200 feet

(Piskin and Bergstrom 1975). Test holes SSC-1 and SSC-3 near the north and south ends of this

line showed glacial drift thicknesses of 140 and 133 feet, respectively. Greater drift thicknesses

may be associated with bedrock valleys, which are common in northeastern Illinois.

The bedrock surface along this line is, for the most part, composed of rocks of the MaquoketaGroup (Upper Ordovician) and Silurian outliers (Willman et al. 1967); therefore, shales and car-

bonates can be expected at the bedrock surface. Test holes SSC-1 and SSC-3 encountered Ma-quoketa dolomite, probably the Ft. Atkinson, at the bedrock surface (Vaiden et al. 1988).

On the Dauberman Road sections, reflections have been identified at the following geologic inter-

faces, in descending order: bedrock surface, top of the Galena Group (Middle to Upper Or-

dovician), top of the Ancell Group (Middle Ordovician), base of the Ancell Group, top of the

11

Page 24: Seismic reflection and seismic refraction surveying in ...

Depth

(ft)

Elevation

above MSL(ft)

Velocity (ft/sec)

10000i

100

200

300-

TH~7400-

500

600

700

800>

900-

1000

0>. o/^ S

-

° °o o o o

~r—r

zfzz5^^zs/~7Z~ZZZZ

ZS*EzSX2ZZZZ"^Z^S

^-^-zVS/ /

^753Q

oJ5O-672

I £

-543

388

CD

-183Q.DoO

re

Q_

67

co „to Q-o 3c o

£ 80) cQ- <

-144

Kress Mbr"-167

$5>°- pj* pre o

saNew RichmondSandstone

--282re <i>

° c<» Sc oO oQ

20000I

Clay, gray, coarse, sandy silty, with sand seams (0-46 ft, 52-68 ft)

Sand, coarse gravel (46-52 ft)

Clay, brown, sandy silty, with sand and gravel (68-81 ft)

Dolomite (81-210 ft), light gray brown, fine grained, speckledblack (90-115 ft) glauconitic (170-180 ft); clay present (gray

and blue green), browner near base (160-210 ft), particularly

(190-210 ft)

Dolomite, light medium gray to blue gray, fine grained, argillaceous

(210-250 ft)

Dolomite, dark olive brown gray, very argillaceous; shale, similar

color, dolomitic (250-295 ft)

Shale, dark olive gray, dolomitic (295-365 ft)

Dolomite, pale yellow brown, fine grained; shale partings,

blue green common, black brown partings less common(365-570 ft)

Dolomite, pale yellow brown, some shale partings, blue

green; chert, white (570-686 ft)

Sand, fine to medium grained; rounded dolomite, some rare (686-897 ft)

Dolomite, light brown, fine grained; shale, blue green (897-920 ft)

Dolomite, light brown, fine grained; chert, white; pyrite rare (920-1000 ft)

Sand, fine to medium grained, rounded, floating grains, some cementedwith calcite (1000-1035 ft)

Dolomite, light brown; chert, white (rare to common); sand present in

some horizons (1035-1080 ft)

1080 TD

Figure 8 Stratigraphic column and interval velocities from test hole SSC-2.

12

Page 25: Seismic reflection and seismic refraction surveying in ...

Depth

(ft)

Elevation

above MSL(ft)

Velocity (ft/sec)

100-

200-

300fiT^-

400-

500-

600-

700-

800-

:o : °"o°-.v

;;•.•;•*•;° . • . o o.o. ° . • o •

• •!;:•••«TT O • V*• O \ O

tSl1~L

TElLZIZZ7^T£=7&Tz* '• '•

A'

'.AA .

—.— -ar\

A"."'A'. '.

/ A /

,/ /

900-1 /A /

688

555

•469

CD

O

144

° £O Og toC "D0) C

58

10000

253

B o« <5a

o

903 TD

--163

O Fa> bc oO oQ

20000I

Clay, brown gray, sandy, silty (0-42 ft)

Sand, gravel, fine to coarse (42-128 ft)

Clay, brown gray, sandy (128-133 ft)

Dolomite, very argillaceous; shale, dolomitic, gray

brown (133-170 ft)

Shale, dolomitic, brown to olive brown (170-219 ft)

Dolomite, pale yellow brown, fine to medium grained

(219-435 ft) ; blue green, gray shale partings, calcareous

(275-400 ft)

Dolomite, light brown (435-544 ft), occasionally bluish,

dark brown (435-460 ft, 475-510 ft) fine grained

Sandstone, fine to medium grained, rounded (544-630 ft)

Sandstone, fine to medium grained, rounded; chert (630 851 ft)

Shale partings, light gray (765-815 ft), green blue (830-851 ft)

Dolomite, deep pink brown, fine grained, thin horizons (835-851 ft)

Dolomite, light pink-gray-brown, fine to medium grained; chert, white,

rare (851-903 ft); glauconite (895-903 ft)

Figure 9 Stratigraphic column and interval velocities from test hole SSC-3.

13

Page 26: Seismic reflection and seismic refraction surveying in ...

0.0

J:

0.1 0.2i i i

'i'

i

1

i

1

i

1 '

i

1

'

i

'

i

' -^i.

1 rSec.

ZERO-PHRSE5- 8-310-320 HZ

ZERO-PHRSE5- 8-270-280 HZ

ZERO-PHRSE5- 8-230-240 HZ

ZERO-PHRSE5- 8-190-200 HZ

Figure 10 Synthetic seismogram constructed from sonic and density logs.

Franconia Formation (Upper Cambrian), and top of the Lombard Member of the Eau Claire For-

mation (figs. 1 and 12). No discernible reflections were below 0.4 second. This two-way travel

time would correspond to a reflection emanating from a surface below the top of the Mt. SimonFormation (Upper Cambrian). The absence of reflections below 0.4 second possibly was due to a

lack of energy provided by the air-gun energy source or, more likely, it was the result of an ab-

sence of appreciable vertical impedance contrasts in the Mt. Simon.

The shallow reflection corresponding to the drift-bedrock contact can be traced intermittently

across sections D1 , D2, and D3. The quality of this reflection is dependent not only on the lithol-

ogy of the bedrock surface (carbonates and elastics), but also on the amount of weathering on

this surface. Between shot points 355 on section D1 and shot point 105 on section D2 (figs. 1 and

14

Page 27: Seismic reflection and seismic refraction surveying in ...

Velocity (ft/sec)

10000I

741

500

0-

-500-

-1000-

</>

o

-1500

-2000 -

-2500 -

-3000 -

-3500 -1

20000I

— Ground surface— Silurian

Maquoketa

Galena

Platteville

Glenwood-St. Peter

Potosi

Franconia

Ironton

Galesville

Eau Claire

— Mt. Simon

— Precambrian

Figure 1 1 Interval velocities from deep hole in Du Page County.

15

Page 28: Seismic reflection and seismic refraction surveying in ...

1 COca>

CO

O

CO-Q

Eo

y

oa> r5co a> co

COcCD

CO

CDoc

§8E 2a < LUU.

ca

-O

Eo

re

Page 29: Seismic reflection and seismic refraction surveying in ...

J--4

Willi-MM-mtA hiMmmmm

(U o "Oen 5

co5

a> !_

(001

O O o o

77

Page 30: Seismic reflection and seismic refraction surveying in ...

/

1

vmvtvwKi-MBER.ftM.k^KWi^^^^rjiow'3H f w-toc

»

CO

cCO oc

CDOc

oa) cCO CO

< LL

<0

c "OCU o CO1_ o .oU> o c FCD c oO < LL _J

'ewa>v>

_ro

|

CO

CD

3O)LL

rs

Page 31: Seismic reflection and seismic refraction surveying in ...

Murstproperty

?90 260 270 260 250

Maquoketa

Galena

Ancell

Shakopee

Franconia

Lombard

Bristol No. 1

Sec. ?<e ?3e j?b ?ia aee 19B iee pb i6B isb hb

Maquoketa

Galena

Ancell

Shakopee

Franconia

Lombard

Bristol No. 3

Figure 1 4 Bristol seismic reflection sections.

12) was evidence of a channel cut into the bedrock, although this evidence was disturbed bymuting associated with undershooting where the line crossed the East-West Tollway.

The reflection associated with the Maquoketa-Galena contact was consistently the strongest,

most coherent, and most continuous of all reflections on sections D1 , D2, and D3. This was aresult of the sharp contrast between the relatively low acoustic impedance Maquoketa elastics

that rest on the relatively high acoustic impedance Galena carbonates. The Maquoketa-Galenacontact and Platteville-Ancell Group contact were the two most important targets for the SSCproject, because the SSC tunnel was to be constructed in the Galena and Platteville Groups. Thereflection associated with the Platteville-Ancell contact could be followed easily across sectionsD1

,D2, and D3 even though it had reverse polarity from, and less strength than, the reflection at

the Maquoketa-Galena contact because of a downward decrease in acoustic impedance with lesscontrast than at the Maquoketa-Galena surface.

19

Page 32: Seismic reflection and seismic refraction surveying in ...

CO _ nj

* 8en J3o E

to c o oes < a. _i

oCL

OECO

"<Dco

CD^.ro

w

3

20

Page 33: Seismic reflection and seismic refraction surveying in ...

Examination of sections D1 , D2, and D3 (fig. 12) indicate that the combined thicknesses of the

Galena and Platteville Groups do not vary appreciably along the entire length of the DaubermanRoad line. This fact is corroborated by the combined thicknesses (332 and 325 feet, respectively)

of these groups in test holes SSC-1 and SSC-3 near the ends of this line. A southern component

of dip appears to be on the rocks comprising of these groups along the Dauberman Road line.

The dip is corroborated by the elevations of the tops (562 and 469 feet above mean sea level,

respectively) and bottoms (230 and 144 feet above mean sea level, respectively) of these Groups

in test holes SSC-1 and SSC-3. Some of the decrease in elevation of the rocks of the Galena and

Platteville Groups between the north and south ends of the Dauberman Road line is the result of

a small normal fault, downthrown to the south between shot points 840 and 850 on section D2(figs. 1 and 12).

The next reflection on sections D1 , D2, and D3, in order of increasing two-way travel time, cor-

responds to the unconformity at the base of the Ancell Group (fig. 2). In the study area, the St.

Peter Sandstone may rest unconformably on rocks as young as the Shakopee Dolomite of the

Prairie du Chien Group (Lower Ordovician) and as old as the Franconia Sandstone Formation

(Upper Cambrian) (Buschbach 1964). Test holes SSC-1 and SSC-3 at the north and south ends

of the Dauberman Road line encountered the Eminence Dolomite (Lower Cambrian) and the

Oneota Dolomite, respectively, below the St. Peter. The quality of the reflection emanating from

this unconformity is inconsistent. In some places, the reflection is strong and coherent, indicating

a sharply defined surface where the St. Peter, resting on unweathered carbonates, provides a

sizeable acoustic impedance contrast. In other places, where the reflection becomes weak and in-

coherent, the St. Peter may be resting on rubble and/or formations with similar acoustic proper-

ties.

Along the Dauberman Road line, the exact location where rocks of the Prairie du Chien Group ter-

minate on the subjacent Eminence Formation is difficult to determine. However, the northerly dip-

ping reflection at shot point 1350 on section D3 (figs. 1 and 12), which apparently corresponds to

the top of the Oneota Formation, together with cycle terminations farther north at shot points 1050

and 920, are indicative of the northernmost extent of the Prairie du Chien Group. Due to the un-

conformity at its base, the thickness of the Ancell Group in the study area varies. This is also the

case along the Dauberman Road line.

Below the sub-St. Peter unconformity were several significant reflections in Cambrian strata. Near0.220 second at the north end of section D1 (figs. 1 and 12) is a reflection corresponding to the

contact between the Potosi Dolomite and the Franconian Sandstone. This reflection, which ex-

hibits negative polarity, can be followed to the south well into section D3 (fig. 12), where it be-

comes discontinuous. At approximately 0.295 second at the north end of section D1 is a strong

reflection that corresponds to the top of the Lombard Dolomite Member of the Eau Claire Forma-

tion. This reflection could be followed easily on most of sections D1 , D2, and D3, although it

diminished in strength near the south end of the section D3 (fig. 1 2). The top of the Lombardalong the Dauberman Road line dips slightly to the south.

In addition to the previously mentioned small normal fault near shot point 850 in section D2 (figs.

1 and 12), a second small normal fault that cuts strata older than the St. Peter appears to be near

shot point 610 on section D3 (figs. 1 and 12). The only other structure of significance along the

Dauberman Road line occurs between shot point 55 and 155 on Section D2 near the East-WestTollway (figs. 1 and 12), where strata older than the St. Peter appear to have been downwarpedsignificantly prior to deposition of the St. Peter.

Fermilab Seismic Reflection Line

The seismic reflection line at Fermilab in T39N R9E, Du Page County, Illinois (figs. 1 and 13) wasshot from north to south in three segments, NAL-1 , NAL-2, and NAL-3; lengths were 0.64, 0.43,

and 2.08 miles, respectively. Because some segments overlapped, the total length of the line wasapproximately 3.1 miles.

21

Page 34: Seismic reflection and seismic refraction surveying in ...

Field parameters and the processing sequence for each segment of the Fermilab line are given in

appendix B. Although the recorded length for each segment was 1 .0 second, only 0.5 secondwas processed for segments NAL-1 and NAL-2 and only 0.6 second for segment NAL-3 (fig. 13).

Like section 1 of the Dauberman Road seismic reflection line, the recorded lengths of the Fer-

milab sections were adequate for the intended purpose of this line, which was to examine the Or-

dovician strata in which the SSC experimental chambers were to be constructed. Like the Dauber-man Road sections, the Fermilab sections do not contain information about the lower Mt. Simonand Precambrian rocks.

Surface elevations along the Fermilab seismic reflection line range from 730 to 750 feet abovemean sea level with no discernible trend. Glacial drift thickness varies from 50 to 100 feet (Piskin

and Bergstrom 1975). The bedrock surface is composed entirely of Silurian age-rocks (Willman et

al. 1975; fig. 5).

The general quality of the seismic reflection data along the Fermilab line is fair. The quality is

poor where noise levels from large pumps and compressors in the experimental area of Fermilab

adversely affected the data. Reflections from the bedrock surface generally are inconsistent anddifficult to follow. Test hole SSC-2 (fig. 6) near the south end of the Fermilab line shows that

Silurian dolomite rests directly on Maquoketa Dolomite, and gradually changes to shale at the

base of the Maquoketa. With no sharp lithologic break between the Silurian and Ordovician strata

and a gradual decrease in seismic velocity through the transition from dolomite to shale within the

Maquoketa (fig. 8), a strong reflection is not possible from the top of or within the MaquoketaGroup. The reflection corresponding to the Maquoketa-Galena contact, although generally weak,

can be followed across sections NAL-1 , NAL-2, and NAL-3 (fig. 13). The reflection from the top of

the Ancell Group is, for the most part, coherent and consistent. On the basis of information col-

lected from test hole SSC-2, the Fermilab section NAL-3 shows St. Peter resting on Shakopee at

the south end of the Fermilab line. The tops of the Franconia, Proviso, and Lombard Dolomite are

easy to follow for a short distance, but farther to the south, although strong and coherent for short

distances, they become discontinuous and difficult to follow. On section NAL-1 a noteworthy

reflection emanates from the contact between the Galesville Sandstone Formation and the

Proviso Siltstone Member of the Eau Claire Formation (the top of the Eau Claire). The upper part

of the Proviso can be dolomitic (Buschbach 1964). This would be the case along section NAL-1,

where a strong acoustic impedance contrast suggests a clastic-carbonate interface between the

Galesville Sandstone and the Proviso Siltstone Member.

Along the Fermilab line most of the rocks show a slight southern component of dip. The thickness

of the Galena-Platteville Groups, 221 feet in test hole SSC-2 near the south end of segment NAL-

3, remains almost constant.

Between shot points 150 and 160 on section NAL-1 (figs. 1 and 13), the reflections associated

with the Prairie du Chien Group and the Franconia Formation exhibit evidence of a small reverse

fault upthrown on the north. Faulting cannot be traced into the overlying Ancell Group, nor can it

be traced into the Franconia Formation for a significant distance. Deeper reflections exhibit

evidence of upwarping in the lower strata south of the fault, indicative of a different, but neverthe-

less, consistent reaction to lateral compressive stresses.

Bristol Seismic Refraction Line

The Bristol seismic reflection line in T37N, R7E, Kendall County, Illinois (figs. 1 and 14) was shot

in a north-south direction in two segments, BR-1 and BR-3. The segments are 0.96 and 0.60 mile

long, respectively, for a total of 1 .56 miles.

Field parameters and the processing sequence for each segment of the Bristol line are given in

appendix C. The recorded length for each segment was 1 .0 second, but only 0.5 second wasprocessed for segment BR-1 and only 0.6 second for segment BR-3. The Bristol line was used to

examine the continuity of the Galena-Platteville rocks in this area. Small-scale faulting in the

Galena-Platteville was suspected on the basis of drilling and sampling in nearby test holes. Like

the Dauberman Road and Fermilab seismic sections, the Bristol sections only provided informa-

22

Page 35: Seismic reflection and seismic refraction surveying in ...

tion about strata as deep as the upper part ot the Mt. Simon. Although the same datum and sub-

weathering velocity were used in processing the data of seismic sections BR-1 and BR-3 (fig. 14),

a correction factor of 0.071 second was added to the datum correction of section BR-1 . Thus

reflections indicated on the BR-1 section will have two-way travel times, apparently 0.071 second

greater than their counterparts in section BR-3.

Topographic relief on the earth's surface is small along the Bristol line, ranging from just over 660

feet to just below 650 feet above mean sea level. The thickness of the glacial drift along the Bris-

tol line varies between 25 and 100 feet (Piskin and Bergstrom 1975). The bedrock surface is com-

posed of carbonates of the Maquoketa Group at the north end of segment BR-1 and shales andcarbonates of the Maquoketa Group elsewhere on this line (Willman et al. 1967) (fig. 5).

At a two-way travel time of approximately 0.190 second on seismic reflection section BR-1 (fig.

14), a reflection is interpreted as the top of the Maquoketa. This reflection becomes morecoherent and continuous on section BR-3 (fig. 14) to the south where rocks of the MaquoketaGroup form the bedrock surface. Between this reflection and the strong reflection associated with

the top of the Galena (at about 0.220 second on section BR-1), short, discontinuous reflections,

likely associated with the Ft. Atkinson Limestone (Maquoketa Group), can be seen. The reflection

associated with the top of the Ancell Group is of lesser quality, but continuous and traceable. Thereflection associated with the top of the Ancell Group occurs at about 0.250 second on section

BR-1 . At about 0.290 second on BR-1 is a reflection corresponding to the top of the Prairie du

Chien Group (Ordovician). Rocks as young as the Shakopee Dolomite may form the surface of

the unconformity at the top of this group (Buschbach 1964). Other notable reflections on BR-1 are

associated with the tops of the Franconia Sandstone (0.330 second) and the Lombard Dolomite

Member of the Eau Claire Formation (0.410 second). The reflection seen at about 0.330 second

on the section BR-3 may correspond with the top of the Proviso Siltstone Member of the EauClaire.

All reflections noted above generally are parallel, which is indicative of little or no thickening of

strata along this short line. Evidence of a slight southern component of dip is on much of the

strata along the Bristol line, but no evidence of faulting exists along the line.

Lily Lake Seismic Reflection Line

The Lily Lake seismic reflection line in T40 and 41 N, R7E, Kane County, Illinois was shot in a

north-south direction along Highway 47 through the town of Lily Lake (figs. 1 and 15). The line

was approximately 4.22 miles long.

Field parameters and the processing sequence for this line are given in appendix D. Significant

changes made on the Lily Lake line included dynamite (0.33 to 1 .00 lb.) as the energy source and

a recorded length of 2.0 seconds. Processing length was 1 .0 second, enough time to include infor-

mation about Precambrian rocks. This line was shot to examine the shallow Ordovician targets as-

sociated with the construction of the SSC tunnel and to determine the presence or absence of

large-scale basement faulting in this region, which had been suggested by McGinnis (1966)

primarily on the basis of interpretations of potential field data. The 1 .0-second length of the seis-

mic reflection section LL-1 (fig. 1 5) was adequate for both purposes.

