+ All Categories
Home > Documents > Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit...

Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit...

Date post: 10-Jun-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
57
Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6 (Matsue, Jul.31- Aug.5, 2011)
Transcript
Page 1: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Semiconductor quantum dots with spin-orbit interaction

Mikio Eto Faculty of Science and Technology,

Keio University, Japan

Spintech6 (Matsue, Jul.31- Aug.5, 2011)

Page 2: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Outline

1. Introduction1.1. Spin-orbit interaction1.2. Spin Hall effect

2. Spin Hall effect in 2DEG with artificial potential

4. Search for Majorana fermions4.1. Topological quantum computer4.2. Majorana fermion

3. Semiconductor quantum dot3.1. Coulomb oscillation3.2. Spin Hall effect in quantum dot

Page 3: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Outline

1. Introduction1.1. Spin-orbit interaction1.2. Spin Hall effect

2. Spin Hall effect in 2DEG with artificial potential

4. Search for Majorana fermions4.1. Topological quantum computer4.2. Majorana fermion

3. Semiconductor quantum dot3.1. Coulomb oscillation3.2. Spin Hall effect in quantum dot

Page 4: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Atom in vacuum

+Ze−e +Ze

−e

• Positive charge rotation makes a magnetic field

( )sl

s

⋅−=⋅−=

⎟⎠⎞

⎜⎝⎛ =−=

hh

h

32

20

effsSO

BBs

24

2 2

rmZeBH

me

πμ

μμ

μ

μ Different from Diracequation by factor 2(Thomas factor)

• Magnetic dipole moment of electron spin

( ) ( ) vrllvrB ×==−×−

= mrm

Zer

Ze hh ,

44 30

30

eff πμ

πμ

1.1. Spin-orbit (SO) interaction

Biot-Savart law

Page 5: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( )

( )

( )rZeUU

cm

rrZe

cme

rmZeH

2

022

20

22

32

20

SO

41

4

4

1 2

24

−=∇×⋅−=

=×⋅=

×=⋅−=

πε

πε

πμ

rEEps

prlsl

h

h

hhh

( )matrices Pauli 21 σs =

• Relativistic effect: 2mc2=1MeV in the denominator isenergy gap between particle and antiparticle

+Ze−e

( )2

SO 2 , ⎟

⎠⎞

⎜⎝⎛−=∇×⋅=

mcUH h

hλλ pσ

Page 6: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Spin-orbit interaction in semiconductors (I)

• Valence band in compound semiconductors: consists mainly of p orbitals (l=1) SO interaction

( )[ ]

21,

23

211 :

21 222

=±=+=

−−+=⋅

jslj

slslsl

2/1,23 :LH

,2/3,23 :HH

±==

±==

z

z

j/j

j/j

2/1,21 ±== zj/j

• Conduction band: consists mainly of s orbital (l=0)No SO interaction?

Page 7: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( )UH ∇×⋅= pσh

λSO

P: matrix element between conduction and valence bandsE0: band gapΔ0: SO splitting in valence band

• Roughly speaking, band gap corresponds to particle-antiparticle energy gap in Dirac equation.

• k-p perturbation theory for conduction band• SO interaction is enhanced, particularly in narrow-gap

semiconductors (InAs, InGaAs)

( ) ⎥⎦⎤

⎢⎣

⎡Δ+

−= 200

20

2 113 EE

Spin-orbit interaction in semiconductors (II)

Page 8: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Large α:Nitta et al., PRL (1997);Grundler, PRL (2000);Sato et al., JAP (2001).

(1) Rashba SO interaction

( )

( ) ( )yxxy pp

UH

σσαα

λ

−=×⋅=

∇×⋅=

hh

h

zpσ

ˆ

RSO

2DEGx

y

E in z direction

eEzU =

( )λα eE=

• U: external potential• Electric field perpendicular to 2D electron gas in

InGaAs/GaAs heterostructure

Page 9: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Inversion symmetry breaking in III-V compound semiconductors

• U: crystal field

( ) ( )yxyxyxyyxx ppppppH σσγσσβ 22DSO −++−=

h

(2) Dresselhaus SO interaction

• Same order as Rashba SO (α~β) in GaAs

• Time reversal symmetry,Kramers’ degenerate

• One-body problemSO interaction

Page 10: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

SO interaction vs. magnetic field (Zeeman effect)

