+ All Categories

Selfsys

Date post: 26-May-2015
Category:
Upload: dalgetty
View: 328 times
Download: 0 times
Share this document with a friend
Popular Tags:
42
SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems Fluidic mediated selfassembly for complex, hybrid micro/nanosystems J. Brugger, A. Martinoli, N. Spencer, B. Nelson, H. Wolf, H. Knapp, L. Sciboz
Transcript
Page 1: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fluidic mediated self‐assembly for complex, hybrid micro/nanosystems

J. Brugger, A. Martinoli, N. Spencer, B. Nelson, H. Wolf, H. Knapp, L. Sciboz

Page 2: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Assembly challenge of N/MEMS

Today• Many different kinds of

micro/nano devices, MEMS, S&A, CMOS, OLED, etc

The challenge of tomorrow• Finding a way to assemble the

bricks into functional micro/nano-systems

2

Page 3: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

SoA for integrating multifunctional N/MEMS

• Co-integration (if possible)• Separate fabrication followed by joining• Wafer Bonding; Tape automatic bonding• Pick & Place; Robotic assembly

• Challenge for highly miniaturized systems• Challenge for very large numbers of components

• SELFSYS: Contribute with enabling manufacturing for future micro-assembly applications

3

Page 4: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fluidic mediated self-assembly

• Known concept in R&D• Using capillary forces to align components• At the interface of liquids• First industrial examples emerging

Srinivasan, Boehringer, U Washington, Seattle

LubricantHydrophobic area

Mastrangeli, van Hof, LambertIMEC, Belgium

4

Page 5: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fluidic mediated self-assembly

10 mm

Page 6: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fluidic mediated self-assembly

MEMS

Surfaces

Microfluidic

Modelling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

Applications10 mm

Page 7: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

SELFYS synapsis

7

Page 8: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

M/NEMS: J. Brugger (EPFL), Distributed systems: A. Martinoli (EPFL), Surface chemistry: N. Spencer (ETHZ), Nano-Robotics: B. Nelson (ETHZ), Microfluidics: H.

Knapp (CSEM), Self assembly: H. Wolf (IBM), RFID: L. Sciboz (icare Sion); add-on SELFSYS+: Ch: Hierold, D. Poulikakos (ETHZ)

8

Maurizio Gullo

(EPFL)

V. Nagaiyanallur

(ETH

Z)

DidiXu

(ETH

Z)

Jonas Wiene

n(CSEM)

GMermou

d(EPFL)

LoicJacot‐De

scom

bes

(EPFL)

CathreinHü

ckstädt

(ETH

Z)

Deep

ak Kum

ar(ETH

Z)

M. M

astrangeli

(EPFL)

Page 9: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Progress within SELFYS

• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

9

Page 10: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Progress within SELFYS

• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

10

Page 11: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Investigated shapesShape:

Main material:

Expected advantages:

Expected disadvantages :

Scheme: Picture:

1Disc slices

SU‐8not restricted 

to pairslow SA yield

2Flat 

cylindersSU‐8

easy fabrication and handling

assembly possible on opposite side

3Rounded cylinders

SU‐8higher 

pairing yield

4Half‐

spheresSU‐8 or 

Ormocompeven higher yield in SA

smaller volume (cavity)

11

Page 12: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Self-assembly of SU-8 cylinders

At water – Si oil interface: At water surface:

At the bottom: After water evaporated:

12

Page 13: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fabrication of SU-8 microcapsules

Page 14: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Fabrication of Bi-color SU-8 cylinders

SEM images of the cylinders before release (diameter ~ 100 um and height ~100 um)

Optical image of un‐specific assembled parts in DI water after stirring.

Page 15: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Surface functionality for specific assembly

Yield(assembled/total): ~ 65 %

Page 16: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Surface Modification of SU8

16

Plasma treatment:

CA 70‐80 deg

CA < 10 deg

Page 17: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Photo-cleavable polymer layerCovalent grafting of any desired polymer onto SU‐8 can be achieved by this methodology.