Surface elevations on the Lily Lake line range from just over 1 ,010 feet above mean sea level at

the northern end to about 880 feet above mean sea level near its southern end. The thickness of

the glacial drift under the Lily Lake line is approximately 200 feet (Piskin and Bergstrom 1975).

The bedrock surface along this line is composed entirely of rocks belonging to the MaquoketaGroup (Willman et al. 1967; fig. 5).

The quality of the seismic reflection data on the Lily Lake line generally is good. Near the top of

the LL-1 section (fig. 15), a strong reflection between 0.040 and 0.050 second likely correspondsto the Ft. Atkinson Limestone of the Maquoketa Group (Ordovician). In some places, the Ft. Atkin-

son Limestone appears to form the bedrock surface. Where it does not, a shallower reflection

above it appears to be associated with the bedrock surface, perhaps composed of youngerBrainard Formation shales. At 0.070 second is a strong reflection associated with the top of the

23

Page 36: Seismic reflection and seismic refraction surveying in ...

Galena. At 0.035 to 0.40 second below the top of the Galena reflection is a weaker but con-

tinuous reflection corresponding to the top of the Ancell Group. The parallelism of these latter tworeflections indicates the uniform thickness of the Galena-Platteville Group along LL-1 . A slight

southern component of dip is on rocks of the Galena-Platteville Group on the Lily Lake line. At

about 0.165 second at the southern end of section LL-1 , a strong reflection is associated with the

sub-St. Peter contact. This reflection likely emanates from the St. Peter resting on the Potosi

Dolomite, but a deep hole at St. Charles, Illinois, about ten miles east of the southern end of the

LL-1 line, encountered the Franconia Sandstone below the St. Peter (Buschbach 1964). Wherethe reflection from this surface is strong, the Potosi is likely present at the surface of the unconfor-

mity. Where the reflection is weak, the Franconia, which has less acoustic impedance than the

Potosi, is present, or perhaps the Potosi is present, but with a rubble zone between it and the

overlying St. Peter (Buschbach 1964). The very strong reflection at about 0.270 second cor-

responds to the top of the Lombard Dolomite. Along this line, the Lombard appears to be about

200 feet thick and flat lying. Below the Lombard reflection, the seismic section appears devoid of

continuous reflections down to 0.640 seconds. This void corresponds to the predominately clastic

rocks of the lower Eau Claire and Mt. Simon Formations. Occasionally, weak, short reflections

occur near the base of the Mt. Simon, probably because of weak bedding or zones of especially

dense cementation.

The basement surface, indicated by the strong reflection at about 0.640 second, also appearsrelatively flat lying along the Lily Lake line. Within the basement rocks no evidence of the large-

scale basement faulting suggested by McGinnis (1966) exists.

Conclusions

The high-resolution seismic reflection profiling at four discrete locations around the proposed

SSC ring proved to be viable in answering questions about the stratigraphy and structural geol-

ogy at those locations, as well as providing significant insight into the geologic history of north-

eastern Illinois. The seismic reflection profiling provided considerably more information than pre-

vious geological and geotechnical studies, which relied on drill holes and downhole logging.

With the exception of a few interpreted minor faults, carbonate rocks of the Galena and Platteville

Groups are relatively flat lying and uniform in thickness and lithology. This consistent stratigraphic

relationship was desirable along the Dauberman Road and Fermilab lines (figs. 1,12, and 13)

where the chambers of the proposed SSC were to be located.

The seismic reflection sections near Bristol (figs. 1 and 1 4) showed no evidence of faulting in the

rocks extending from the bedrock surface to the upper Cambrian. The results of previous test drill-

ing and geologic mapping suggested the possibility of small-scale faulting in the Bristol area.

The Lily Lake seismic reflection section (figs. 1 and 15), which showed a strong, continuous reflec-

tion at the basement surface and provided information about basement rocks, did not showevidence of large-scale basement faulting interpreted from potential field data by McGinnis

(1966).

A downwarping of strata below the St. Peter Sandstone (fig. 12) and a small reverse fault that

cuts strata from the top of the Prairie du Chien Group down to the top of the Franconia Sandstone(fig. 1 3), are indicative of a compressive event across the study area prior to the deposition of the

St. Peter.

A zone of small, parallel, high-angle normal faults that extend from the bedrock surface well into

the Cambrian strata (fig. 12) is indicative of a tensional event younger than the Silurian Ma-quoketa rocks comprising the bedrock surface.

The seismic reflection sections were particularly useful in examining the deeper rocks of the study

area because of the paucity of deep drill holes. The nature of the unconformable surface at the

base of the Ancell Group can be observed on sections from all four seismic reflection lines (figs.

12, 13, 14, and 15). The basement surface on the Lily Lake seismic section (fig. 15) yields a

reflection as strong and continuous as anywhere else in the state.

24

Page 37: Seismic reflection and seismic refraction surveying in ...

References

Buschbach, T. C, 1964, Cambrian and Ordovician strata of northeastern Illinois: Illinois State

Geological Survey, Report of Investigations 218, 90 p.

Horberg, L, 1950, Bedrock topography of Illinois: Illinois State Geological Survey Bulletin 73,

111 p.

Kempton, J. P., R. C. Vaiden, D. R. Kolata, P. B. DuMontelle, M. M. Killey, and R. A. Bauer,

1985, Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois:

Preliminary geological feasibility report: Illinois State Geological Survey Environmental Geology

Notes 1 1 1 , 63 p.

Kolata, D. R., and A. M. Graese, 1983, Lithostratigraphy and depositional environments of the

Maquoketa Group (Ordovician) in northern Illinois: Illinois State Geological Survey Circular

528, 49 p.

Lineback, J. A., 1979, Quaternary deposits of Illinois: Illinois State Geological Survey map.

McGinnis, L. D., 1966, Crustal tectonics and Precambrian basement in northwestern Illinois:

Illinois State Geological Report of Investigations 219, 29 p.

Piskin, K., and R. E. Bergstrom, 1967, Glacial drift in Illinois: Thickness and character: Illinois

State Geological Survey Circular 41 6, 33 p.

Piskin, K., and R. E. Bergstrom, 1975, Glacial drift in Illinois: Thickness and character: Illinois

State Geological Survey Circular 490, 35 p.

Vaiden, R. C, M. J. Hasek, C. R. Gendron, B. B. Curry, A. M. Graese, and R. A. Bauer, 1988,

Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: Results

of drilling large-diameter test hole in 1986: Illinois State Environmental Geology Note 124, 58 p.

Walker, C, Jr., 1988, Shallow seismic profiling for a tunnel site near Chicago, Paper presented at

58th Annual International Meeting and Exhibition: Society of Exploration Geophysics, Anaheim,

CA, Oct. 30-Nov. 3, 1988, 9 p.

Willman, H. B., J. C. Frye, J. A. Simon, K. E. Clegg, D. H. Swann, E. Atherton, C. Collinson, J. A.

Lineback, and T. C. Buschbach, 1967, Geologic Map of Illinois: Illinois State Geological Survey.

Willman, H. B., and J. C. Frye, 1970, Pleistocene stratigraphy of Illinois: Illinois State Geological

Survey Circular 94, 204 p.

Willman, H. B., 1971 , A summary of geology in the Chicago area: Illinois State Geological Survey

Circular 460, 77 p.

Willman, H. B., 1973, Rock stratigraphy of the Silurian Systems in northeastern and northwestern

Illinois: Illinois State Geological Survey Circular 479, 55 p.

Willman, H. B., E. Atherton, T. C. Buschbach, C. Collinson, J. C. Frye, M. E. Hopkins, J. A.

Lineback, and J. A. Simon, 1975, Handbook of Illinois stratigraphy, Illinois State Geological

Survey Bulletin 95, 261 p.

Willman, H. B., and Kolata, D. R. 1978, The Platteville and Galena Groups in northern Illinois:

Illinois State Geological Survey Circular 502, 75 p.

25

Page 38: Seismic reflection and seismic refraction surveying in ...

Appendix A Dauberman Road Field Parametersand Processing Sequence

Segment D-1

Field Parameters

Recording instruments

Record length

Sample rate

Tape format

Number of channels

Energy sourceSource interval

DFSV1 .0 sec.5 msSEGB72

Airgun

27.5 ft

Hydrophone P44Receiver type

Receivers per group

Standard configuration Split spreadFeet 1017.5-27.5 Sp 27.5-1017.5 feet

Recorded by

Date recorded

Walker Geophysical Co.

1 2/86-2/87

Processing Sequence

1. Demultiplex and QC display

2. Spherical divergence and gain recovery

3. Trace editing

4. Deconvolution type: band limited

No. of gates 1

Design type average autocorrelation

Frequency 70-300 HzOperator length 51 msWhite noise 50% outside

0% inside

5. Source and receiver datum correction

Datum 830 ft

VR 6500 ft/sec

6. Common depth point gather

7. Velocity analysis via Digicon's Velfan

8. Brute stack

9. Residual static correction

10. Velocity analysis via Digicon's Velfan

1 1

.

Residual static correction

1 2. Normal moveout correction

13. Mute14. Trace equalization

1 5. Common depth point stack 36 fold

1 6. Signal to noise enhancement (TAU-P method)1 7. Digital filter type: bandpass

Frequency Time90-200 Hz 0.000 sec80-180 Hz 0.250 sec70-1 60 Hz 0.500 sec

1 8. Trace equalization

19. Film display

Polarity convention

Segment D-2

Field Parameters

Recording instruments

Record length

Sample rate

Tape format

Number of channels

Energy sourceSource interval

Receiver type

Receivers per group

Standard configuration

Feet 1017.5-27.5 Sp

Recorded by

Date recorded

DFSV1 .0 sec.5 msSEGB72

Airgun

27.5 ft

Hydrophone P441

Split spread27.5-1017.5 feet

Walker Geophysical Co.

1 2/86-2/87

Processing Sequence

1. Demultiplex and QC display

2. Spherical divergence and gain recovery

3. Trace editing

4. Deconvolution type: band limited

No. of gates 1

Design type average autocorrelation

Frequency 70-300 HzOperator length 51 msWhite noise 50% outside 0% inside

5. Source and receiver datum correction

Datum floating

VR 6500 ft/sec

6. Common depth point gather

7. Velocity analysis via Digicon's Velfan

8. Brute stack

9. Residual static correction

1 0. Velocity analysis via Digicon's Velfan

1 1

.

Residual static correction

1 2. Normal moveout correction

13. Mute1 4. Trace equalization

1 5. Common depth point stack 36 fold

1 6. Signal to noise enhancement (TAU-P method)1 7. Digital filter type: bandpass

Frequency Time90-200 Hz 0.000 sec80-180 Hz 0.250 sec70-1 60 Hz 0.500 sec

18. Trace equalization

19. Final datum correction

Datum 830 ft

VR 6500 ft/sec

20. Film display

Polarity convention

All data processing techniques used have maintained the recording polarity.

Normal polarity, a positive number, will be a filled peak; a negative number will be a trough (SEGY standard).

Processed by Digicon Geophysical Corp.

Houston Processing Center

Land Department

26

Page 39: Seismic reflection and seismic refraction surveying in ...

Segment D-3

Recording Parameters

Field acquisition

Date recorded

Field reel numbersNo. of shots on line

Recording instruments

Recording filter

NotchRecord length

Sample rate

No. of channels

Tape format

Direction of shooting

Energy source

Receiver

Source interval

Group interval

Spread

Walker Geophysical

Aug. 12-Sept. 28, 19871-11

1105DFSVLow 90 high 51 2 HzOut1 sec.5 ms72 (3x24)

SEGBN-SAirgun

P44 1 Hz22 ft

22 ft

792-22-Sp-22-770

Processing Sequence

1. Demultiplex

2. Minimum phase anti-alias filter application

3. Resample to 1 ms4. Spherical divergence

5. Display field records

6. Trace editing

7. Source and receiver static correction

Datum floating

VR 6500 ft/sec

8. Common depth point gather

9. Initial velocity analysis

10. Residual statics application

11. Spectral equalization

Frequency 70-250 Hz12. Velocity analysis

13. Residual statics application

Frequency dependent1 4. Normal moveout correction

15. Early mute1 6. Trace equalization

1 7. Common depth point stack 36 fold

1 8. Deconvolution Type: band limited

Gap length 5 msFrequency 70-250 HzWhite noise 50% outside 0% inside

Design gate 0.40-0.400 sec

19. Signal to noise enhancement20. Digital filter Type: bandpass

Time (sec) Frequency (Hz)

0.0-0.07 80-240

0.095 80-200

0.350 70-1800.600 70-140

21 Trace equalization

22 Final datum correction

Datum 830 ft

VR 6500 ft/sec

23. Film display

30 TPI 20 IPS (1 in = 330 ft)

Polarity convention

Appendix B Fermilab Parameters andProcessing Sequence

Segment NAL-1

Recording Parameters

Field acquisition

Date recorded

Field reel numbersNo. of shots on line

Recording instruments

Recording filter

NotchRecord length

Sample rate

No. of channelsTape format

Direction of shooting

Energy source

Receiver

Source interval

Group interval

Spread

Walker GeophysicalOct. 26-Nov. 28, 198713,14

153DFSVLow 90 high 51 2 HzOut1 sec.5 ms72 (3x24)

SEGBN-SAirgun

P44 1 Hz22 ft

22 ft

792-22-Sp-22-770

Processing Sequence

1. Demultiplex

2. Minimum phase anti-alias filter application

3. Resample to 1 ms4. Spherical divergence

5. Display field records

6. Trace editing

7. Source and receiver static correction

Datum 700 ft

VR 6500 ft/sec

8. Common depth point gather

9. Initial velocity analysis

1 0. Residual statics application

1 1

.

Spectral equalization

Frequency 70-250 Hz1 2. Velocity analysis

13. Residual statics application

Frequency dependent1 4. Normal moveout correction

1 5. Early mute1 6. Trace equalization

1 7. Common depth point stack 36 fold

1 8. Deconvolution Type: band limited

Gap length 5 ms.

Frequency 70-250 HzWhite noise 100% outside 0% inside

Design gate 0.080-0.400 sec19. Signal to noise enhancement20. Digital filter Type: bandpass

Time (sec) Frequency (Hz)

0.0-0.07 80-240

0.095 80-200

0.350 70-1800.600 70-140

21

.

Trace equalization

22. Film display

30 TPI 20 IPS (1 in = 330 ft)

Polarity convention

27

Page 40: Seismic reflection and seismic refraction surveying in ...

Segment NAL-2

Recording Parameters

Field acquisition

Date recorded

Field reel numbersNo. of shots on line

Recording instruments

Recording filter

Notch

Record length

Sample rate

No. of channelsTape format

Direction of shooting

Energy source

Receiver

Source interval

Group interval

Spread

Walker Geophysical

Nov. 22, 198717104DFSVLow 90 high 512 HzOut1 sec

.5 ms72 (3x24)

SEGBNW-SEAirgun

P44 1 Hz22 ft

22 ft

792-22-Sp-22-770

Processing Sequence

1. Demultiplex

2. Minimum phase anti-alias filter application

3. Resample to 1 ms4. Spherical divergence

5. Display field records

6. Trace editing

7. Source and receiver static correction

730 ft

6500 ft/sec

Type: Spiking

Offset Gate50 ms - 400 ms

310 ms- 500 ms

DatumVR

8. Deconvolution

Design gate

15849. Common depth point gather

1 0. Initial velocity analysis

1 1

.

Residual statics application

1 2. Secondary velocity analysis

13. Trim statics

14. Final velocity analysis

15. Residual statics application

Frequency dependent1 6. Normal moveout correction

1 7. Early mute18. Trace equalization

19. Common depth point stack 36 fold

20. Deconvolution Type: band limited

Gap length 6 msFrequency 70-250 HzWhite noise 1 00% outside 0% inside

Design gate 0.20-0.340 sec

21

.

Signal to noise enhancement22. Digital filter Type: bandpass

Time (sec) Frequency (Hz)

0.0-0.07 80-240

0.095 80-200

0.350 70-180

0.500 70-14023. Trace equalization

24. Final datum correction

Datum 700 ft

VR 6500 ft/sec

25. Film display

30 TPI 20 IPS (1 in = 330 ft)

Polarity convention

Segment NAL-3

Recording Parameters

Field acquisition Walker GeophysicalDate recorded Dec. 5, 1987-Jan.30, 19Field reel numbers 18-24

No. of shots on line 494Recording instruments DFSVRecording filter Low 90 high 512 HzNotch OutRecord length 1 sec

Sample rate .5 msNo. of channels 72 (3x24) and 96 (4x24)

Tape format SEGBDirection of shooting NNE-SSWEnergy source Airgun

Receiver P44 1 HzSource interval 22 ft

Group interval 22 ft

72 channel spread 792-22-Sp-22-770

96 channel spread 1056-22-Sp-22-1056

Processing Sequence

1. Demultiplex

2. Minimum phase anti-alias filter application

3. Resample to 1 ms4. Spherical divergence

5. Display field records

6. Trace editing

7. Source and receiver static correction

700 ft

6500 ft/sec

Type: Spiking

Offset Gate50 ms - 400 ms

31 ms -500 ms9,

10,

11.

12,

13,

14,

15.

16,

17,

18,

19,

20,

21

22

DatumVRDeconvolution

Design gate

1584Common depth point gather

Initial velocity analysis

Residual statics application

Secondary velocity analysis

Trim statics

Final velocity analysis

Residual statics application

Frequency dependentNormal moveout correction

Early muteTrace equalization

Common depth point stack 36 & 48 fold

Deconvolution Type: band limited

Gap length 6 msFrequency 70-250 HzWhite noise 100% outside 0% inside

Design gate 0.20-0.340 secSignal to noise enhancement

23,

24.

Digital filter

Time (sec)

0.0-0.07

0.095

0.350

0.500

Trace equalization

Film display

30 TPI 20 IPS (1 in

Polarity convention

Type: bandpassFrequency (Hz)

80-24080-20070-18070-140

330 ft)

28

Page 41: Seismic reflection and seismic refraction surveying in ...

Appendix C Bristol Field Parameters andProcessing Sequence

Segment BR-1

Field Parameters

Recording instruments

Recording filter

Record length

Sample rate

Number of channelsEnergy source

Source interval

Source depth

Pops/S. P.

Gun size

Receiver type

Receiver interval

Receivers per groupStandard configuration

Direction of shooting

Recorded by

Recorded for

Date recorded

DFSV90/36- 512/72 (Hz/DB/Oct)

Notch out

0.5 sec.5 ms3x24Airgun

22 ft

9ft

310 C.I.

Hydrophone -P44 (10 Hz)

22 ft

1

814-220 ft -Sp -220-814 ft

North to south

Walker Geophysical Co.

Illinois State Geological

SurveyMay 17-20, 1988

Processing Sequence

Processing length .5 secSample rate 1 ms

1. Demultiplex and QC display

2. Resample .5 to 1 ms3. Spherical divergence and gain recovery

4. Trace editing

5. Deconvolution type: band limited

No. of gates 1

Design type average autocorrelation

Frequency 60-320 HzOperator length 51 msWhite noise 50% outside 0% inside

6. Source and receiver datum correction

Datum 600 ft

VR 6500 ft/sec

7. Common depth point gather

8. Initial velocity analysis

9. Residual statics

1 0. Final velocity analysis

1 1

.

Normal moveout correction

12. Mute13. Time variant scaling

14. Common depth point stack

15. Datum correction (+71 ms.)

Datum 830 ft

VR 6500 ft/sec

1 6. Spectral enhancement 60 - 200 Hz1 7. Digital filter type: bandpass

Frequency Time60-200 Hz 0.0 - 0.5 sec

18. TAU-P domain signal enhancement19. Time variant scaling

Segment BR-3

Recording Parameters

InstrumentsTypeFormatGain control

SourceTypeInterval

DFSVSEGB

IFP

Airgun

22 ft

Sample Interval .5 msRecord length 1 secFilter 90/36-360/72 Hz

Direction shot

CableChannels 72 (3 x 24)

Geophone type P44Array Inline

Geophones/stat unknown

Interval

Geophone Freq

Spacing

22 ft

10 Hzunknown

Processing Sequence

830 ft

6500 ft/sec.

June 1988

1. Daturm elevation

2. Subweathering velocity

3. Date processed4. Demultiplex

5.Shot and trace edit

6. Gain recovery

7. Common midpoint sort

8. Datum statics

Correction to floating datum9. Initial velocity analysis

1 0. Surface consistent residual statics

1 1

.

Final velocity analysis

12. Normal moveout removal

13. Mute1

4

Amplitude equalization

15 Datum statics

Correction to datum1 6. 3600% stack

1 7. Predictive deconvolution

Operator length 50 msPrediction lag 10 msDesign window 1 00-500 ms

18. Signal enhancement19. Wave equation migration

20. Bandpass filter 80 - 1 92 Hz22. Automatic gain control 200 ms23. Display

20 tr/in

Polarity

20 in/s

Black peaks are positive

29

Page 42: Seismic reflection and seismic refraction surveying in ...

Appendix D Lily Lake Field Parameters andProcessing Sequence

Field Parameters

Recording instruments

Recording filter

Record length

Sample rate

Number of channelsEnergy sourceSource interval

Source depth

Charge size

Receiver type

Receiver interval

Receivers per groupStandard configuration

Direction of shooting

Recorded byRecorded for

Date recorded

DFSV90/36 - 360/72 (Hz/DB/Oct)

Notch out

2.0 sec

1 ms56Dynamite55 ft

24 ft

.33 to 1 lb.

Hydrophone -P44(10Hz)55 ft

1

SP - Ch. #1 - Ch. #50-55 - 3080 ft

North to south

Walker Geophysical Co.

Illinois State Geological

SurveyMarch 16-19, 1986

Processing Sequence

Processing length

Sample rate

1 sec

2 ms

1. Demultiplex and QC display

2. Resample 1 to 2 ms3. Spherical divergence and gain recovery

4. Trace editing

5. Deconvolution type: band limited

No. of gates 1

Design type average autocorrelation

Frequency 70-250 HzOperator length 81 msWhite noise 50% outside 0% inside

6. Source and receiver datum correction

Datum 830 ft

VR 6500 ft/sec

7. Common depth point gather

8. Initial velocity analysis

9. Residual statics

10. Final velocity analysis

1 1

.

Normal moveout correction

12. Mute13. Residual statics

1 4. Time variant scaling

15. Common depth point stack

1 6. Spectral enhancement50-150 Hz

1 7. Digital filter type: bandpassFrequency Time50-150 Hz 0.0-1.0 sec

18. TAU-P domain signal enhancement1 9. Time variant scaling

30

Page 43: Seismic reflection and seismic refraction surveying in ...

II Seismic Refraction Profiling

Page 44: Seismic reflection and seismic refraction surveying in ...
Page 45: Seismic reflection and seismic refraction surveying in ...

R 7 E R 8 E R 9 E

R 6 E

seismic refraction lines

seismic rellection line

R 7 E R 8 E R 9 E

6 mi.

9 km.

Figure 1 Index map-location of seismic refraction profiles.

Introduction

More than 80 line-miles of seismic refraction data were gathered in Kane, Kendall, Du Page, andWill Counties, Illinois (fig. 1 ) to define the geologic framework of the near-surface deposits in the

proposed site for the Superconducting Super Collider (SSC). The results of this seismic refraction

survey provided information relevant not only to the construction of the SSC tunnel and the loca-

tion of its attendant vertical service shafts, but also to other future construction and to evaluation

of groundwater, aggregate (crushed stone), and sand and gravel resources in the region.

The results of the seismic refraction survey include information on compressional wave velocities

of the glacial drift and rocks in the bedrock surface (appendix A), which permit inferences to bemade concerning the lithologic character of the glacial drift and the bedrock surface. Lowvelocities of the glacial drift may be indicative of sand and gravel deposits; higher velocities maybe indicative of till. In an area where rocks that constitute the bedrock surface have a uniform

lithology, lower velocities likely correspond to pronounced weathering and/or fracturing. Fractures

in the upper bedrock often serve as conduits for transmitting sizeable quantities of groundwater in

this region.

33

Page 46: Seismic reflection and seismic refraction surveying in ...

Table 1 Length of cable and geophone intervals for estimated depth to bedrock in the study area.

Cable length (ft) Geophone interval (ft) Estimated depth to bedrock (ft)

300 25 <30600 50 30-150

1200 100 150-300

The results of the seismic refraction survey also include drift thickness or depth-to-bedrock values

(appendix A). Together with information from existing discrete drill holes, the depth-to-bedrock

values have been used to construct an improved bedrock topography map and delineate buried

bedrock valleys. When filled with coarse-grained glacial deposits, the bedrock valleys are often

sites of shallow groundwater supplies.

Seismic Refraction Method

In the seismic refraction method, the time between the initiation of seismic waves by an explosion

or some other energy source and the first disturbances indicated by a geophone at somemeasured distances from the energy source (shot point) are observed. The first disturbances or

arrivals correspond to the onset of compressional waves, the fastest traveling waves. According

to Fermat's principle, the waves that cause the first disturbances are the ones that have traveled

the minimum time path between the shot point and the geophones. By observing first arrivals for

several shot-to-geophone distances, a time-distance plot can be constructed.

The time-distance plot can be analyzed by comparing the variation of minimum time paths with

distance. Deductions can be made about the nature and depth of the elastic discontinuities

(velocity discontinuities) required to account for the observed time-distance relationships. Elastic

discontinuities then may be interpreted to define the nature, depth, and orientation of geologic

units below the earth's surface (Nettleton, 1940).

Successful application of the seismic refraction method requires that the compressional wavevelocities of the geologic units of interest increase monotonically with depth. This requirement

was met in the SSC study area, where there were essentially three shallow geologic units of inter-

est:

• the so-called weathered layer at the earth's surface, which is generally quite

thin and has a relatively low velocity;

• the layer of unconsolidated deposits, consisting of glacial till or sand and

gravel, which has a higher velocity; and

• the bedrock, which has a still higher velocity, even where it is weathered

and/or fractured.

Difficulties arise using the seismic refraction method when a velocity inversion exists at depth,

that is, when a geologic unit has a velocity less than that of the overlying unit. This situation com-monly occurs in bedrock valleys where compact glacial tills may overlie the loose, valley-fill sands

and gravels.

The low velocity unit is called the hidden layer because it is not apparent on time-distance plots of

first arrivals. Straightforward application of analytical interpretive techniques, which assumemonotonically increasing velocities with depth, will yield erroneously excessive depths to all elas-

tic discontinuities below the hidden layer. In the case of a bedrock valley containing a unit of thick

basal sand and gravel overlain by a compact till unit, the calculated depth to the valley floor will

be greater than it is in reality. This means that the thalwegs of such bedrock valleys will be exag-

gerated and, therefore, more readily discerned; but accurate determination of depth to the valley

floor and thickness of the hidden sand and gravel unit requires reference to the nearest drill holes

that penetrate bedrock.

34

Page 47: Seismic reflection and seismic refraction surveying in ...

* Shotpoint

A Geophone

Layer 3

Figure 2 Shot and geophone arrays used with FRAC and SIPT programs

Equipment

Seismic refraction data were acquired using two multichannel signal-enhancement seismographs

(EG&G Geometries models ES-2415F and ES-1225) from the Illinois State Geological Survey.

The 24-channel ES-2415F was used for most of the data acquisition. The 12-channel ES-1225,

which is lighter and more portable, was used when it was necessary to hand-carry a seismograph

to a field site. Mark Products 14 Hz vertical component geophones were used for detecting first ar-

rivals.

Field Procedures

To obtain optimum results from shallow refraction surveying, it is necessary to choose ap-

propriate shot and geophone arrays. These choices depend primarily on the layering parameters

(velocities and thicknesses) of the near-surface materials and depth to the lowest refracting inter-

face of interest. It is also important that the shot and geophone arrays are compatible with com-puter programs for processing and interpreting the data.

In this study, the lowest refracting interface of interest was the glacial drift-bedrock contact. Es-

timates of the depth to this interface and the layering parameters of the near surface materials

were made from drill hole information and results of previous seismic refraction work.

Table 1 summarizes cable length and geophone intervals used for the estimated depth to

bedrock throughout the study area.

The computer programs, FRAC and SIPT-1 , used for processing and interpreting the data

gathered in this survey, were compatible with the shot and geophone arrays shown in figure 2.

Dynamite charges, detonated in holes 4 to 5 feet deep, were the energy sources employed in

most of the seismic refraction surveying. The size of the charges ranged from as small as 1/6

pound to as large as 1 pound, depending on the character of the unconsolidated, near-surface

deposits and the estimated depth to bedrock. Where utilities and other cultural obstructions

prevented the use of dynamite, a self-propelled, drop-hammer, pavement-breaking machine wasused as a "thumper" source. Because the thumper does not provide nearly as much energy in a

single blow as a dynamite blast, signals from several blows of the thumper had to be stacked

before printing a seismic record.

35

Page 48: Seismic reflection and seismic refraction surveying in ...

Processing of Seismic Refraction Data

The data processing for the study consisted of assembling seismic refraction information, con-

structing an accurate index map to show locations of all seismic refraction profiles in the SSCstudy area (fig. 1), and preparing observed seismic refraction data for input into computer

programs. The programs produce the layering parameter (velocity and thickness) solutions, whichcan be interpreted to define the nature, depth, and orientation of geologic units near the earth's

surface.

First-arrival times were picked manually from printed records and plotted against distances from

shot points to geophones. The least-squares line segments associated with discrete near-surface

geologic units were fitted to the time-distance plots. Intercept times and slopes of the line seg-

ments were determined. The inverse of the slope of the line segment passing through the origin is

the true velocity of the weathered surficial material. Where the weathered layer is relatively thin

compared to geophone spacing, there may be no evidence of the weathered layer on the time-dis-

tance plot. In such cases a "true" velocity of 1 ,500 ft/sec was assigned to the weathered layer.

The inverse of the slopes of the other two line segments are apparent velocities of the layer of un-

consolidated deposits and the bedrock surface. The relationship of an apparent velocity to the

true velocity of a geologic unit depends on the direction and amount of dip on the upper surface

of a geologic unit under a seismic refraction profile.

The final step in preparing input to the seismic refraction computer programs, FRAC and SIPT-1

,

was determining shot point and geophone elevations from 7.5 minute topographic maps.

The FRAC program for inverting seismic refraction data follows a method set forth by Heiland

(1940), which assumes that velocity inceases monotonically with depth and planar surfaces

bound the near-surface geologic units of interest during the seismic refraction profile. Heiland's

method requires reverse profiling, that is, first-arrival times from shots placed at both ends of the

seismic refraction profile are employed. The input to the program includes shot elevation, inter-

cept times, and velocities associated with both the forward and the reverse shots. As mentioned

above, except for the weathered layer, the input velocities are apparent velocities. The output

from this program includes depths to the tops of layers corresponding to geologic units under the

shot points and the true velocity of each layer.

SIPT-1 (Seismic Interpretation Program Two) was used to process much of the seismic refraction

data in this study. The program, originally developed by Scott et al. (1972) to run on mainframe

computers, was modified later by Haeni (1986) for microcomputer use.

Like the FRAC program, the algorithm of the SIPT-1 program also assumes velocity increases

monotonically with depth; but unlike the FRAC program, the algorithm of the SIPT-1 program as-

sumes all layer boundaries are represented by a series of straight-line segments connected end-

to-end beneath geophone locations and extended from one end of the seismic refraction profile to

the other.

The SIPT-1 program is based on the delay-time method described by Pakiser and Black (1957),

but it also uses an interactive ray-tracing technique developed by Scott et al. (1972) to minimize

discrepancies between the measured and computed first-arrival times. The program requires data

obtained by overlapping arrays of 12 geophones and locating shots at the ends and offset from

the ends of the geophone arrays (fig. 2). The input to the program includes shot locations and

elevations, geophone locations and elevations, and first-arrival times. The output from the SIPT-1

program includes true velocity of each layer, depths to the tops of each layer below each

geophone along with the corresponding elevation, and ray-tracing data. The SIPT-1 program is

especially useful in processing seismic refraction data obtained in regions where the earth's sur-

face and/or the boundaries of the subsurface geologic units are topographically rough.

Results

Results of the seismic refraction survey in the study for the Superconducting Super Collider are

given in appendix A. Along with information concerning the locations of the seismic refraction

36

Page 49: Seismic reflection and seismic refraction surveying in ...

profile, this appendix includes compressional wave velocities of the weathered layer, the sub-

jacent layer of unconsolidated deposits, and the bedrock surface beneath the profiles. Theprimary value of the velocity data is that they allow inferences to be made concerning the

lithologic character of the near-surface deposits. The velocity data also are valuable in defining

those areas where a bedrock surface of a constant lithology has experienced considerable

weathering and/or fracturing. Appendix A also includes the elevation of the earth's surface anddepths to the top of the layer of unconsolidated deposits and to the bedrock surface beneath the

end points of each seismic refraction profile.

As mentioned above, a constant compressional wave velocity of 1 ,500 ft/sec was assigned to the

thin weathered layer at the earth's surface. Velocities associated with the layer of unconsolidated

deposits below the weathered layer and above the bedrock surface range from slightly less than

3,000 ft/sec to slightly more than 8,000 ft/sec. Velocities less than 4,500 ft/sec in the uncon-

solidated deposits commonly correspond to loose sands and gravels, whereas velocities greater

than 4,500 ft/sec correspond to glacial tills. Velocities associated with the bedrock surface range

from as low as 9,000 ft/sec to more than 20,000 ft/sec. Lower velocities for the bedrock surface

correspond to clastic rocks and higher velocities correspond to carbonate rocks. However,

weathering and/or fracturing of the bedrock may result in anomalously lower velocities. Some of

the lower velocities associated with the intermediate layer of unconsolidated deposits may cor-

respond to materials that make up the weathered layer and some of the higher velocities as-

sociated with the intermediate layer may correspond to rocks composing the bedrock surface. In

such cases, information gathered from nearby boreholes can often help in assigning velocities to

the proper geologic units.

Bedrock surface elevations vary considerably within the study area (fig. 3). Elevations as low as

381 feet and as high as 869 feet above mean sea level have been determined using the seismic

refraction data. Glacial drift thickness in excess of 300 feet has been noted.

Summary

More than 80 miles of seismic refraction profiling provided additional information to the databaseon the near-surface geologic framework of northeastern Illinois. This database is important in solv-

ing a number of local and regional geological, hydrological, and engineering problems.

An updated bedrock topography map (fig. 3), which incorporates information gathered in this

study, has relevance not only to future construction, but also to the location of shallow

groundwater and aggregate resources. Buried bedrock valleys often contain large quantities of

sand and gravel; thus, these valleys often serve as conduits for shallow groundwater supplies.

The location of these shallow aquifers also is an important consideration in the location of wastedisposal sites. The additional information provided by the seismic refraction surveying on depth to

bedrock and the nature of both unconsolidated deposits and the bedrock surface (inferred from

velocity data) will be useful in siting future sand and gravel pits and quarrying operations.

37

Page 50: Seismic reflection and seismic refraction surveying in ...

R6E R7E R8E R9E

Figure 3 Bedrock topography map of study area.Contour interval 50 ft

38

Page 51: Seismic reflection and seismic refraction surveying in ...

References

Dobrin, M. B., 1976, Introduction to geophysical prospecting: McGraw-Hill Book Co., New York,

630 p.

Haeni, F. P., 1986, Application of seismic refraction methods in groundwater modelling studies in

New England: Geophysics, v. 51 , pp. 236-249.

Heiland, C. A., 1968, Geophysical exploration: Hafner Publishing Co., New York, 1013 p.

Nettleton, L. L, 1940, Geophysical prospecting for oil: McGraw-Hill Book Co., Inc.

New York, 444 p.

Pakiser, L. C, and R. A. Black, 1957, Exploring for ancient channels with the refraction

seismograph: Geophysics, v. 22, no. 1, January, pp. 32-47.

Scott, J. H., B. L. Tibbetts, and R. G. Burdick, 1972, Computer analysis of seismic refraction data:

U.S. Bureau of Mines, Rl 759S, 99 p.

Sharma, D. V., 1976, Geophysical methods in geology: Elseivier Publishing Co., 428 p.

Telford, W. M., L. P. Geldart, R. E. Sheriff, and D. A. Keys, 1976, Applied geophysics:

Cambridge University Press, 860 p.

39

Page 52: Seismic reflection and seismic refraction surveying in ...

Appendix A Results of Seismic Refraction Profiling

* * * * * *o o o o o oo o o o o occ cc tr oc tr tr

go g go om CD CD CD CD CO

"- lujOoccxcccrtrcrtrtrcrcEtrcrtr-LU LU

0000^000^^< u- tLa-u-u_u,o_o_a.cLij_CLa_a_u- zzOOOOLlJOOO>>9t^liJUJUJLULUUJ'iJ^JLUliilliLULULlJ(rtrtroccrtr—itrtrtriSiO-'-'-'-i-i-i-i-i-i-i—i-i-i-i-i^-i,ri,ri,ri,ri^.o,ri,«DCir[rQ-Q.C)-Q.O.Q.Q.Q-CLQ.CLO.Q.aD-mrn

a. a.

cc cc cc

O.CLQ.OOUOOOOOOOOIULUWOOOOOOOOOQO^JsJ^CCCCCCCCCCCCCCCCCCCCCCn o_ a.