Page 18: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Half-sphere shape by inkjetting

DAngle max at the edge: ν = CA + 180° ‐ ф

100 um

Page 19: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Adhesion force modulation

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

‐60 ‐40 ‐20 0 20 40 60

Force

Alignment [um]

Calculated surface correlation:

RingGoalMulti ring E2

E1

dE

Srinivasan et al. 2001, J. Microelectromech. Syst. 10 17–24

40um

Microfabricatedcapsules

Materials investigated:Carbon coated tip/sampleTeflon (C4F8) coated tip/sampleAu coated + dodeca thiols (DDT) monolayer tip/sample R=2µm

SphereTip©

Page 20: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Force Curves / Teflon Coated Tip and Sample

Adhesion Force

retractivesnap out

DI water

Sample

Force Curve

parameter value

# curves 500

# positions  100

speed 0.5 Hz

rest time on sample  0.5 s

temperature 22°C

humidity 33%

tip

sample

teflon

movement

DI water

None or only very small and unstable attracting force could be observed for the Teflon coated tip and sample measurements

Page 21: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Forces between surfaces / summary

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

‐60 ‐40 ‐20 0 20 40 60

Force

Alignment [um]

RingGoalMulti ring E2

E1

dE

Material Attraction Force Adhesion force

DDT 6e-6 nN/nm^2 3.8e-4 nN/nm^2

Carbon 3e-5 nN/nm^2 4e-4 nN/nm^2

Teflon 0 nN/nm^2 1e-4 nN/nm^2

Material E2 E1 dE

DDT 1.16 mN 0.29 mN 0.87 mN

Carbon 1.23 mN 0.31 mN 0.92 mN

Teflon 0.31 mN 0.08 mN 0.23 mN

•Hydrophobic interaction forces could be quantitatively assessed by AFM.

•Carbon and DDT show similar adhesion force.

•Carbon better suited for micro fabrication.

Page 22: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Progress within SELFSYS

• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

22

Page 23: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

3 stage fluidic assembly system1. Preparation - Transfer of parts into

functional fluid2. Assembly - Agitation of particles to drive

self-assembly3. Sorting - Sorting out and transferring back

not correctly assembled partsSupply fluid cycle

Functional fluid cycle

Sedimentation filter

Reactionchamber

Sorter

Container for assembled parts

Page 24: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Reaction chamberChamber size: 1 cm diameterInlet and filtered outletPiezo-actuationChange in amplitude/frequencyShear forces at bubblesBubbles moving around

RC‐Core

US‐transducers

Glass unit(laser cut)

PDMS ‐Sealing

Filter within sealing

Outlet

Outlet (filtered)

Inlet

Page 25: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Progress within SELFSYS

• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

25

Page 26: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Field assisted assemblyDielectrophoretic assisted assembly• RFID chips (mCHIP/Hitachi)

in liquid.• Micro-chips with unique

codes

Octomag motion of magnetic SU-8 flaps• Magnetic nanoparticle in

photo-patternable SU-8

+ + +– – –

V

RFID chip

Gold bump

antenna

Page 27: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Progress within SELFSYS

• MEMS part fabrication• Surface functionalization• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

27

Page 28: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Multi-scale modeling

28

Can we devise a unique methodological framework for modeling and controlling these self‐assembling systems, across length‐scales?

Robotic building blockTypical size: 2 centimetersTypical swarm size: a few dozen unitsActive units: sensing and actuationCapillary and magnetic forces»»Stochastic, fluidic control (pump)

MEMS building blockTypical size 50 to 500 umTypical swarm size: 10^2 to 10^3 unitsPassive units: only local interactions»»Hydrophobic forces»»Stochastic, fluidic control (piezo)

5cm ALICE robotSwarmPower to moveSimple on board intelligenceCollective behavior

2D 2D 3D

Page 29: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Modeling Distributed Systems