JJ-JJJ-l-J-J-J-J-JTT-l-l-ldlllllldllllllltCCH

mmmm2cDcDm>->-<SSSS2S2SSSSSSSSiuujSSSmaicDa]CDCDmmmcQm

LU LU UJ UJ LU LUid —I _J _l _J _l _lQ ^ _J _J ^ ^ ^gssssss„j CC CC CC CC CC ccs O o o o o o

lis i4N*-u)Niooona}inr](0(M(0<DnNco(DNOl^SNOCQCDCMlOnNSlONQCDOlCCIffiCMm(DCDC[>(D$(DSNN(f)(DCD<Din :3: IOU(DN r^i^i^r^i^tor^r^r^r^r^h-rvr^

CM ,- CM o m in ^t r^ *t r^ s o r- ,- m c\j o> CMsin

* To CM oID in ^ in in

enIT) 5 o

to01 05

in 8 in s?s CO inajin

CD (0 S^ LUl

CO CO *- inT-iniQiQO)^in^NwmT-5^inin(0'tW(DONnsojeoincOi-inQco<,)'t«0'-^a)05a)^i-wWOO'IlOtDIDONOOfflOOlSOJNOlNOOl'tnNOONt-OINOOlQOOCOfflOWlpajQOt-NSNN(D(D(DNW)ninmS(0(ONSNNNNNNNNSSNNSNIfiiD(D(Oir)ir)(D(Oinin(D(OW

a* o o luI

inoiiQiSttiQffiQQinQoiDosNnoioaiscoaiQ'-iflinnoonT-soiprinni-nQO)<o(Dirtinin(Osffiroo)^owT-SNrtc)^or)(DN(ON(DNNNNN«ia)i-\Fio(Oir>ioininoSNNNNNSSNNCOlDC0CDC0(O(0(OlD(D(Oa)<DIDC0GD(D(Sa)a0(O(DCD0)(O<Da)NNNNN r^^r^r^r*-r*»r«.<0(o<o

Sf:S883 t CM o h-

ssNSNssstoocotoaja) coi^(or^<oa><oi^»~^r^Fiomm^^oooo-^^: cocomm(Df^r^r^CDCOailDOIDCOOaiaiOONNNSNNNNSNNNCDUCOtOCDID

n *!o

o r>c

%a o 11

ooncMooo^^- (\i to n o m^lo^OT-ojoiinNONNON^^oosi-ffi^ojffl^ooN^rtaJtOfliotowniDOiDWsoinr-soiwinaiinflinci ,^ST-eoaiK(»s(ow(0(Din(DnNa)^siO'-(DO(n^fflso)ioinooiD(D070oio(07inrt'-(0(j)inos(oiO'-vNoieo °>

NajmsioosNSn o (O o t

CO CO LO CO (Oco m o r*- to o coin r- to in o in r^.

n .fo n>

o CM ac

u.cU O Oi

ioooooco*-coco^j- n q * s in »s to s ai (*) ^

WOSfflNi-IONS ONffiOOJO^tDO^(b(b(\iiriniriN(d6s

o> o> r*» r-» r*» co

S*~

co ^ *J ^ wri w w w n

^ h- o to r^6 q co m «*eft in *- o wO) w n rt o

o^oooajoio)inm'-'-soQowww(\imif)'t^*'taomo}a)ffif«-<-i-<-cD(DS(onc\iQqcQQ(D(0(M(\jknm^wNwiOfi-rtrtrtoinrjoioioffltDiCfloia^'tcocD

co co * * 3;K h«- O) CD O)CO CO o o oCM CM CO CO CO

P) O T- T- 1- t- ffl

CO CD CO CO CO f- ^O) oi i- -~ r- m a)in m to co co rs. m

ONNMioma>ooinco0(0(OfflOJW(D'-'-N(0 _S0)0)O0)0)O(M(MCB'-l0mmiommcocoto(DNNONOJOJOOOaOIOinNNrvcocftcocDcncncyojcNj-

.. ^oooiooQ'-no(0(om<omco(0(omco(o ^^NsbNNNaiQoco^cooototQipNtDcpaiconncocoinincococoinininininLnincocoioinincotoinininLnLn

zzzzzzzz miu zzzz LULULUiuuLuu zzzzzzzzzz uji^Lu zzzzzzz mmmmiuujuu z Luujmujuicoc/)(n(ncoOTcocn55wcowco5555555<»OTOTcowcocowwco

888888888888888888888888888888888cococococOcoiocococococococoto<0(Ococococococococococococococococo 8888

CO CO CO CO8888888888888888cococococococococomcocotocococo

n

III in III J

CJ III

in in it)

8 8i i _l

en <n X _i< > c> c> enft o l/l S om n O 8 ft"" cm *~ O)

-_i J

..j LU in III _jLU

in in ioUJ

8._! -J

8 Q o 7o in IT) oO r> rO in

CM r- CM < m

xinimiiiiiiiiiii^tiiiiininirA

111 111 ^ HI *» -1 *.O) h- in CM r- LU O•- <M CM «- co in oCJ i- CO »- r- CD

ZZZZZZZZZZZZ— 0>00)0)0)0)0)0)0)C3>nnorocji'ifocortcinni'jo

z z z z z z z z z z zzzzzzzzzzzzzzz z z z z z z

»-t-t-co(ocb<bm(pwminiriiniria> «-»--*--•-^n?5?5n<MScM<Mnn<MCM^cgw<MnnP50'-'-'-'- CMCMncof-'ttininin

i i i • > t•=<<<<<< 2

UJUJUJUJLULUUJUJLUUJLUUJUJUJUJUJLUUJUJLUOOQOQO -n77777^73?^Z^Z2ZZ2ZZZZZZZZZZ £LJJWLULULULULULULUUJLUIJJUJUJOQLUIJJLUIJJUJLUUJLULUUJUJUJWZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

O«-Nr)^ifl(0NC00)O in(ONcoo)0'-(\ipj'tiO<PN ,90»0'-Nc)^in(DN«i©0'-(\in^ina)Nnnn(nn?^^^^^?^? ;TiAininioinir)iniAinin(Offi(0(O(O(D(O<o

t0C0<O(0t0<OC0C0(OtO(OC0C0C0C0COC0COC0(0COCO(O(OCOCOC0CD 00 CO 00 00 CO 00 GO 00 00 00 00 CD 00 00 CO 00 00 CD CO 00 CO 00 00 00 00 00

COcdcOCOtOCO(0(dcOcd(dcO(0<Ocd(Dcd(OCDCD

40

Page 53: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

B ~$ a

JM* ^.

UJUJUJUJUJUJUJUJUJUJLULULLJLlJ—i —l —i i_j_j l i —i_J i —i —i_j

I I I I I I I I I I —1 —I I I

* ^ * * *: _j

i i8y y 5 LU LU Lil LU LU LU LU

55555DC DC DC DC DC

555 555CC DC CC

999555CC DC DC

<<=!=;OOOOOdk=:§c2ggg5§55°§5aB55555555s 9 s g o § § § § ! - 3 5 5 § § § § § § § §ffimai(iia)S:<>>iLiiJuiOO>->->->->>>->-

LU LU LU UJ UJ LU1 1 > —

I

UJ UJ UJ UJ1 1 1 1

UJ UJ Lil LUi t 1 t

_J _J 1 1 J > 1 1 —1 —

1

555 2555555555DC DC CC CC CC CC a: cc cc a: DC CC CC OC

££ 9999 9999 9999

UJ UJ LU UJ UJI I t I t

_J ^ ^ _J J55555LT CC CC CC CC

o o o o o> > > > >

0)N«T-'«tOW'-NOJKOJNrX> lO lO lO "

a)T-ncocD(\JNU70](00)N(\i(o^cDC\ic\ina)C)cDOja9m, mossiotO'-'ioiDO"inininmmmcoiDiomommminioiomtoms

oo)r)(D(\iiDm(flg)(OOiomr05ir)(,)S(0(0(Oin(00)0)SOO)OJ^Oi-ONnWO)0(00)0)iDfflO'-

«^swin»-nw^so)^^NOf,)p)inoioa3(Oso5'-owwojto)'*wtDin(0'tcj'-(Door^^c\JcycNJio^wcnino^cycj^r^r^rN.^c3)(OCNJo^r^r^O)^f^(pina)ooooco*-i-co^u^ininioioioioinu^tn^<ocoin(Dtointnu^ioinv(oco(Dr^(0(D(Dr^^inLn(o<DioiO(0(0(0(o .-*-CM<MO>0000>01*-C>00(D(D(DioiomiD(O(0inmcDin(O(D

<n^fyoinino>oc\if^inooinr50<ooKOJc\jintf)oa3ootncyior)oior5<DOOOQOOooooojc\jw»-oc\jooQO>NNOtONNNcocDNNcooo^ojojnnoicooissoiascoinajNtDNtoioioincDtDtocDinininLninio^(O(O(0<O(OCO(O(OCOCO(D(D(O(O^r^r^^^<O(O(O<DCO(Z}G0r^r^(DCOC0(OCD(D(O<D(DC0C0<O<O(O(OCOC0CO(D(O(O(D(O(O(OtO<O

CO « ==- UJ

a)inr^ioininr^^coKOuir*T-tto)iocnin<Dc\ico(or^coo<ooooc\jcDinhvOj(DOOOOOOOOOcy(Ni<\iooojoooSCONNKSS03SN..(0(O(O(O<O<O(O(O(D(D(O(D(DCD (O (O (O to (O (OCO(D<D(D(DCD<OtDCD(D(D<D<D<D(OtDCDCDCD(DtDCDCbCDCDtb

.r

n yi

c01

>.TOaTlr

O Oi

^ooiwno)0)(00'-in»-NO) (D(J)O'-(D(D0)rtCri

^inininoiBN»-rta3^ininioo^^NOff)'-(OcD^^^Sffl<o(ONin(DO'-'tOftiw«-(,)(0 ,»eDinin

r^ <o t o 0(DOOnO(D'-mO)(D(0(O^S^(,)SCDO)'J(D(\lo)i-wio^irtw^ifi^ON(Din^?5'*3ifiit(Din<ooinoc»(D<,)oo)Oco(DinNs5'j(\i c\jcoc\ic\jmm*Tminmcom*j'co

n to o

o OJc

£ ^ 8a .a T>

a oC

0)(D(OOSiniD^NP)Nco ^ocoiriuicoocbcboi*-CMCOCM*-»-'«-CMC\J

«OWrO)W(DO(DCI)'-(010r)(Or3'trt(\l ©OWOWCOtONOJtOWPJintONt-NO)^

oofflo^o)rO)0)oocoont-noio)insninooo(\iro)wo)^(DinsinwoNOinin^(DW«oin'-NN^NWNWO)HNW»-t-»"t-«t-T-i- »- «- *- »-*- »- CM »- ,-?5CM*-»-*-i-*- CM i- r- *- »- *-

0)0)0)0co co co co *- »- ^~CO CD CO CO m m in

CM(0<OCOCOO)CMCMCMO f-(OSSS(D(DWM(\IN'-'-'- t- * Q *ininin^^NSNSffiN^wingfflnojcpcpNWNOjNNfflfflagJwwwwwsffleooNWNWownngnoo'-roroifioioofflOJNftiNNnnnnnoowr^CMCMcoojCMCMCMCMcocococoooooocoincoSrt coco ^

s (\i a) o m rn- m O) <p r^. inin cm co to co *t*t in *t ^ ^r r>

inmcpcocDCD^t'^-'Ccoininm'Joooooa)ono)DO)0)ininm'-'-'-«-mo)NNWNNinininmmiotouxointoiDtovmiDKxotDin

m ^t o m <ocjitnincocoGO^coco.OfflWOffi^OOONWWCJWN'-tnincocotninininmcoinminmininmmmco

(D(0(D(0r-«-r-OJ(0OI(DQQQO)O)CM'<t'<*CDeO*-<-c03 3 S S n 9cd cd cd in in in

8888888888888888888888minminmmmmmminminininmininmininin 888 8888 888mmmmmmmtnintn 8888 8888inininininininin§ OOOOOOOOOOOoooooooooooininininioiritnLriiritntnm

LUUIUJUJUJLJJ ZZZZZZZZZZZZZ UJUJUJUJUJ Z UJ Z UJUJL1JL1JUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ555555eococowwwcococncncncncn55555w5tt5555555555555^OOOOOQQOQOOOOOOOOOOOOOOOOOOinOOOOOooooooooooooooooooogmoooommcMOooooooococococoococococococococococococOcocococOcOcocdcococOcocOcO

oooooooooooOQmmminmtninminininininininmmmmfOOCDcDCDCDCDCDCDCDCDCDCDCDcDCDcDCDCDCDCD88 oooooooo

5 5 5>I5in lu uj,- in inCO CO CO

j eg5; - —r —i

—i =^ —i—

i —i—

« —t —i —

i

S,JUJL1IJ1S01(00)Z011/1(/1..OLUOOOOinOOOOOOO'-*-*-

lil UJin inw cu

.z z 4-J m in Z

uj i- co intfl K) ^ N

t I I—(/1ZZZZJUJJ

i- S i- N O_ cm in inCD CO — --OJ i- CM CO

inmooinTTt***t 5m cmOd)«DO'-oa)(OONOsioojc\icocO'-c\icoeo(D»-wo)r^co

co j j(/)55o uj a) o m om o m o i^ oCM W O CD

-j5 5uj in o

m cm *- cm co *t

CM

o m o mm m n co

en en en —i,m m o co =J =J

s oj m m Z Ztt w o s o oCM CM »- CD CM CJ

ul5 5 5 5m o cm r^ m§ £

=JWCOCOCnc/)tO-J-JZmmommmcocomWCpQNOJSOOo)^--r-T-»-r)ncD

cocoi i i i i i J . _ i i i p r i5555555^ _f 555555ooinomoo>>Luoomooomr^O)r*0)r-'«-oooa>co*-comoorinoinainsotos'iiD'-tDnCO*-»-»-C\JCM'--(D'«-f^C\JC0CO^CMC0

c/> Fn -^ W CO i

8§888§^^^^-j-jcncncncoaj-jZZZZU)</>omooinc/jmoooooT-comor^or^Qinooinmin^oeooinoin<Dr*(om*-'-*-cooQ

n O n8 ° ?s£ fc ?. CO o o o

5uj^55uj-r5555^^55555^uj555555inm>ooinLUoooo>>moinoo>oooomoocMrvoomcMinoinoQinocMmcMm*-ooino>^-'-om'-coQcO'-cocMO'TCD^CMincor^cMOJcor^^'-r^cDmoco

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzKSSSNKffl©ms(Da)COCpa)CDCOa)CD(pNtDIDCpQQQQSSNNNSSSNSSNKSSSNNSSNNNKKSSoooco<ococococOncoococococortcococococooco^^^^oconcoconcoocoocococo<ococococococon

cMcocMcM<D(D<oinmminma>o)0)0)

<<<<<<G Q Q Q Q Q uj

2 Z Z Z Z Z -UJ UJ LU UJ UJ Lil

OO'-CMn'fiDlOKfflO)CDSSNNKSNNNS

_i i t i i i i i i i i i i i i i i » i t i i i i i r i—

>

—I —I —I —I —i —I —p —I —I —I —I —1 —I I I I I I I I I I I I » I I

< <<<<<<<<<<<<<<<<<<<<<<<<<<<UjujujujujujOujluujujujujujOOOOQOOOOOQQOOOOOQOQOOOOOQO777^77ZZ?ZZZZZZZZZZZZZZZZZZZZZZZZZZZUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ

ID CD S CO O) 8o88SSSS§82^^2^^^^2^ScM8i

COCDCOCOCOCOCOCDCOCDCOCDCDCDCDCDCOCOCOCOCOCDCOCCCDCDCDCC

41

IDCDCOIDvDII'UJlDlDlOlO r,COCDCOGOCOCOCOCOCOCOCO qsiteiNbii *<if^logicalSURVEY LIBRARY

Page 54: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

x x x x x x x I I X I X XIIXI 5fc

3DZ3DDDD b 3 O 3 Z> Z> 3 3 b 3 <

LTLTLTLTLrLrLrLrLTLrLTLrLrLrLraitxaiLrLtLrLrLtLr33333330000000000333330003333300000000000^0000233^000<<<<<<<>>>>>>>>>->-<<<<<>>->-<<<<<>>->->->>->->>>->m>>>>a>mmmLT)ii>Lt>

LU UJ LU LU LU-j^-j-j-i-j*!*:***::*::*:

ISs co co co coN'-wajnanioojtDfoni-^cocM^T-oNOPJOOOlD'NttMaiffllMONCOfflOl'-N'-iOOO)cocococotncococoincocotntninincomcoincom

o in t- coT- O T- 3)co co co in

co^toioiowsm N (V (0 (D W

CO COCO CO

o<D(Dw«oo)g)^o^oino)(00<oo^<D^n^n(DNO)t^fflW'-«io^«0)inN<Diow^Nnsin^inn(\IWO)t-onWNOO'-ffla}Ovt$VON(DNOOSOtDlflNW'-ffl^^NO(DiniO(Offl(OWO'-«-NOOcococoincocococococococoincocoinincocoinincocointncointnincDcoincocococococoinininincoc^

Hi 5 |•> o § luI® a O I

w 13 Eo >

OQpoQOOQO^tinr^cftoooinf^r^cMincMCMinoooooocM^t^tommQOf^omco^J-ocMinini?)inininininininininin<o(Oco<ointnoc»0)00)0)Oi'-ooo5»-'-ocj)0)<0(OCJ>ooa>0'-o>(D(0(0(D<0(0(DID(0(D(I)(D(DOCD(D<fi{010S(OUN<0(0(DSNN(DN' CD (0 CO CO CO§§§88888881010(0SNSNNSN

SQOOOooooco^inr^oocooor^iowfflinuiQQcDQcvjcjO'tQininooN.r^oinocDcoQQQQOOQooooinininiftioininininininin(DiDui<D(Dino>0)roo)0)roSffiOQO)w^OffiO)(fl©

,—

1

n 4-o

o co 2c

*z >>o

a. TJ

a lU

ooooooooo"-H ooddddodd

oooooooooddddddddd

q. nJ

Q o

rjpJT-'ai^NiriNdpioiDeoinmmf-'-'-cocoKcomN.coO

0) in o codojojcbdiriiricbNtin»-ortinift

^ CD (0 co in CM

^ o h. m*-*-mcoo>CNj^coococoeo co f-* co co otosooo^po^NN(pd'-^ricp<»<\i«iaJN(5dT-ftn 1s(\iocD•-(Dno)<-a)Ooon(\i?nii)Mo99(DmNMn(Doa)7Na)(OiA

in *- cm c» co ooNniowi-^(\i(0»-mo»cow(oeo

r^m**comcoo*»oo*-0)0'--r*- t CD CI ^t O CO O)

d co! s o) d co d

sincO'-coO'-cfiooiniofflflOOiOjKajujnwtoocDOWN CO 0) CM CO h-

WP)'tO)inNO'-(,30CONO)fl)(D't(ON(0«OOI(0(OC)N(OmOlOin^^

f~ f~ 01 CO CO r^ CD CO sc.2

co "J *» Ol CO CM r- « *r^ <n o m r<- O co T- c

o0)

o> co T- t co - O) o oo <J> cn o - CM o *

ooooooooo 't O) O (0COO)CO*-C0(QCOCQ_Sgir-rtKi-noSwm co «- in o oj oj o m oj8ffl^QlOlO(ONO<pfflWipinp)NWlfiWO)Oin(»(\J(\INN'-'-'-'-OW^i-'-NffllOtOippfflQNWncJNSN'SffflQbinQQQQin^coojnojin^coininojojoin^inco^^^ooj^cocooi^^^^

www^i-©ci)0)in'*ffln(ooooo)0)(oo)0)OJO)nN'*a)(ow_ ih oi s m softwinfflftsnovQftiDi;

in m in in co co m

ojincococncoocoin^tojojococococo' WOJ'-TfffiffiQ'tinNWffl'-'-'-'-O)(DQ(DNir)5<0SftftW»-i-i-i-mincomcocomcoinminmmmcococococo

888888m m m in in m 8888in m in in

LU LU UJ LU UJ LU LU zzzzzzzzzz LU LU UJ LU z z z z z z z z z z z z LU LU LU LU

55555555:S<nci)c/Swc/5wcncAoSa)5$$55

OOQQQQOQOOOOOOQOQOQQQQOQOQOOQQCJOOOOOOOCDQQOOOCDQOOOOQOOOOCOCOCOCOCOCO<O(O(O(OC0COCOCOCDCOCO(O(OCOCOCOCOCO(D(O(OCOCO(OCOCO(O(DCOCO(O(O(OCO(OCOCOCOCDCOCDCOCD(O<OCOCOC0(O

I

O LU _i ^ S 5. > >in in in in S N N CVa> r- in (M cm en in cmco co CM <D • • «n

_i _i i i

z z -> z z zCM 8 z

8_1z8

20N

L,

20

L,

20

L,

20

* -s _j ^ 5 S 5> in in ino o ino in in III in S N NCO 0) r^ in CM CM 0) inco CO <D CM CO •- »- CM

z z 4 51375 132 102 750

f f

1000SL,2525WL 1950WL 1350WL

_jzooCM

Zo

1o m

_i j . _TJ 5 5 -i' _r _r enKOoZOlffloin in in o g o om» « «i o nioCM CO CO CO CO 0) r-

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzr^r^r^^r-^r^r^r^r^r^r^^r^r^r^r^r^r^r^r^r^r^r^coa>cor^r^r^r^r^cococor^r^cococgcocococor^r^r^f^a)a)coa)coco5onwnowonrtnnoncoononnnnonnrtrtrtnortonnortortortnonrtowoooiinrtonnn

C0C0C0C0C0C0C0C0C0OOOO *. ^oq cm cm en oj en ^ogg^wnNNioiD^con^^^nnnnnnioiO(D(o^nnni-i-'''-«rti\i''-nnonN«N'-t-t-"-NMM<iJNN—i —i —i —i —i —i —i —i —i —i —i i i —i i i i i i _i _) i i i i i _j_j —i —i —i —

i

—i —i —i —i —i — —i —j —i i i i i i i j _j_i _i.j_j_i_j _j_j _j_i_j_j<<<<<<<<<<<<<<<<<<< << <<<<< << <<<<0000000000000000000 . . ,QQLUUJUJDQDQDLULULUQQLU11JUJUJUJUJLUQQQQUJUJUJUJLULJJUJzzzzzzzzzzzzzzzzzzzzjddzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzUJLULULUlULULULUUJUJLUUJLULUlULUUJWLUi=:=:^LULU<<<LUlULULUlU<<<LUUJ<<<<<<f<UJUJUJlU<<<<<<<

coCM CM

inCM

COCM OJ

COCM 88 CO

CMCO ss in

coCO<o

1^CO ss§ ? 955 §§ 1 3 3 o

in inCMin

to ^ inin in m 8 in s CD

in 8 to CD CO IDinCO

CDCD CD

COCD <D

O ^ C\J co in CD

COCO s CO CO

CDIDCO s CD CD

CO COCDCO

COCO

CO CDCO CO

COCO

COCO

COen

CO CO COCO CO CO

(0CO

CO CD CO en COCO W CO CO CO

COCO

CDCO

COCO CD

IDCO

IDCO

CO CO toCO CO CO

CD <Da)

IDCO

CDCO

CD CDCD

CD ID CDCO CO CO 8

IDCD

CDCO

CDCD

CD8

COco

COCO

CDCO

CDCO

CDCD

COCO

IDCD

CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CD CO CO CO CO CO (0 <o CO CO CO <D <D CD CO CD CD ID ID CD CD CD CD CO CD CO ID CO CD CO CD CD ID ID ID ID ID ID

42

Page 55: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

CO COo o o n oCO CO CO CO CO

22?2222

o o o o o o ncc cc IL CC DC CC cc cc3 13< < V

3 3 13< < <

3 3< <

3 3 3Do o o oco eo "J H co co

iiiiiiixt-FD-t-D-l-Ft33333333oooooooococococococococo

22^2222222222o o 5 5 o occ cc cc cc tr cc3 3 O O 3 3

oooooooo(rcccccccccccccc

<<<<<<<<

x r i

x

ix3331 E CCOOOOWLUnOcococoz^^jzz22221122OOOOuuiOOCCCCCCCCQ.O.CCCC3333<<33<<<<zz<<

I I

<Z

Ttr& ff r?

o o n o in in III in in in in Ill in in in in in in 111

z z z z j i 1 i i j i i i i . i -j -Ij j 1 i i i i i -I

22221 s=>rr f?

>rr>rr f? r? j? r?

>rr fr

>rr f? so o 1

J

I > in III in in iii iii in in in in in in iii in III

cc cc II rr n II ii n n n ii a n n n n A n n3 3 I i < < < < < < < < < < < < < <• << < < < z z z z z z z z z z z z z z z

UJ LU LU LU UJ LLI

>>>>>>CC CC CC CC CC CCLU LU UJ LU LU LU0. 0- 0. 0- 0. 0-

f 5 j-

5 S LUs§ s

OJ CO CO *- CO noino^t'-'-eoincocococococococo

NCD'-ffl'tntONN^QKOCVojcuc\iCMCM*-*-*-CM*-CMcotncMcococococococococococo scoooo^i^cncpcn^incpcoojcMcor^cococococococococococors.co CO N N ID

t-T-T-a)Q^©(\io<oiow(pa>cpo^affl^T-i-(\ic\inow<OQQffl^(Dneoo»-ipsSl0O0»O^^^C\J^^(0rt«-^O(0W^O<O'-OQW^^rtn^ON*-CDC0(0in(DCO(f5in(OCOCDCOCOCOCOI?)COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCD cocococococococococococococo

QQN-^coQOOQOC»c»ininQincoocDcocooooogoincMcooininoQrtrtcoos<psNifi(D^9inifiOco(DNtococos©iDtDooNi-«-T-^nt-^^in<oNN<0(DCDt0(D(0<0(0(0(D(Dt0NOC0CD<D(0tDC0(DC0(0SNNNNNNNNSNSSSNNNN 8 88 3S333SS33

a^iOOr^^^COOOOOC»OininincOOCOCOCDOCOOQOCNJOOinCMinOinOQQQ®COO(DOltNNK(DCD9iflinina)SN(DCO(DSlO(Dffl(D(\inO^«-'-r-(\JN7in7nO(07V(0000(0NSCDtD(0(D<D(0(DCO©(OCO(£)CD(OtOtO(DCOlD(0(OtOCONNNNNSNNNNNNNSNNNKSSNNNNNNNNNN

cocor»-OKcocoocM*-iooaicocoooo>rtcooco<\j S O) •- NC\l(O^(O^d^sdlOC0W^^<-O)CVC«)'-5NQ(O(pW^^^(\JQ OCOOnNSOSinNSIDK

ixnnvcdnis^coo^r^ r^ co" co *t

a js-^

Q o

cowO'-oinfflNcoNfflcowNfflipoiin';oooicdtd^^corslffi^rir^oicocoweoojpifflNnaomioioioo'Jrtcot-rtonoov

O * O CO N CD •- © O CO W h* ^saisNN'tncocMiri^siriss^dnnntinioorraooNooNN

Wt- ONOt-Oai c\i .< ^ cm co coSO (D N m N ^

CD CO S S P) t r*» o i-

f-CBCMnconwncowcMNOpTo^i co^cocMOioicbocM

CM j2 "~ *" " *"

irOO(AiT-*-oicoa>in^nso

NN^O(OlOiOcOCOSO)COC\INOStOO)C\IS^CDCDlO'tOCO^«-CO(\IO(000)0'tO)^cOCO'-<t^^CMCDS^^t N ^ CO ^r^ co o n. oo

cb cm o> oi cm

31

> i«3 —«

I

nwnO'-iocooNN^oicoinrjN^eooncocg*-cor^ojcocoincpcNJO>coc5^Tfcpfvi?>(ocoinSCONNr-^CDNQ<-(OC»rtQWWlO^^QncococM^fm^^^^com^^^inm^rcoco^J^r ^ cm n m

in^^NcpNQcon(DQin^c\iN^incoinco<-(OpNCDioNT-^ioNWWvcooQinninSb'-O'-coocowcnco^w'tT-tfoNOO(pcocDNfflw^ioffl^KifiW'-ffl'-i-ininNiooffiNOJV'-cos^n^ioconncDvococoocoNinNinvco^in^cvionnco^iDO)

CD CO CO COCM CO O "* _Scpaocomcocp^oNifi^mminin^coNm

(D^tpT-^0)CDC»CDNOfflCOWifi»-?frOncOCOCO'-C\JinO^C5"(O^rortinmcos^sowinNSNNiooi'-otocpTrcDSi'-OJNcocnocoQcpssinincococDCDcoincDcDcDinin^r/icDrococDui^^^^inininininAin^in

oicooreocoinoiCMcooooii-roT-cOf-^OO'-WCONOOJOr-COrT-OCOOlCON^gw^ffiNcoancggccT-mcpinincD^o

c

zzHJ 222Z2HJ 4J 2zHJ HJ Hi 4J Hj H, HJ H'4J H,l¥4J HjlVH, HJ zz lVHJlVzHi H,lVzzzzzzzzzzzzzzHJlV LV LV

OQQOQQQOOOOCDQOOOOOOQQQOQOOOOOQQOCDOQOQQOOQOOOQOOQOOOOOOCDcococococococococococococococococococococococococococococococococococococococococott

-J -J -1 ID UJ UJUJ uj uj in in inm o Q cm r^ r*.

in co o co o rt

LL) LU _)mowcm in m

UJ _J _lin c/) en

in m

5* LU LU LU

s z 8 8IDn n 8 co

CMCD CDCM OJ

i _J _J_j en < z z zUJn X x ax

2 inCM

CO CM

_J _J _l -1 _l . _

Z =J -I -1 CO CO CO z Z -1 =iO Z CO CO o o o o O CO ZO O lO o in o in m o o oo o in*- Q n n- u5 »- r^CO O CD 0)»- CM CM *-

_i _j -i _iLU LU -1 _l —1 LU LU LU LU UJ —

1

to in LU LU m in lu

p n - 55CM CM CO CO

2 " >-nn i-- - CM CM

co s in o co s c\i

- —

i

_j _i ^-i ^ =J z uj uj 5Z m o o inO (M -- O NO "t 't CO O

uj uj 5 5in o in inCM i- cm r-O t CO o

+LUWUJWWLUWUJUJWUJWUJUJUJLJJIJJIJJIJJWWlIJUJWWCDCONCOCOCOCOCOCOCONNNCDCDCOCOlOCOCOCDCDCDCOCDOiaiOlOlCA

r*. r^ r^ r-CO CO CO CO

z z z z zn- ^- r*. r«* r** h-CO CO O CO CO o

zzzzzzzzzzz zzzzzzzzzzzz zzzzzzzzzSKSSNSNKSSSSSSKcBCOCOCpCOCpCOCIDCpCnCilffifflfflfflfflCBfflCIIfflfflcooocooocooconcococoiococOcococococococortcocococococococort

a a^* <* *r c»CMC\JCM*-CMC\J<OCOCOCOCOCOCJ>Cn

o en o en di o co 0)0)0)0)CM CM CM CM 8

_l-l_J_l_IJJ_IJJjdjjdjJJJjdjJJjlUlUllJlUlUllJUJlU UJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ<<<<<<<<<<<<<<<<<<<<<<<<<oooooooo OOOOOOOOOOOOOOOOOOOOOQQQQQQQOQOQQQQQQQQDQQQQOQ<<<<<<<<uJ<<<<<<<<<<<<<<<<<<<<<ZZZZZZZZZZZZZZZZZZZZZZZZZ^t^CLtrQ.O_CLCLzirO_Q.0-O_Q.Q.Q.0-a.0_CLO.C^UJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJ333D3D3D<DD3DD^33DDDDD33DD3D3D

O^NC0^inC0NC0©O»-WO^inC0NC0fl)Q»-{\|^^^^^t-t-^^^WWWWWNWCXIWWCOCOOwcmcmcmcmcmcmcmcmcmcucmc\jcmcmcm.cmojc\lcmcmcmcm

cococococococococococdcococococococococococococococococococococococococdcococococococococdcoc^COCDCOCOcOCDCDCOCOCDCOcOCDCOCOCOCOCSCDCOcOCOCOCDCOCOCD®cocococdcocococococococococococococococococococBcococo

43

Page 56: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

2 _.m -J eg

u c 2_S

v'6 ?UJ

UJ UJ Ul Ul UJ

> > > > >

CLQ.Q_Q.Q_

UI HI UJ> > >O O O ujcc cc cc -J

1.131.5cc cc cc ir< < < tuOOO-.O 3 D <en en eo z

x 1 x r 1 1bEEEEEujLuuiLuujuJUJUJLULuujiuujujujujoririnnn

Z 0. © tn V> 03

I I I I I

LU IjJ LU UJ LU LUSEk

> > > >CC CC DC CCUl UJ Ul UJ0. a. a.

~

> > > >oc cc cc ccUJLULULULULULULU

<<<<<<<<<ZZZZZZZZZ

>>>>>>>cc cc cc cc cc CC CC

UJ Ul UJ UJQ_ Q_ Q_ Q_< < < <z z z z

222222 >>>>>>>>>>>>>*K«»s;*^£E££Ecctt£ttc!_.Efi.OOOOOOluuiujujluujluujujuiujuiujujCCCCCCCCCCCCCuCLCLCLCLa.D33DOO<<< "<<<<<<zzz

Ul Ul UJ UJ- Q. 0. O. Q.

zzzzzzzz

> >oc ccUl UJa. 0.< <z z

UJ UJQ_ Q.< <z z

_ oc cc_ o o oz z z z

0000tr cc a: cc

9nosffl03n^insoo^s(»sin^(DOi(0(Oiotoons(v^a)fflinN(\i(Dsoois(-.(\i*nNo^fl)ipo)no^w(D(Osa){DWC\iin^iosa)(oin(DNOO)s(Osffis^o.a)(DO)9^v^^NNiosffl(D(oa)NO'-0)(OW(,.©NscBoa)siO(O(O(O(Oinininin(O(OK)(C(O(O(D(O(Dio(oco(O(oco(O(ovin(oco(O(O(oioco(O0(O(O(Dco(OiO(D7

(DN(00)0)inoo.^©NiDa.a)cocDcococoinmincocococococoin cda> toco CO (ocococococococointntocotococococococococococococotototocointococoincotntn

_*w

2 5

5^S| S «

ca « £-

1

inoQinioifliflifioa)coQ^^Q^^ifisininQa)if.wa)OinoininininQQor)^OQQ ooinooinincocooooooCMOJ'-WW'-OOQOOO'-COrs.rs.rv..N_^rs.r»-r»ior*-N.r-.N.(0

ooooininintnoicocDQin^QQinQinm^^^*tooocococo5*t'*3^co9coKKSSNSSNtDSSS CO CO CO ^ ^r"-f-f^f^r-.r"»rN.r-.rN_r^r^rN.rN.rs.

ooinininooocoinoocooooooococoininoooooO'-QOO.D^^coonn'r^ojcycyww'-oojcD'-O'-oo)(Or*co<D(Dr^^^f^f^r^r^rs_rN.Kh'r^r--r^r*.r^(0(D>>>f^-f^f^(D

,—

1

a 4__

n

a to

D c0)

CO 05 CO CO co^^NioajNfflso.'-cDffin CO O) CO CO o oo«a>o(o^ino.ojNto(D«inKcy^inooo(»sos(9gQr.a)ON^^s(DS(D<soiO(5<9^iniOQrt«N(OW(»o«-(DNVNO(p ,;,ON5iKN^©^inooiocoNcDsu.^5(DNir)^(DO^inincDiDffl^Ni-ffl(DcDin^(ONioo)a)ow$ OT

ccm »- --co (OfDooiosmiO'-ojomsaoinwa) co w »t s n ocoo>r-come\_o)co co eo at^tflwdoi'-©oc»r: ^aj©^©ift(fliri^^'ffloo.c\iniriNQWo> 4*a.(Dov-nin(D^oin(DS^(Ort7(onin(o©a)inifi(Dcovw(DinvsT-B(DO-ni_iin(Dina)o^co«-^ >

1

eCD

CMc

a>_CD

anru O O

eomr-eoor^r^co^SCOtO^ONtDT-N

O) o t n 10

O) (0 (D N •-

OOt-(D<-(0N^aif-^NnC)O <f IO IO N CO

NO"t(DOlflK!D(0 NIlOOONH'tOlN

in CM en in o -_ cmR

CM gp-_ m "3" -3- r^

O 03 in rt r^ m in 1 > m ic

co o CM m N an <X) CM CM (0 <n0") B in r^ n CD CM N CD CO <D CO CO r*.

^mr-ooieocomminr-.CMQ'•NCOrt'-NincOlDNCM'-?IOt_)(DCDIOION7«(5cMm«

O'»''-'lt^(0C0S(\)C\JN'-a3cO(ocMC\ir^<o--coa>*-CMco--coco<3)^coo<-s^oo)a_^

o -- co co cm con n ffl co «- mo co c\_ m co enS V O IT) (O ffl

co inCO -<t

CM^Qr-*'*^r».5F--cooQ*-CM*-CMinininintococoinminininmininin

-- S O 05

§ §

OCO'-NWWCOSnncn'tcDcoO'-coeD^fococowa.inininincocoinin

r.oa.cMc\j^if)sa)coNsoJO)-f. o co ^t co mO<0QSO4'fflC0'-(MC\JSQ(DS'-C0nC0CpCDSOOQnSoivS88!QNtt4NQiONTvfQ«"Q^^cDmcocominmcotntntn^'inmmmminmmminm

in m m in in In in

o o o o oO © O Q Qin in in in in

o o o o om in in in m

en s IS.sd_j o Q- El

4J zzzz tV4J z4J zz^4J 4J zzzzzzz41 4J 4J HJ 4J z4JU, HJ 4J 4JLU HJ Hja, 4J HJ HJ H1LU zzzzzzzzzzzzzz3cno.cncn33w3y.cn333c/.c/.cncocflcncj.33333cn3

OOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOOO(0(DCDC0ir.(0(D(D(DCD<£)CO(D(DCD(D(D*D(D(D(DCD(D<D(DU.tDCDCOtD(D(D<D<O(D(0<D<O(D(0C0<O(O<D(O(0(O(0(D(D(0(O<D(0(O

cn "J

JC

|8

UJ Ul

88*- CMco <*>

LUO

o

sCD

CO

sCfl

8CNJ

-J

_iZm

_j

sinCM

3CM

_Jz

_j _j

Z ZO O50WL

1050WL 1425WL

LUin

_lLUinCM

_iLUinCM

_jLUinCM 7 Zm

COin _i

Cflin

_lZ

LUinCMCDCM

Cfl Cfl

88CM CM

CO 7 Z1

III

CM—1

_j Z. r 1

3 3 3CD

_len

_jm

CM

J en rn_Jm j"

r

3

CM

J-J7

—1 —

1"

Oin 8 IT)

enLUin

in Z3

Oin in 8 R eg

ininCM

(fl

8 enLUO

LUin 111

LUin % 8 8

N CT. CM N in a i) n m r- CM c. in in in in in CJ.

ic; 1^ rt *8 cm CvJ "" "" *" CD r^ CM to " * cg r. m *~ CO *" *" CM r. a in CD cm n

_iUJ

-1co

1

LUin

_JLU

s

_lLUOin

—J

in 8_jCT) zm

(M

§ 3in z

_i _j

z z _j

3S

^3

_j in 111 _i

_iZ

CO

Z LUinCM

(I) 0.

R 88 n 8

CM inOJ CM 9 8 CM

s LUin

LUin

LO in ^_m m a)m s CMCDCM CM CM

CMCM _l

- a. tn

-I7

_i7

_iill III _r ^ _j —

T

5 ?CM

in _f _j-1 _i

en _j_j111

r*.

_l—1III z ^ ?

ui 8 8 in 9 CMinCM

LUin

Oin

z °0)

Cflin n q>

8CO m 8

LUin 8 111

LUin

Oin 8S

S2 N a) r) CM * _) c ) co m «CM b lf> 1/1

sCfl

&.N CM r* f** ^,

CM tM » » '- M »- n CD r^ — CM in CM a> CM - in - •- 1- CM

UJ o —1 o o o

in in inCM CM Q rtr" CM

HCM

S rn ?O

in_J

810 in co co o to

33111^3CM S o m*f CO <ti CM

icScnzin in

-.. co cm _

r* 1- CM 1- co CM

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzC^0)C^0)0.ffiCDc0COC)Cn0)0)0}0.(S0.0.QCA0.O>a)QA0)COCDfficQC0cocooc0c0coc0c0coc0c0cooooc0c0(0000coco0c0cocococococ0<ococo

Cfll t- ^ OJ W CVJ m m in cm cm Cm CM CM CMNNNfflcocoiDaioitJioia.'j

CM CMO O) t V IT) ^ 10CM CM CM CM CM CM CM

LU Ul UJ 111 UJO G (_5 O O4<<<*fUJlULiJijjQ_Q.Q-CLQ.Z2ZZQ_Q_.Q_.Q_.I_LQ_.Q_.

UJUJUJUJUJUJUJUJUJUJIUUJUJLULJLJUJUJ LUUJUJUJUJUJUJUJIJJUJUJLIJUJIUUJUJUJUJOOOOOOOOOOOOOOOOG OOOOOOOCDOOOOOOOOOOUJ<<<<<<<<<<<<<<<<<UJliJUJUJUJUJ<<<<<<<<<<<<<<<<<<UIUJUJUJUJ^ZQ-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-ZZZZZZQ-^^^^^^^^^^^^Q-Q-Q-Q-Q-ZZZZZ

3^in<Df^comQ^CMO^in(o^cD050^CMO^incor^coa>Q^CMco^in©rtOoonov^^n7^7^7^ininir.inininifiininino5(D(OcoiD!OtO(0(D(DSNSNssssssco(0CMCMCMWCMCMCMCMCMCMWCNJCMCMCMCMCMCMCMCMCMWCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM

(0(0(OCD(OCD<D(OtO<0(0(0<OCO(0(0(0(D(D<OCD<0(OCO<DCO(D<OCO<OCOCOCOCOCO<D<OCOCO(OCO<0<0

44

Page 57: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

II I _ I1 1 E ? Eb b b 5 3

RASO RA.SO RVILLE RASOIANTO

RA.SO

oc 2 a. cr 9E t3 3 < 3 O 3< < z < z <

zzzzzzzzzz5555555555OOOOOOOOOOzzzzzzzzzz<<<<<<<<<<occcccococcccrcccna:OOOOOOOOOOzzzzzzzzzz

•*•*•*.*

a. a a. a.