Microscopic 1: Monte Carlo model, 1 robot = 1 agent, non-spatial

Abs

trac

tion

Exp

erim

enta

l tim

e

Com

mon

met

rics

Microscopic 2: Agent-Based model, 1 robot = 1 agent, spatial

Macroscopic 2: Chemical Reaction Network, stochastic simulations

Macroscopic 1: rate equations, mean field approach, whole population

Define physical parameters suitable for simulation of distributed, self-organizing

(micro) systems

29

Page 30: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Modeling / simulation

• 2-body motion / encounter

• 100-bodies

30

Material Attraction Force Adhesion force

DDT 6e-6 nN/nm^2 3.8e-4 nN/nm^2

Carbon 3e-5 nN/nm^2 4e-4 nN/nm^2

Teflon 0 nN/nm^2 1e-4 nN/nm^2

Page 31: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

• Magnetic particles embedded in SU-8*• DNA coating on microcapsules• Thermal modeling**• enhance control of assembly/separation

Add-on tasks SELFSYS+

T>Tm T<Tm T>TmB=onB=on B=off Mix=onMix=offMix=on

a) directionality b) selectivity  c) reversibility

Para‐magneticcapsule

* add‐on partner Ch. Hierold** add‐on partner D. Poulikakos/J. Thome

Page 32: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Summary & Outlook

32

100 um

MEMS Modeling Fluidic assembly system

Hollow capsulesControlled liquid‐release

T>Tm B=off Mix=on

opening

Capsule disassembly

Page 33: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

M/NEMS: J. Brugger (EPFL), Distributed systems: A. Martinoli (EPFL), Surface chemistry: N. Spencer (ETHZ), Nano-Robotics: B. Nelson (ETHZ), Microfluidics: H.

Knapp (CSEM), Self assembly: H. Wolf (IBM), RFID: L. Sciboz (icare Sion); add-on SELFSYS+: Ch: Hierold, D. Poulikakos (ETHZ)

33

Maurizio Gullo

(EPFL)

V. Nagaiyanallur

(ETH

Z)

DidiXu

(ETH

Z)

Jonas Wiene

n(CSEM)

GMermou

d(EPFL)

LoicJacot‐De

scom

bes

(EPFL)

CathreinHü

ckstädt

(ETH

Z)

Deep

ak Kum

ar(ETH

Z)

M. M

astrangeli

(EPFL)

Page 34: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Liquid release from micro-capsule

Self‐assembled Blue ink encapsulated Ink released

34

Page 35: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Hollow SU-8 microcapsules

Side view

Top view

overflow13 drops…

Page 36: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Functionalization of SU-8 surface

PSS

PDDA

The charge characteristics are tested by dispersing SiO2 particles

Poly(diallyldimethylammonium chloride)(PDDA) – positively charged surfacePoly styrene sulfonate (PSS) – negatively charged surface

Page 37: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Microdrop printing of functional material

Luminescent NCsKim Small 2009

Printing on Hot‐SurfaceLee APL 2007

Bio‐PrintingPataky in prep

Polymer MicrolensesFakfouri MNS 2009

Page 38: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Inkjet set-up

Page 39: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Force Curves / Carbon Coated Tip and SampleAttraction Force

Adhesion Forceattractive snap in

retractivesnap out

DI water

Sample

Force Curve

parameter value

# curves 500

# positions  100

speed 0.5 Hz

rest time on sample  0.5 s

temperature 22°C

humidity 33%

tip

sample

carbon

movement

DI water

Page 40: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Force Curves / DDT Coated Tip and Sample

A

B

C A

B C

Adhesion Force

DI water DDT

DI water DDT

Displacement of DDT Rearrangement of DDT

Fresh tip / sample

Sung et al, Appl. Phys. A 81, 109–114 (2005)

DI water DDT

Page 41: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Modeling SA across scales

SelfSys Lily

~ m ~ cm

Page 42: Selfsys

SELFSYS - Fluidic-mediated self-assembly for hybrid functional micro/nanosystems

Summary

• Hollow MEMS fabrication• Surfaces: O2 plasma, polymer• In-liquid self-assembly experiments• Field induced assembly• Template induced assembly• Modeling

+ + +– – –

V

~

RFID chip

Gold bump

antenna

42