LU LU UJ LU

z z z5 5 5o o oE t bz z z< < <DC OC

o oz z

z z z5 5 5o o o

cr cr (£

o o oz z z

zzzzzzzz55555555oooooooozzzzzzzz<<<<<<<<22222222cnocDctrcccrccccOOOOOOOOzzzzzzzz

zzzf EE jE HIttt"5"'"tnzzz ^

5250000000DDD0JccccococcctEtEarocccmmmQ-OOOdD33333_i_i_j<2ZZ<<<<<<<UJUJUJZ

x o § HI

cd^ioco*-o<o**coo>t- _

CD (D lO

O) t O O P3'tS(\l'tO)0)NtlfiN

n N <J (D Ol O) UO) O ^ CO »- CD »-m (O (O m co m co

SCO^CD'tnO^N'-lO'ttDS 3 2

co in co o ^* r-» r*. coio i- w *- q *-CO (0 CO CO CD (O

o m (O O O O) roj o r-* m o o »(£> m m n s n m

^ io » ^OJ CO T- T-co in <o co

oino^wsssnsociopJwinoN'-inooiNtom S83

v2 5

oininoinoocoojr^inooooooooOioininininin^QQininQOOOcpojQOinooQOJOJQOO^QOOpinooSC0^OO^OOT010>OO^OOO^^in90}0)q)0}a)fflCT>a>0)OOO^^^Oa(BsNSNSCOOCDNNNSNSa)(OCOa}<D(OtDa)COCD(D(OCDNNNNNNStONNNSSSSa30)03NNSCDNSNN

o in m oj m ojco q> *- o o oto ib s s s s

io io io in m r- io0)010)CO CO CO

ommooooooQ^i-inooojTrinooooococooino0)000»-*-«-*-COOq)OJ*-^-OOQh*QOJOJOJO'-OJT-CO(DNNSNNSN r*. r««. r-. r«. r^ SNNOJSSNN

--co ^ (M <o ** ^ r- © io co cm oo ^- m *- *-

cocn^inNffibdaoicooiQaJ^io^nKcoNrt^cdco

1^ t CD co r- f^ CO o in m CD CD

CDCO

COCD

O » io n nt- CO «- N CO 0)

>r> coCD r^ co cm

r- «- fVCD

COinCD ?s

<- * N (D

CO N lO P) i- COO <* OJ O O f-

CD o n oin 8 CD in

Nwncp^Qioinwco^copjiniocoQt-cp AC0®OOO05O0J0JOO0JTf0JC)0)(0OO w

388Sm ojm*-h-coo)coococD --inrtOiniri^cpoNW(podNiocbcocb^30)cogr.coot-bcDsCO(MC\JeOOisiONn'-NCOP)(0(MCOCO^f-T-^^^0'-0)OCO

7> w a

oooiON^s^^^cjicowswT-NonioNOJ'-pj^flonaj'-NnO'-najcona'-cocrip)^coddocri6cdddcdoiNfflNric6docdcdcosc»3d000000)001** n. oj o ** r*

N W 00 ^ d

COCOWO)OOJW^»-tONW(OtO)tO^COwsdoiwcoN<»ai«D, dfflNOioi^ : 8)d*:

rsgs»-'-p)oo)0)Nsso)c»0)'tcM(nNOooiniDNscocooosNscocnaiiDococMco ,cococp^r^cocortoiojcococor^ininincoooQcoojO)w^^onnioniomrtooioocoNNNCMiflcDcO'-ooQtninojojo)0)*-oiwoinrtoooojfljcDW

oommcocococoos'-'-onocoswsojcncof'-ClCMCOOrtSlONSSffldJOICpiOlD'-CO•-NCijwwininQwcv't^cDcocoinocoinw'tN't^innonN'tcoiocotciD^moiinm

^ t t m(MOCDiomococo^*p)on'-iniO'-in^c\oNn(\iioo)0)NT-NO)^Nioir)T-ocooooo)'-rrr(0(OinQcoa)<rP)rtO-si-6i»n(\jinoojwnonc5C3)0)0(3)'-coN5c\ioNO)0)'-i-a)0)c\icoo)^oco^(\iconNftainininincococosNNcococoiocococotncDincoNioincoinincocDcocoinincocDOciDinininininininv

inino)insN(MCQin<}cocoW03»-NO)i-COCPOC\ICOCOP)nr)0>CJ)CDNOO) ,c^^oioiojmm*-0)co

§888in in m m m in m in m in in 3) in in » in

z4J zzHJ HJ zzzzzzzHJ H'4J zzzHJ HJ HJ Hi HJ HJ HJ ^HJ HJ HJLJHH1LV LV4JLVzzzHi 4J zzzHJ HJLVHJ HJ 4JL4J zzzz

OOQC5QQ00Q0Q000OQOQQ00Q0Q0Q0000Q0Q000QQ0QQ0QOQQQ0OQQ0OQ0ininininininininininininininooooooininininininininininininininininininininCOCOCOCOCDCOCOCOC0COC0C0COCO<OOnnOCOC0COCO<OCOCOCOCOCOCOCOCOCOCOCOCO

I

S z5z

5 5 5

_ 5m m<j r* c*J N.CO O *t N88

liii

5 5 co too p o -CO CM CM

—' —J —

'

1 I —I—J —J —J ^

cococo 77ti)5 JJ5g§8^88§llilwc\jog°;:cxiSjojcuogd d d l _l d -I -I -I -I555-iluuj5zzzzOinoLUmooomooCO (fl O) S •- N CM- cm n » •• •- •-

.-0)0)*- r^ coCM r- (N

> 4 > J J U) J5liis§8|oioiohjHSJSCMCMCMCMjcJS.JP

=J z z z z z5 5§8zoii-c6co*g>e>CMCM-,comcpg>cng)d)0)g)cpco(ftcpCMCMCMOCMCMCMCMCMCMCMCMCMCM—r _r -J —r _i _j

-_r _r _r _j _r _COCOC0C0>dS-JCOC0LU-JLULULULULULUUJUJLUUJ-SSQCOOOQlllpOOOOOOQO -

'-rtN^SCDN'tONnqiDNOIDfl88

o * S

> -J J5 co z8888S£

^555 5

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzcpcOCQSSSSNNNSSNSSNCIiaiChOSSSNSNNNNDQfflfflQQfflSSQfficOCOQCOQQQQfflfflCDQCDCOCOrtrtrtooooofocooocooooonrtrtcooc^ocooooowcocoocococoooco

<ocoinin^»^mmmininmoroo*-*r^^^'»^^min cm cm co g m m m iniomtuuwmivdoio) o>cno)0>nnnonnniocBncvMCM^^nnnciit-^e^t-T--LU LU LU LU LU LU LUooooooo

. OlO-OlOlOlQ-H

LU LUo o

LU LU UJ UJ < <LU LU LU UJ UJ LU LUo a a o o o oLU<<<LU<<<<UJUJ<,,,,,,,, UJWUJUJ,, .......<<<<<<<.. WLUUJUJ<<LULUUJ<<<LU<<<<ZZ!iJJJJjjJjjjjjjZZZ2JjJdjjJjJ a 'LlllllL JjZZZZll-ll-ZZZl"-ll-Z«-ll-ll-ll

55o55555555555555555555555555ooqoooq55$$5Sqq3$Sooo^^Q2!0$t5®Q^ w "5^<P s<oc»o ,-wo^iocos<DO)P'-Nc,)^in?J????? a *2 00 92QoQQQ'-'-'-'-'-'-'-'-'-»-0JfAl«PJN«ojojojojojojojojojtortooortoononoooooorjnooorjcortr)

I^COO)Q'-OJC5'*OJOJOJQQQCOO o rt <*)

(OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC0COCOCOCOCOCOCOCOCOCOC0COCOCOCOCOCOCOCOCOCO

45

Page 58: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

£ co co. co oo co13 —I I —J 1 —

i

< LU UJ UJ LU LU

• * «

i ^ X i rx xxxrxxxrOUJUJOOOHOOHHOOOOOOOOZ^ZBMJZZJJBllOZZZ

X IE fc

o o2 2

I x x I I IE E E E E E333333O O Q O O Oco co co co co commoooggoor oc oc a: £ <r3 3 3 3 3 3<<<<<<

-1 CM.. f

1>

C ^ CO

'o?mo §8-0)

at

en

(ft

aElev.

UJ

o>(5'-0)0)Nw^oo)'-a)0'-'to)'»^'t©inno)n'tipioinoo)'-'tg)cofflQ(0'-'-'-N©r)w©OT-sio0)0\N»co(»s<o^O)0)a)NtD(\iT-(flinoo)OOO^fl)NOiBtoo)soiP}'-(5in(oa)(otO)'-N(»(o^Nio(or^(ocovu^Kco(D<o(or^(0(oincocoiniO(Oinco(Ococoio(ocoin^(nin(0(Dco(0(DCD(0<D(0(or^co(or^r^cou)

ocgoi^rvocncoo co cm co co or^tocomincominioiomtDcoiococomio

(D^NtD'-miDmtD'-^stomO'-miDiON'iffl'-Trm^nr.»-WO)NNO)0)'-'-OWNSIflmm0100inO)CDOCO{OW'-^NlOlO (Ott)

J CMCOi >

III

on-

m

g.

8QQOQQQQQOOOOQOOinOOOSOIDOCOwCOCDCDCDflOCOCOCOCONSSSIC

'-r^OO'^'OO'^WQQQQOOOOr^OQQQQQQQOQQ^QQmiOOJCXJCa^^^O^CJOOOO^r^COr^OOOOOOOOOOOOOJOOlcOcONNNSSSNNNNNSN(D(fl(D(DSS 00 CD CD CO CD

o> O O CO ?§ ooooooooooinoor-r^oC0<OtDa3(OCDffl©NSNN(O(0SN

oooocooooooors.r».rs.r».ojcooooooSNSNSSNNSNN(D(D(D(ONNtOa)(D(Dffloooonooommoooooioocncoco0)a)(S(D(OSN<OID(D

co £

Q. *0

Q o

co in o ^ CO 0> ^ O 0> *-

fs.a)*-»-coco(Oh.<Mg>*-KtotDinmmr^^t-cno)«-»-*-»- CM »- OJ OJ *-

«'-Q$(flO)lO(\IN'-t-(p^O)(00'-0)(0'-ONOr?0>0)QW^NCOWOO)(\IO)ina)0)0)oifiaffliON'-o^O'-aSotoeowoowtnvviniO'-^inocowo m s o i- «d t- 6

- O CO l>. ^ O) CO ^ CO

*- «- OJ - *-*-oj*-'-*-ojoj*-oj *- *-

So)tg)in^^teotpfflninoo)mw5P)o--n(Dioa)Wf•-wwoommn^^iD^ifi'-O'-^o «) ,. ^ K N ^ n*- " OJ *- T"

* 1a J!co «-

o

cos in in r^ CO 0> en

X)ca

o) o n r- r- CM

o ** - o ^t ^ oO v CO N 6 (V d

*- *- OJ *-

O CJ> CM CO Ol ^ OTf b r^ cb cvi pi coi- OJ *- *- OJ *-

niDOt-OJiOtO'-NIJlNflUDOrji-'-IDacoowaJribopJoitodo^Ndo^ wosoifflmifliniDsoo^'JoiooO'-coo)ift©OONC0(0KNNNQfli(00)0iai»-ri

,- OJ'- _ to _ _ ^ _ _

OO^ffli-r^fflrlOOIONMDlDOIOaJO^^nOOONtDOCO hi to ^ b

(OWNrtNNNinwWNW^(\l't©0)0)NON'J ,*N'-f^^mftojojcy^o)0)U?inin©^coc3)C3)Q'-co^9r*.co

r^ co co oj oi go mOJ CO CO 5 ^ ^ CD^ (0 CO

"

1 O S lO P)

OJ If) CO OJ^r cb cb co ^CO O O CO CO

— CO * OJ CO COn in o w s nco p co o m in«- ? ^ co co CO

s

S CO

3ID

LO

sin

CMCOin

CMCOin

c\j

s

enogCD5

ooin

8in

8 § 8in S 8m 8

in

ooin

'-tf)m^O(OOinmN'-(\j(0(0''OO^oo(pit)msinonoort(vo)0)0)Nksmmos(,j(iiip(j)0)'-a)o)'-w(DCDoomanwN(nT-'-^'-w^'-womo(o©iniD^nnoN(\iifinooN'iv«ww0'-'-i-iON^inifiO)(\j»-Nso)fflOjina)QQioo)N»-N(\i(\)Oinsa)coa3ininiDT-o)Qsoowcno)NvO(Din^(DiAininincD(oininin<DCD(DinvOo(D(Dinintt}ininNs^inoin^vin<ooin^(oii>in<o(D

o o o o o o- o o o o omininininininininmminininmtn 8888m m m m

LUUJUJLUUJUJUJUJUJ UJLULULUUJUJUJUJUJUJUJUJCo3333333333333333333«33co33co33co33co33co3coco333333333333co333

£ im P^i inoooooooooooooou^ininininininininininouoinKinu^Sini^_j*obt£l concocoocoO(Onr)onroncoco<ococo^cocococococo^coco(Dcococo(0<ocDcoco<ocococoocococnofOcortconcococo

-J —i—

i CO —I CO —

I

in co S to ^

5 co z =|< O O 2X m o in

g N 01 CM

in cm*~

i- in *- co co - OJ tf) f~ *-S8

_ _i w _r _f N _T N r _r

.

co 3 3 co 3 3 J 3 3 -j 3oinotnojinboojoQ«nio(000)ov*mo(\JO<MW«-«-NWWO)P)

co 3 38S8

^ u a. uj ^ n nZ o o m Z 5 2ri m in r\j <-> UJ y

Z o m m ^C"j o oj Oi £

_ co in oj _m oj o co o>O) _C0 .CO

LU m LU Q UJo oj in o min CO CM CD NN •- N C\J (O

m oj «- co

* 5 3> m mo co CMin •- m* r- Ol

3 -j ui§co me aso©

.- CO r-

CM .I

ilOJ OJco •-

_ 5§m m oco co OJ

oj oj cm m

LU LU UJ LU LU LU© N N N S N

z z z z z zzzzzzzzzLULULUUJUJLULULUUJUJLULULULULULU©©©SKSNttANNNNSO©zzzzzzzzzzzzzzzzzzzzzzz

^ m m © n s oo(DsdcnafflrtnfflO)fflQfflwO©fflcB^^^^ininindpp^^^ £ 2 S£i-^t-^^i-^no--'-'-t-i-oiW'-'-wNW«NNWr)«wNww(\i(\i'-ort6i»-ffl(or)rtrt

LU LU UJ UJo o o o

LU LU LU UJ LU UJ Q , . UJ LU UJZ Z "^

ujujujujujujmmujmLummmm<<<<Luuj<<<<<LULU<<LuujmmLuujujLummujuJUjmmujmmLuO , .ujujujzzzzzzzzzzzzzzz^^^p-zz^^^^^zzt^^zzzzzzzzzzzzzzzzzzzzd^zzz

Si-wntmcDsaicDO'-winininininininiTiincococDCOCOCOCOCOCOCOCOfOCOCOCOCO

^incors.cocnO'-ojco^tintOr^cocTicD'-ojco(fl(D8(P(D©NSNNSSSSSN2SS3COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOm(flNeoo)Q»-CMn^iO(psffl

fOCOCOCOCOcOCOCOCOfOCOCOCO

(0(OCO©(0©©©©(D©©©©©©©©©©©©(0©(0(D©©©©©©©©©©©©©00(D©©©©©©©©(D©©©©©

46

Page 59: Seismic reflection and seismic refraction surveying in ...

Appendix A continued |

illo o oco co en

2 5 c?< < <UJ UJ Uj

~~ z

I I

o oz z

55o ocr cr

< <

S35 ^< LU(3 Q.D <co z

155LU O O0. cc cr _<DDU1z < < CO

IIIIIIIIIIFl-HHI-EHttEQQOOOOOOOOcocococococococozz

< <asz z

5555555555oooooooooocccccrcrcrcrircrcca:

T T

uiQ.<Z«

i i XXX I I I Th-> ^ix

UJ>

UJ>

UJ> fc,^ •=; "=; feci >

LU>

o n O O "J UJ UJ <) a <) O O o o o o o III III in UJ UJ O U u (J

CO Cfl CO Z j55551O O O O UJ

_J

>_j

>CC

CL

(3

CC

DC(3

CC<

LL

(3

CC<

CO CO CO CO CO CO CO

5555555Q O O O O O O

< <as

CL

ICOCL

PSHIR PSHIR PSHIR PSHIR 5o5o

LL

occ<

aaor<< <

cr rr CC CC 0. n n ri (') ri cc cr cc cr cr cr cr z z > > > > > (I. (I (') ffl z zi ) D Z> < < < ) ) ) D 3 3 o 3 d o UJ UJ < < < < < ) > ) > UJ UJ

< < < < z ^ ^ CO CO CO < < < < < < < o o X X t I I < < CO CO CD (3

& 2 2 £•I I SI

'tnirtiiOOOio^NOjiOrtoojKfflsfflaiio^'-^nooQOcosioooownincoincoininininintnininincocoinininincocococou^coininininincocoininco

PQQQIflQN^MiOiOr-gni^riniotoioioiommio

S<DCM^*-cocMr^insNsmmmiTitoco

NffllpOliOOJ^iOQ(OiniFicom^mir)^oi n or^ co coin m cd

cocM*~incoo)Ooa>cor:cococominminincococo

cd ai cn coo> CO (O sin in m in

CO CO h* 0) 't 1^ incoc\jc\jc\jcjcoa>0)foa>Scpo>incoo*-cor*.^T-inin(OlO(DNa3NNNoj g ^ ffl sCO ^ tO ^ I*"m in m m to

inr^inajtooQTtinooooQO'^r^mocycjwojQQQOOOinooo(D(Dsm^(OOnOI'-rT-0(B(D(\IN(\lOOO)0)0)000)fl)S'-0'-'-(0iDlDlDNSNNNH)NNNNNNCD(DlOSN(DtO(DNNlDtDtDNNNNtDO Q CI S QCO ^ OJ O) OCD CD CD CD f*.

88 oooocomooinininmm0)0)«<<OT-i-i-OtMNOJ(D<DSSa>a)0)0)0»NSNNNS

r^inin<Doooooooooooa)cDffl^Qc\jQOQOOOOOOOOQQOOTOJC\ja)^oooooorN.tf)oooinifi»nioojNN$C(oooO'-'-wo(D(DONWOoocn(JO(\io)0)SrrrrSa5i»naaao)000)(a(DIDIDNNNNSSNNNSNN(Da)<DNSN(D(DNSa)(OtDSNSN(D(D©lO(D<0(0(ONSNNODtDO)©0)SSSNSN

o ^- •-'tooN'-NOONmsiP'-ninoiO'-iDN'-•^ — oi^O'Tcoon'-*'-oJw^coo)(Dcom(Mmow

in in cm co ^ co o co m^(Dr^'-h-r^f^ojWCflNWOD^^IOOONN^ncOWlOOl'-eOtOCfiOlNCON'tOJnNO ,'n^a^^oa3Sfl)W(Dna)(D^^c\iONir)iiO'-(Oif)a)NO)co(oa)(D OT

-*-•- »- ,-,-,-.- CM CM *- ,-,-,-_*-,_,_ t.

a) tn *cm oj m ai co a> m co m co co

CMinO)CMOCMOCD CO CO CM Oin h- co *-

o <\j a._ c

*™ *~

JZ S. ° N CO CM5 -a CO m "t

A CM CM *- CM i- CM

<MP)(DONO)(DCOONCM(MCO(DO)(0'-a)'-IOWNwc\idc6(DpwiOui(dwoJ6rirt^wd^s(oiri,-,-,- •- CM »- *- CM *- «- ,-,-,-,-,-,-cM«-*-

"» CO <* CD OO) rt rt *t O

<-0)C)(gNinin5rT-(vNQ^a}o}a]Dii300(D(D(oa)(0(Oc\iOQQsfflN(\ic\i(0(oa)co(nai<-S_fficpno6^inc»ocbcococoeocococoi-'-cococDco ojpjnrjNNOOs88333333$CM CM *- wcd cn cn cn1^ 1^ CO COCO CO CO CO

NT-(omi-^mir)Nir)coa)N^p^wo)(D(D(D(D(D^tcnocncncncDcocncD »- *- co*~cMt^incOcococococoSff)K*-r^r^c7>o>cDr«*inmoh-.0)0)^ror*."mmmmmmincommmcoininr<.co~

m co co *- o^mmm^-'tN.i^O'-r-K'-h.f^cococDOio> 5* ^ co *-

intnminincocoinin^CAJh-COCOCdCDinincOCMQQQCMCOCOCOCOCO

cDincocococococDintnmincococococomcoc0cocoinrs.r^mm

8888888888888mmminmminininmmtntn 88888888888m m m m m tn888888 888 888

in in in in in mo o o o o o oo o o o o o oin in m in m in in

zzzzzzzz4J HJ 2zzzzHJ zzzzzzzzzzzzHJ zH) HJ zzzz lV4JL 1

J Hl z2HJ HJ HJ HJ HJ HJ zHJ zH1 HJ z2

OQQQOOOQOOOOQCPOOOQOQQOOQOQOQQOQQOQQOOOQQQinininooooooininininininininininininininooinu^ininininininin(D(O(Dnnn(0nr)C0(O(D(D(O(O(D(D(D(D(O(Da}(Dn(n(O(D(D(DQ}(D(D(O(O(DCD(D(OCO(O(0 CO CO CO CO CO CD

n

ll

in 0)

_r_i i_I_I_i^^_i_i5-

l (/)-ILJJUJUJUj5$C/)UJ_ininoSoocMOoininooCO'-CO'-CMCM'-t-CMCMCMCMCM

UJ UJ > J8 m > lus o into *- in CM

CO 0) CO (7)

-J UJ 2LL) lO Q—

r^ inCM CO

22222ZZZZZ2222222ZZZZZZZZZZZZZZZZ2222222222222222222222IS030a)C&CQCOO)ffiffiCOfflO}0)0)a}COCONSSNNO)a)NNfflCQO^rtcOooconnococococococoncococococoococooocococococo

CDCpa^CpCDCDCDcpcOCOCECDCOCDCDcOC^coco to to co co tocotoiococoiotocD'cocDScococo

47

Page 60: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

i x x i r xtrirccccD>>>>>>>3OOOOOOOOOOOOOZZZZOJIIIIIIIIIffl

a: 2L. ~«. ^ OzzzzinLiZnimmZiiritiiroooooooii

OOOG<zz<oujLijujujc3<<<<<cococococococo<

z-J-jw zzzzmiiiriiiiii<<<<$>>J<zzzz<4$JS$ (5(:

!i:!° o (:!a>>^gc££cfi.£g£g->cncd(r(rcC[ra:a:(ro:a:ccCDCuQjOujujOLU3353 c'JOOOOO<<<<<<<zzzziinczBiBozmitiirooooooo

rFI Ii- y-

> D 3QCO to CO

?ff 58 9 9cr cc_)<3 3< <

I X

z z

IIIIIIIIFEeEEEEfc33D3DD3D a. It

cocococococococo^^-!lt222lt£SS ££„_OOOOOOOOuumuiOOccDcococDCocDCDca-a_a_o_cco:<<<<<<<<ZZZ^

I I I I I•- I- I- fc fcD33ICCo o o o oCO CO CO

o o yco co H

gSt?553<SS2gc1c1c1SiuJQOCJQJGJOOOOOOO— CC X DC CC DC

<<OC3C3<<<<<OOuiDC DC 0-D D << < Z

(f)

1>r 2> >

V O LU

ot5

oi

SiCD

m "fO e. UJ

50)fflOtoo)S'-cofsioo)N(D'rO'-0'too)st®'-i')O^Qt (DO'snino)mo)N(00)pja)00)sina)tDinNS(pma>s^i-Niofflt-p^o)(fliONr)'-^nO'-i9Q7P)0)^u)v9in(ONQWO)'-0)a)Qrtoo)0)n'-N<\ioo)a)in'-ioN(0(0<DN(D(D(D(D9s(D(D(DNioio(D(D(0(0(Oin(0(D(Dioinifliflinininin(0(00(Din^3(D(oinininNV

KtCOCOr^tMOCOoocoh-h^r^cncQ*-co to to co to co

OCD(0$'-C»NO)'-^0(,Jt7NWaitD^OlON<ON(OP)a)0)Si-6S(D^Nioa)oW'-^W'-'-cor-inQso)Q(o^o)(\j(Oinm(0(0(0(Dnm(DU)(D(c<DiDii)(0(D(omiooifliOiO(D in m to m co

f* t- O Q «-an a> g inotooSf'ti-cDOinTto)0)(0CMCOCiCOOOOJCOCMf^OincOOssm<D(Dir)a)iflO(DCO CO CD lO lO

. t

•0 CO

Cua 5 >

4)

(1) cu>o-Q

UJCu nCO

T-c >

Cu

UJCO m t

iOOPLOQiQcococo*-**ocMcopoa)oooooop'-cO'-T-a>eocoppooopcMpppppQLOOQPr*-qicoQr^r^or^r^r*-r^r-r^rvr^rvcoa)®f^r>*i^f^r^r^coi^^r^?^r^r^r^cDcD<D(D<DCO<D<Dr^-r^r^r^r^r-r^r^r^r^r«*r^r^r^r^r^r^i^<Dcor^

LOQOiooLQcoinrv^coLQo>a)LoopppoooopococococoeocooooLOOoc\i00ooooioopor^cvjc\ipr^rvLOr^r^r^r^r^Ki^^r*a>©cooor^f^h*r^r^<Dr^r^r^r^r*r«.K<ocD(DCD(DCDCD<Dr^r^^r^r^rN.r^r^r*r<.Kr^r^rvr^r*r^r^(D(orv

o —- (DQt-^nioiONinNNuiniDttDgfflfflfpO'-n•=„« N4'»M«ini-«ioo«io(»Beo«<oo«o- =f a

CD CD ID CD

-<•»•-•-

a> en i- *- O CM CO co i-

m o lo CD 1CD 2 5

roCD

O) t- co r^t- co to r*» O) i*- o06(b'-(DW(\JPJN'-lftW(DWO^0)ON(bP)SQ^NNCOCONlO(0'-nCytDCO^W'*(0'-'-f)(DO)C»W»-cmcm*-*-*-*-co*-*-*- *-

tMO'-coocnoio(O N r f^ If) ^

N- CM zO) «-

COCI O 0>*~ a

ctf> CM

CO

CO COO) CO 8

LU

o <o

o ~ I2 111ft-

Offl>lo™eN<iiii«"tN"i«^6^NOisd^(cis^6

O CO CO LO O Od c\i ^ cb d ^t- CM »- CM «-

O O) O) o ^ © to

co p id d cd t^ cb

COOlCOlOOlCOOCO^OLOf^CMfCNICMO'ttDCOCMCOwoNd^wddfloiwcDocbNOiddwoiriNy- r- I- r- «- t-0»- -" « r

MT)SN»-COOO^CDa)P}WOO N (M S O 10 •-

CD - t O) ^ CD CM 1 CD T CD

O! m CO o lO CO O CO O) CO CD

i-QQ'to^3fflWN(,)^'*«tir)0)tNoo)aieoeooo(D(ON(0(omifiino)mNOOOO'-'-'-mcowvsseoS^r^ascMT-^pcocMcpcpQinQCMco^coin^inininincoo

3co O) O) mco e *~ *~

CM "<f CO *- ^

oioawNnfflCB^orj'tcomificoQajswcowwNnomifi'-coN'-O)?^mo)CMcocqQiD'Tm*-moa)r^oj*-inm'~ininO)COCO(OCO~~§93

lOcocDomininmiommtoC\J CM CO COmmiooj'-wiDifl— ^ as 55

88888888inininmininmin 888in m in

co^cocococoa)0)0)coor^coi-^-incpcMQCDincpcD0)(pinininmc\iwo<ONinc7)wwnO)'-^c\iw^co(oincocococoininincoinc0in33inincocoin9cMin

s * j

UJ LU LU LU LU lil LU zzzzzzzzzzzzzz z zw(/)w5$5J?$$555555(n$w(/)cot/)m(/i(oww«

InlnLoinininininoinoOOooooLnCOCDCD<D(0(0(OCOCOCOOOOOOOcOCD(OCD(OCOCO(D(OCOCO(OCOCOCOCOCOCOCO(D(OCOCOCOCD©

3 5 5LO LO LOCM CM CM

co uj ujQ o o

z s 8 _.Q LO CD CO f* LO LOlO LO *- CO CM CO CD

q lo o5 3

"I

^ -1 2Z </) min in cmCM cm in

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzO)O)Cn&&&O)<00^QQQQQ&a)&O>r^C0C0COC0C0CO<D

'O (D ID (D N N N cp cocococococbcdroo)*. ocoooco^cocococococoincbcpCMCO^^^^^^i-^^^CMCMCNJCMCM^CMCOOJCOCOCMCOCOCO CM CM CM CM «- *-

« •NSCOH)'-dNOipiD»»«ipiD»-i-i-«-C\ICM.-eMCMCMCMCMCOCM>-

LU uj uj uj uj uj uj

O O (3 O O O (3<<<<<<<LUUJUJia.HO.Q.1777j jjjjUILIIUIUJlUlU UJ< <<<<oooooo o

ujujujujujujujOujujujujujujujujujujujujujujujOOQO<<<<<<ujujujujujujujujljjuj<zzzzzzzzzzzzzzzzzzzzzzzzzzz^^^^^^zzzzzzzzzz^

'-CMCO^tLOCOr^tDCT)0*-CM<O^LOCOrvcDCT>P'-CVJCO^-lOCO"IDgiDgcDtOCOtONNNNNNNSNS

CD CO CO CO CD CDCD CO CO CO CO CO

CO CD CD CD CDCD CO CO CO CO

COCOCOCOCDCOCOCDCDCOCOCOCOCOCOCOCOCDCOCOCOCO(OCOCOC0C0COCOCOCOCOC0COCOC0COCOCDCOCOCO(0COCOCOCOCOCOCOCOCOCOCOC0

48

Page 61: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

If lj|

III?>iT3 0)

£ Uj|

UJ 111 Hi UJ

ssssHI UJ UJ UJO. CL CL CL

< < < <z z z z

CO (Or* cm _mcoincotntncDmincoco

< O_ O cc ._

3 3 3 3 3< < CO < <

o o o o_ CC H CC H3 3 D 3 D< < < < <

, i])c]o)oa)rn<-oo)coi07^7(DOjin(oinK)rau)(DO)i-co(\im(0(D(C(D(Din(D(0(D(DID(0(0N(DS<DKNNN(O(DIO(D(0(D(D(D(DID(0(0(DlO(Dinin(Din(D(D

(\IONW^O)0)IDO^O)NNO^WnOfflQ>^^©WWQ©(5fflNnin(0(D(Dffl©ffl^NSO)inC\l(0©^^N(pT-(,)S'-t0)S'-^0)^in(\iS7^oortoiDo5sftioos(oinffl©rto)^rioeO'-OTN^^in(oooinininw«po7(Dinin

B CO .1

IfM» O » UJI

s-§-J —

I

</) eg E- lul

ino^oooooooooin^ooooocpQcocMco^coincoQQQinQ»-CMO^CMinininu3COCMCMQOOCOCOOcO^^CMCM^*-OQQOQOC»C»NNNSNNNStDlDSNOlSNNNNN&OCDCDCDCCDCOCDCDCOCDCDNSoj'-'-miooooooomQoooQQinQ»-fflNmiONNNNSSCOffiS(pNO)0)lt)0)COCDCOCOCOtOCOCOCOCOCOCOCOCOtOtOtOtOCOCO

^0«)OOOQOQOOQU^O)OQQQQQ(pO)©(\J^OJ©lOCyQ©Q^Q<O^Q(DinO)0NSSNNNN(D(5(DSN0)NSNNSNt0C0a)lO(Oa)C0C0a<D(0NSNNNa)(D(O(O(O(D

oooooioooincjomooSSNSNeO*NK(DO)<DO)fttOCOtOtOCOCOCOtOtOtOCOCOCOCO

o ~

f Ism e

O tt)

o to cm to r- mcMCDininocMr^r--iro^^Kpooov©^Sa)in'-'-rtrt(OininiSin(D'-NOO)'-fflins(Dior)o

CO ^ CO y- h- CO O)

rvocotomor^r^coco co o o

o in o o o o m r^ O CM » a> CD CO

o8 o o o o o

01O 8 OJ

CDCM o in n

o o o o o o UD <t o m ,_ n O)

o o o o o o o CDC\J

o a>CM

CMO

CDCD

a9

<D(0'-'»m'-^WNON^ir)'to^^in(D(0(»^t\iN(omi-0(Dwa)0'-©W'-«'-mor^c\iT-cMCMOco(Dmo) o)(oosa)Na)N(Do)U)sio«-isa>NO)a)o

£ 5. 8 N(MOICD(MC\IN'-S0l)U)CO(OO)O)ai<tin(Da)CM

Dep Of

IE

endCDCDi-CDONCOCOACIACDOlNNinaiNOlOlCI)

CM .- — .- .- *-

CO CM CO CO 01

O)

o dCO o

eo*-*-coc\io>cococOTtr**coif)C\iooo^'iriocDda>co^ioi^c\JO)cococ\iiricAJ

m CO N lO N N»- ^' ^ c\i co ** co

8 J

c u e

co en co yr cm cm^t\imcp(Domco^N,ocijcnwwtDnini-Ncii-in'-^pjgininin<7^^c»co5otttOQc5^iOiOWrt(JQQQ*- *- r*. r«. r*» c» 0) r» h- n. n.

to co co »-o 0) O) r^

r»* o o o o o o o 1CM

»- o ^ t ^ w wco O) in co co m co

3co co q o 0) enCM in O) CM CM CM

(VJ

lOiO'tiocowaiNOJ'-co'"O'-'-SNfflQWlOO)<Mr^cOQc05inCMcoco^ co m m inSip w s tp 6 toin co in in in in

CM coCM o CB«J)QQQNNNSNQOC5«»C»o6inininiriNWO)COtN ,- |OQ'-i-CDSa)-ininincoin^nrtoojintnin^inr^cocoincoincocMm m m m m

§§§§8 8888 8888 88888888 88888888 8888 8888^

I i

2zHJ H'zH1 zzHl zH1 H1 zHJ H1 HJ H, H1 H1 zzzzzzzzzzzzzzzzzHJ HJ H1 H1 H1 H'Hl HJ H'H1 HJ zHJ zzHJ H'HJ z

inS^ininoooin^i/iiriinininin^i/ii/iooocococococococococomcocococococococococococo

OQOQQOQQQinmOminminininininocMCMin(OCOCOCOCOCOCOCOCOCOCOCO

OQQQOQQOQOOOQQQininininmininminintnininininCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO

s

ll

ll

-ttiit M*UJ oin i>- r» 92CM ro CD "^

o o o 5s

o in•- CM

co in ocm rf c35

-J _J- -j z S

—> —i

z z Z Z ID —1in m _l UJ o o o o o st-- cm hi in in o o o in

r^ 9 i^h* r^ o r^ o) inCM CM »- K *- CM *- T- W- n

N m CJ S N W

=fs!lI • >

5 | 5in in

J LU UJ UJZ in m inr> CM CM CM— — n .

r i i — —i^ i J "i 7 7 m

3 5 uj

O CM O O CDCM CM - r^

z z88.co m m*- cm i-

_l—ILULLl—lUJUIUJUILiJUJ—ILULUtuLUinmiiJmmininininLiJminmmCMCMinCMCMCMCMCMCMinCMCMCMtM-.CM ._____« ___ i_j r > i r i t i_i-J^ZZ^ZZZZZZ^ZZCftZinoZmmmmmoZominincMinmcMCMCMCMCMinQOOjNWoajscocDin'-si-QO'-rj(ON^N'-t-(\JcoroiD<»-co

-J Z ^ -»> 7=. 5 >

CM " <°

Z 5 5 UJ LU LL) LUm m o m m m ow n m w w w QO) in o> co cm co coi- CM i- CM CO CO *-

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZcoajcofflcDQQQcjocoiDconNNNNNNaacncnaoiaciiotcnc&cscncococotort^^rTrcocooo^ocococorococoocoocoooocoococococOcocococococort

tBNttOSaaotioaioKNN'. t-^oooodininnniNNN(VN«Ninfflinffl(i)g)Vinioinin ^gxngioicnoio)

LU DJ LU LL! LL) LU UJ U J J _J I UJ ~j HOOOOO GO<<<<<< C3 < <<<<<<WUJLUlJJUJ<<llJQOOQOQUJLUWLjJUJLUW^:^:5:^5:ZZ222^;5:ZZZZZZZZZZZZZZZZZZZZZZZZ5:ZZZZZZZZZZZZZZZZZZ

Oi-oiatniosaapi-^f-t-i-r-T-^T-t-(\|WC\l(\l(\IW(MW(\JWOminmtnintnmtninintninininmmtninmmmr)'tifiiosa)CDQi-wo5|nininininminmininininin

+- cm to ^- mm m in in inm in m in mN flO 0) q »- CMm in m cp cp coin in in in in in

r--^^f^r-~r— »— r^^r^r^f-~^r^r^-r~~r-~r^ r~~ r-— r~-r--r--r^r~-r-~.r^r— r^r-^r-~r--r-~.

CO CO CO CO CO

cdcocqcdcocdo0cdcocococo&co&coCOCDCOCOCOCOCOcBCjOCOCOCOCOCO^^^

CO CO CO CO

* * *_ CO CO CO CD CO CO CO <X) CD CO CO CO <X) CD CO CD CO CD CO """w w \u w w wj vu uj

*?iomioiniffiS

49

Page 62: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

I X

o oz z

XXXIrcESo o oZ Z CO

o o occ cc cc3 3 D< < <

a; i i i x i x< I— I— I— I— I— •— UJUJUJllJ5 D3D3DD>>>>r oooooooooo^^cococococococcccccccO OO O 'mod o §m m <

LU LU 111 LU LU

ccLrccccccooccccccccLXLLccccccccooooo<<<<iriiiiirooooDDDDDD3DD<<<<<cococococc cc cc cc

LU UJ UJ LU LU LU LU>>>>>>>O O O O O Q Qcc cc cc cc cc cc it

(3 (3(3 O (3(3 Occ cc cc cc cc cc cc<<<<<<<(3 13(30(30(3D D D D Z> Z> DCO CO CO CO CO CO CO

XXIIIIIII £ cE cE I cE IE ccooooooooCOZZZZZZZ

I I I I IcEtEcEcEcEo o o o oz z z z z

o occ cco o

LX CC 2 CC CC cc cc cc cc cc cc cc cc cc cc § § § 3 § cc0000000000000<<WLULU[ULUOccccccccccccccccccccccccccoozzzzz-33DDDZ)D33D33DDOUJLUUJUJUJ<<<<<<<<<<<<<C0C0OOOOO

1-fc7)

LU>

LU>

LU>

LU>

uz O

95 ££ Orr

ccccoIT

(3

rr rr

C9

rr<) < < < <rr rr (') U o o

) i ) ) > )

< < CO CO CO CO

0) j3 inwinoiainNO)wa)w^o)(\io^O(o^9woino)a)NOon*ww^^s(Doa)(pO'-Nifiin'-'-NO)a)0'-(CiO(DinLT)co(DiniOLntD(Dinin(D(D(DiDcDcDCD(oininLn(D(OcD(DCO lO *- o•- h* *- CMco m co co

* * e *cpcociT-cocMr^ooina>ininincoco^^r^o>CMcoincoco<ocM*-_-fi!i^^5S!GK!5^S!5!B8!fili!Q!iSi55Sifi^:S!5 N,3QSSQincocoinincommcocococdcocommcomco co co co in

com^r-o>r^cor-.CM<o**r^h*comcococomcocococococo

8 s o> o mTf (D O »-

co co in co co

<0 CO

« O $ Lul

<o c «t © B >

oo^moooooomcoi^ocftOfH"? "-CDCOCDCDCDCOCDCOOjCOCDCOCOOOGOCOCDCOCOCOCOCOCOCOCOCO

ooooooooomooioStO(D©CO<D'-'-»-i-(0(B(O(O(DSSSSQOOOOOCOOOOOOOO

co co co o o o r^r^ r^ r^ i^

o o m in o oO) O) »- O O) NCO CO ^ CO CO CO

Ot'tOOCprjOOOOOOOO'-OOOOOOOOOOOinOCMOCDOOOOOOOCOOOO(O(O0(D(OOOa)UU)(D(C(O(Q(O(Offi(O(D(DO(O(D(O(DNKSSN(O(D(Da)V(C)CD(O(O(D(£)(D(O(O(ONS

oooommoomoON0)0)'-(\IC7)NSC0"(DS(D(0(D(D(D

o ™?Ut-gJa

O O O CO CO

O) oi o m o o TtO)coo)0}como)inco<sm<stnr^o o o ort d d d

mcM ^ ^•cocO'-oeowcocn o o co co ^ Is*

nwed^ciNfflcis'taitf^aJoi^sbodiooioi^^'-(MCO'-(D(0lO(\)^0000ffl0)O CD O) CD m

T- CO 0>a> co <) co oito a) m m in

O O O 05 CM

omr--cocococoocMo co m o o o CO ^ W O W S O CD CM n©1; OlO(D-: ciriNNcbscomomcomcococMmcor^ S'oJNddn^'iriiri

is s ^ co ^ co

o <o*-*

Q O Q)

»-»-ocoomt-coocococo*-*-dcv^oiihihinNoiaidoind

r~ f <o cm m f- CD t- iT) CD ^ to n N 0) N CD (0 CO

C\J OJ f^ CO o o o *f ^ rv .- ^i- ID — — <M CO o oCM *- »- t-

n o) n »-. >C0C0SNNNn(D'-NOOO _tvCMOQCO^CMCOCOCMCMCMCMCO<*COCp Q

»-cocDcOO)COOOO*-r-nswcoscDP)*S'fos'-iocaQ'-eocQcprtfvr^in^ «* o> o o

£ 5 SvinmminminoinNinoit^ ,_(DmK)inmioinNs(D(D(M7^(D3 fc ?sna3(p^io^cvog)r-cocop)0(0(0inof0)0fl)inrtco^^IftN^COWOOWNSQQWtDCOfflOW'tfflVOinCDOJninu^cotncocococoi^incocorvr^cococococotntncoco^r*T

88 8888 8888 88888888 ?8§ §?§§§§

zzzzzzzzzzzzzzzzzzzzzz LU LU LU LU zzzzzzzzcococococococococococococococococowcococbco55S5555wcoco5co5cb

o o o o o o o o o oooQOOogooooooooooooominoooooooominoooooooooc-nnooinooAntf)otf)ir)intf)miotf)innNC\iif)tfiir)in^inn^N(Mo^intf)in^tf)Antf)Antf)U)U)An(\iinir>ininu)(0(D(D<D<D(0C0(D(0(D(DCOC0C0C0(0(D<0(0(0C0C0(0(0(D(D(0(0(0mc0c0(D(0<D(DC0(DC0m(0(D(D(0(D(D<0{0(DO<0<D(D(D(0

555co5-j5$-j z ^ z lulu 22— ocoooLUoZommoo~A(OQU)QC0NOinnoffifipinNisnQUt-fft»-int-(Mortrt

-1 _i -1 55 LU S Iifi CD tO CMN (O -- rCM i- — .CM

CM *- CM Q Qf O N ft (OCO *- CO CM CM

_J CO -Jco co co m co

.5! 8CO — 0)

88

H

ll

5 CM ^

CM Is* *- T- r-

i- co m en

lisgilii-T d .- _T d -T =Jz 5 d co 5 z zo m > m m o oo r^ o r*^ r-- o o

ujuujLummmmiiimLLiLiJLjmLjJLLjijJUJLLiLuujCOOOSNSSNSNNNNNNNSNSeOCOa)zzzzzzzzzzzzzzzzzzC0C0CD^O>O)^^^^^^CpC0COC0C0CO CO CO o COCOCOCOCOCOCOcOCOCO

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZCOCOCOCOCOCOCOCDCOCDCDCOCDCOCDCOcOcOcOCOcOcOCOCOeOQQQrtrtrtnnowortwoownoortoortnrtrtncovv^v^nooorjo

O) O) h» CO ^^^inininwin^^wnnonainoQQoaaiaioifflOJffln^wwwww^nnnop)

< <<<<<<LUIlJLULUDUJLUQQQDQOLUlilLUIJJLUUJUJUJUJUJLULULU^zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

o--«n«ii»seoi\_f r- v« v* >* Hf \u i-» vjj ui w w— in ty >« uj w i"" w UJ w w— : v \y -m u I \LI I - \AJ 1_1JNNSSNNNNNN(«fl0(9(DfflCpfflC0CD©(flfll©ro(R0)rofflffiO)inininintninoininininininLninintnintnininininininininininin

f^f^rvf^i^N.f^h.rn CO CO CO CO CO CO CO CO CO CO CO CO

O'-CMO'tlOtONCDOjP'-Wr-rri-i-ri-ri-i-iMPJNCOCOCOCOCOCOCOCOCOCOCOCOCO

COCOCDCOCOCOCDCDCDCOCOCOCDCDCOCDCOCDCOCOCOCOCOCOCOCOCOCOCOCOCO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO 00 CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

inir)(?5i??inininin"iSiSinin"in*SSiS

50

Page 63: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

" o § w

5 s •?;

X ZZZZZZZZZZZIIZZZZZZQOOOOOQOOQOOOOOOOOOQOQOQ

i<<<<ooooQoooooooooogoooo55o3D

HI LU> >o occ cc

o oCC CC< <U C3 _13 13 13 —CO CO < 03 CO CO CO

OOOOQQOOCO CO CO CO GO

_ DC

a 3 < ^OOOOitrccccirDcircccctrccccircccctrcctrirmmtDmmm-=5=)3^3D=33DD3DZ)D3D333^D'<<<<<<<<<<<<<<<<<<< LU LU UJ LU LU LU LL1

NlO'-»-^NO)«P3(ON100(J100)5(On(D(D'-QKOOQOffl'-N<55©a)N(OOa)'-on^(pS^fflrtO'-oaooNO'-'-winnW'-oico^^nsoj^ovoajirt^roNOJNNSowooJO)(CiO(DH)(DioiniB«)ir'iDiDiDifiinin^(Dir)iniC(DiDininssNNcoNNiDscDiO(Din(D(oiOinin coincDcococomm

(OiOiO^O)coo)(DOtD^fflffl^wO«Dnioo^cDiQO)0)(PQWwwwONin©in3int-^sa)(\ia)iniooo^in«wa)inw^^(OT-i-oo^wsrooi?5s5NO)oo^^o)n'-tDin5NOOcO'-(Osooc6(Dwr)Wi-o)SO(\i(»«ifi5'-wa)0)coin(0(0(oiDin(D(0(OiniotOLninin(Dininin(Oi()(0(Din(DSNss(ONscoNNinin(o<D(0(DininN<fiin(D(0(os<oinio

omoooinointnoomocMinQoooooococo(oa)coNa)(fi(MC)r}(vj(MCMcDa)0)0)aia)0)a)<ococococo(0(0(Dr«-f^r*«r^r*.r'«.cocococo(OCDcD<0

m o o in io oaD CD G) CD CO O)CO CO CO CD CO CO

ommoomiooOOJOO'-'-'-O)0}0)0)COO)0)0)COmooommom^tcoojCMco(0(D(DKN(OSSNSSS

co (o E. ujI

inoooou^tntnooinooinoQoo<DOQQioinooininou^QQinoinuiQQOOQOinQ(DooojcD^-o)too)oCDCOOCD(Dr^COCMOOCMCMCMCD01wQC»COa)C»CDCOCOCB^COCOCOQCOQO(OS(D(O(D<ONSNNNS(O(D(O(O(OV(D(OO(O(O(DO)CD(SC9C4QCIIwC))(})O)<D(D0(O(OSN(ONSSSKNN(D(O(O

f fSo

NCOOWNOJrtfOm^tf)^0)W(MO'-'-o«oc)iniDNO)0^v^«0'rinnoTNmo)r)(\)oso

O) CD Tt CO CO CO CM lO

rtWO^COQlOtDQ Ao»-a)oc»rt(DKi5 ra

t N(D O9ro(o^a)r(D(D^^^f\lWWO)a)Q^^n^lONQffl^^^^o^nco^<DlnoQlD$0)c»won^-Olnc\J'-c\la)^(oncoin^inin(DifiOj«-a)OioW'-(\i'-ifi(DCftO*^a)ina)win^(Dwova3r)owooo(Din{DONcD coo^c\j*-^-c\jr-co^ »- »- •- i- *- v- «- *- «- »- •- •-CM*---CMCMCM'«-'-CMCMCM*-*- r- -r- i- »- «- *~

n ^o eo

CM Bc

-C > oa .'V

a "occy

a>in»-w»-*-*-CMCMmcMr**»-ocs^cboJco^cor^CMf^cDcb

»» N CO ^t 01

CO ^ C\j CD * CO 0> O OO)«t(D0JN(\INS

O C\j <* CD CO ^

COO'-W(Oin<,JCOCO(D(\IO)'-0)00)WOfOS'-COO)^(00)'-^^r: «e6r-'c6'-'N6C\ilriNSffl(DWdNNT: dNr: «)0lON

co*-<pocoiom<2>cpcQcgCMiftCM^^cococo^^-^'

to m cm co?co ^ co - CO^ m n s 5 ..SCpC0CDCOC0CQQf*.CMC0cncDcococococBcBScMcMCMQNN^^^^t-^COCOnincncncocococMOJCMcocO'-

KcpincpcpcpQcocMOr-nincfiQcoincoa>0)0)cocMco cm r-» m r». in5<j)s?)?)nQa)N to cm o ^ vcocDcncocococococo N CM CO O '-

CO or*. cS

N <D ID •- <~ CO (O CD (O ^S ID CO 3 ^ O) »- *- *— »- »—CM0)0)QQiOC0C0C00)0)0>0)-.mminaoDCommmiomiocDir)iosgingsi-r-»-(Do

_, inco^ojcoascocococpcoioiAirtt f- ,-«5ncoiAioifi^vins ;*0'-sNNiS?(D(DNiniOinCD<D(D(D(0(D(0(DCDSIDiniO^^^lOlO

NNCD«-CO«)COCDO)SNCnO>0)lOlOlOC0C0Or^C0CM^lQ*-0>a>C0C0C0<tf^«Tm^-co^tcoiOtnin^'-'-cococoiOiOtO

m m lo

— U

c o H

zzzzzH'HJ zzzzzzzHJ H1 zzH1 HJ zzHJ H'HJ H1 zzzHJ HJ H1 zzzH1 HJ 41 HJ H1 H1 HJ HJ zHJ HJ H1 HJ ^z4J HJ zzHJ

cococowco55cococococococo55coco55cooo5555w

OQOOQOOQOOOOQOQOOQOQOQQOOQQOmLnininLninminmmmminmmminmmmminmtnminooCDCDCDCDCDCDCDCO(OCO(DCOCDCO<DCO<DCOCOCOCDCOCDCOCDCDCOCO

gQQOQOOOOQQOOOOOOOininioinininioiointninioioiniOininCDCDCDCDCDCDCDCOCOmCOCOCDCOCDCDCDCD

8

o 8 inr^ r~ ojoj cm a>

5 5 z zS S ° H"^ "T iri m •- CO LU

8

LU

8

LU

8CM

_1 _l - 1

t

< < _t ro _l <in o

5 8 2.o

in

'. ^ ~- a a

82^CM'-'-r^coo)^-

8 § 8CM

O8

CM CVJ CM <M

_) —1 _i .J _jJ

*» III in III rn

i 8 3inCMmen

<n in CO mto (M CO r- (\J

Jilii!-j 5 J j J co 5 :

lu in m lu lu q inm cm s m m ^ s i

oj *- *- r*. cm cm to i

(D OJ - (0 CVJ CO «-

°si 8

jJf 1 N (O

_ 5N O (M oco co rv *-

222222222222222ZZZZZZZZZZ22222222222222222ZZZZZZZZZZZZZCOCOCOCDCOCOCDCDr^r^h^^^r^COCOCOCOCOCOCOcOCDCOCOCOOOOOOOOOOOOCOCOCOCOCOCOCOCOOOOOOOOCOCOCOflootononconnononnnnroonp)nnconn?5?595999^5nortonnoCD en Q COCM CM CO CM« * « «

CMCMCPCMtM(MW©(M(MN<MWCMrofflO>a©fflagQCOffltDCM

t i i i t i

i i i i j i<<<<<<WLUUJLLILLIUJWLUQOOQOOUJIjUWWWUJLJJUJUJW22222222ZZZZZZZZZZ2ZZZZZZZZZZZZZZZZZZ222Z22222222222222

ii

co ^ m co Is* co

CM CM CM CM CM CMCD CD CD CO CO CO

•-CMrt'tincoscoo)ScocOcococococOcoCDCDCDCDCDCDCOCO ;?3 5 355 ssCDCDCDCDCDCDCOCOCOCOCDCOCOCOCOCDCDOJO'-NO'tincDN

CDCDCOCOCOCOCDCO

^r»r«.r«.r"».^.r*.r^r^r^CO CD CD CD CO CD CO CD CD CO CD CD CO CD CO CO CO

r^r-r^r--r^r--r^r»r-.r^r^r-r^r*r^r.r-.cD(^ COCOCOCOCOCDCOCOCDCDCDCDCO<DCDCOCOcOCOO)CnO>O)O)0)O)O)O)O)

51

Page 64: Seismic reflection and seismic refraction surveying in ...

Appendix A continued

x x r r i i

oooooooo" 2 z z z -< <

ZZZZ22213II

XIIIIXIIIOQOOOOOOQOOOcococococozoicomcocacotrzzzzzzz cococococozcocococococo

zzzzzuiicEliticzzzzzzzzziffriiiiiiiiicEiIII III III III III -^ -\ -\ ~\ -\ ^ ^ -> III III III Ml III III III III III -\ -» ^ ^ ^ -\ -s -^ -1 -^ -\ -\UJQjlUUJUJlUllJ333DD3D3llJllJlUlUlliaJlUlULUDD3DDDDDDDCDCDOOOOOU5<<<<<<<000000000<<<<<<<<<<

CM O) O)p) m sco in m

rtNO)ina>m»-N^o>tM(ooo)oocM»-N<D^(ocDO)C\jmsNO)eow^^wooss'-oeomoiO'-oiffl^oNigmaT-inconwnNifiin<ocococoinincocoininincointntnco<Dcointninco<oininintnininO CO <* ^t O) ^ i-

incDcocomincococommcococo** CM CM t-CO N. CM COco in co co

n in (o n in inm in in m m mo» a> o ** o

s s

as gingcQQQQQgocncnm*-(OCD(D©NNSNSNK<o5<D

ScocoppcoQQmmCOCOCMCMCMCO^TOCO *-coo*-o)cococomSS (D ffl N N S SCO CO CO CO CO CO CO

s-l QIQ^(9QOQ>''noo|^(])loa)QQ(OlnfflffiQI,]pNNa)QOlOQ^'-0(OQ(\liot1^^v9wwNWNK<DN55(D<Dnnrtwwww«o©(Q©in<o in in s(O(D(D(ONNSNNNN<O(DV(D(O(O(OCONNNNNSNNN(D(0V(O(D COCOCO

±= 2r a

cdinoi-iQoinNNirifflfflriai^NWN©a)«5oo)'-owinin^N$?5eD ;3; ioeDOO)0

o IO K P)

d ri n i1 •- (O

o m O) en «- co m6 in ^ ai ^t oi ^

in n co en n oi

in co oo a>co o o coco co cm *» ?§s CJ> CO CM O O) 0) CO

O. — *! co in ^ ^J *- o o ^- CO CO CO o H m t in ^ CO N o^tcn-cfCMinocor^r^CMcoo o o (O in o — — CO

o « w~ cm a

. c

CO o to m cm CM CO If) *J CMco 25 co cm » N r- tf o •- CO o «t CO ^cocbcM'-rSinrocM'-'-oj'- CM o co o> r- 0)

r- CM •-O COCM »-

Depth

1

of

layeendpoi

<9 O ,_ CM o n w o) n n o 1 Ol «- CO o «- O in tO'-NiocDNO)nno)(DCiia) in o t — <* o — 0)

o r- £ en CM o ^r in in cor^ in t in co

in CO CO CM O •- in OJ r^ cgcMQcocoa>gco^ococ\i*f3F m co co cm cm 9 •- CM CM •- •-

CO o a> — O COCM CM — CO CM— CM

mcocoinr«*r^co«-p>coqqcmcococpcococmco'-wOlWOW'-O'-W

h-rs.r^mmcMinm'-mmoQQcocoininWWCMCficOCNCOCO^inrv^-cOtncMpQ^'-T-t-QS'fcOCOCftNIDNN'-NCvifi© h» apco in co

CM 5

CM CM O) 00 i- tfrs n m O 'f w--*-*-0(000_.cocococococomcococo

aJOQO'JNIDOlCOlOlDt'-OQO'-N'-COOOON990)N(Or)^tn^(DrtN^ Q o t n N w(D^^'-O'-cyinfflmco'-Nnr) 9 fi n o oi mcoincocomcocof^^cor^oomtnin co co in tn

888888888888888888888888ininmmmininmmmminmmininininmininmmin 888888°8888 88m in m m m m m m m m in in

_i o a. El

z z z z z z z z LULULLJLLlLULLlLULiJLUlULU z z z z z zwcbc/)c/>3c/>cocnco33333333333coco333c/)3coco33cocacococflcn

S8SCO CO CO

§QQQQ 00 QQOQQOQQQQQOOQOintnininininininu^inintnininininininQinincocococococococococococococococococococococo m In In _.

co co co co co co

MMr-~ o o inin o co s.•- CO •- 0>

3 3 5 3225! 835:: SSSaatSSS

° B 5 o10 co yCM CM °

^33^33333tcoQininininr^^ p co cm m

cm cm co •-

w K co m mo S « « 1-<M J? — * «

8UJ LU -Iin in uj

t- co m o»- O C7> 0)•» — t- CO

80§8

3 3 3 co 3 ffiin o m m o r-

_ cm m n s in coCMCOCM»-*-*-CDCM

ffi 8.CD —

in wj cj CM in(^ O to O CMt^ CM CO CM »

*i 533

Sffi o m 8 co co o000r^ r^ coT CO -

3 8 5 3 3

-l^-JCOCO-lUJCOCOlUZuoioujom^JmmococMQQCMr^c/)cysinNinQoiOT-pm**cocMcoin»-co^cM

- co cm «- in co p.(O N - «- «- CM

2 C/) Qin in inS N O)

UJ LU LU UJ LU LUCO CD 00 00 00 00

z z z z zzzzzzzzzzzzzzzz zzzzzzzzzCO GO 00 00 CO

888 2 2cococDco«DininwcM»-»-0)0)0)0)c»o)coo)ininin'-'~'-CMCMCMCM«-»-»-CMCMCMCM CM CM CM CM »-

CD m 0> CD Q> Oi Q)CM CM CM

^ ^ I** "«*

CO CO CM CO

lllliJllJUUUllJliJliJllJUUUUJUIUJUILUUlllliJllJUJUUliJliJllJllJUULUUJUliJUUliJUiliJZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

co en

co CO (BIDCDNSNNNNSNNSKSSNNNNNNNSNNNNNSNNNNNNNSNNNS

O)0i0i0i0i0i00)0i0i0>0i0i0>0i0>0i0i0i0i0i0iCO CO

en co

CO CO CO CO

ot o5 ot> en

52

Page 65: Seismic reflection and seismic refraction surveying in ...
Page 66: Seismic reflection and seismic refraction surveying in ...
Page 67: Seismic reflection and seismic refraction surveying in ...
Page 68: Seismic reflection and seismic refraction surveying in ...
Page 69: Seismic reflection and seismic refraction surveying in ...

HECKMAN 1+1BINDERY INC. |M|

JUN97I Bound -To -Pleasi5 N.MANCHESTER

INDIANA 46962 '

Page 70: Seismic reflection and seismic refraction surveying in ...

Recommended