Magneticfield

SO interaction

time reversal symmetry:E+(k)=E−(−k)

(Kramers degeneracy)

yxx pm

pH σαh

+=2

2

Page 11: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

1.2. Spin Hall effect

• “Spin injection” without ferromagnet, magnetic field• Intrinsic and extrinsic spin Hall effect (SHE)

(a) Hall effect: Lorentz force by magnetic field(b) Extrinsic SHE: SO interaction + impurity scattering(c) Intrinsic SHE: topological structure of valence band

S.Murakami, N. Nagaosa and S.-C. Zhang, Science (2003)

Page 12: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• V: Centrally symmetric potential in 3D (e.g. screened Coulomb potential by charged impurity)

( ) ( )[ ] ( ) ( )

( )drdV

rrV

rVrVrVrVV

2

~

1

1

λ

λ

−=

⋅+=∇×⋅+= slpσh

• Semi-classical theory

- “skew scattering”- “side jump” effect

Extrinsic SHE

Page 13: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Optical experiment (Kerr rotation) byKato et al., Science (2006)

- Ascribable to extrinsic SHE- Quantitatively explained by semiclassical theory

H.-A. Engel, B. I. Halperin, and E. I. Rashba,PRL 95, 166605 (2005).

Page 14: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

In this talk• Quantum mechanical formulation of SHE for 2DEG in

semiconductor heterostructures with “single impurity”- Artificial potential by single antidot, STM tip- InAs quantum dot with SO interaction

quantumdot

Page 15: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Outline

1. Introduction1.1. Spin-orbit interaction1.2. Spin Hall effect

2. Spin Hall effect in 2DEG with artificial potential

4. Search for Majorana fermions4.1. Topological quantum computer4.2. Majorana fermion

3. Semiconductor quantum dot3.1. Coulomb oscillation and Kondo effect3.2. Spin Hall effect in quantum dot

Page 16: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

mkEEV

m 2 ,~

*2

222 hh==⎥

⎤⎢⎣

⎡+Δ− ψψ

( )drdV

rrV 2

1 λ−=

• 2D Schrödinger equation (effective mass equation) with axially symmetric potential V(r)

z

2DEGx

y

• lz and sz are conserved in 2D.

: same sign as V(r) when |V(r)|monotonically decreases with r.

2.1. Formulation of SHE for 2DEG

( ) ( )[ ] ( ) ( ) zzslrVrVrVrVV 1~ +=∇×⋅+= pσ

h

λ

Page 17: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Scattering enhanced for lz >0• suppressed for lz <0

sz=1/2:

(opposite effects)sz=−1/2:

extrinsic spin Hall effect

( ) ( )( ) ( ) ( )

( ) ( ) ( )⎪⎩

⎪⎨

−=−

+=+=+=

2/1 21

2/1 21

~

1

1

1

zz

zz

zz

slrVrV

slrVrVslrVrVV

cf. Partial wave expansion:Eto and Yokoyama, J. Phys. Soc. Jpn. 78, 073710 (2009).

Page 18: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( )

( ) ⎟⎠⎞

⎜⎝⎛ −−

== ∑∞

−∞=

42cos2~

cos

πππ

θθ

mkrkr

krJ

ekrJiee

m

m

imm

mikrikx

phase shift: 2/1 ,for ±==±zzm smlδ

( ) ( ) ⎟⎠⎞

⎜⎝⎛ +−−→ ±± ±

mi

mmmkre

krrRkrJ m δππ

πδ

42cos2~

• Incident wave

(Bessel function; asymptotic form at )• Incident wave + scattered wave

(*) 3D: textbooks by Landau-Lifshitz, Mott-Massey

Partial wave expansion*: ( )L3, ,2 ,1 ,0 ±±±== mlz

∞→r

Appendix

Page 19: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

mmm −

± = δδ- (time reversal symmetry)

000 δδδ ≡= −+- SO interaction does not work on S wave (m=0):

( )

( ) ( )

21for

21

*2

from determined is

12

2

2

22

±=

=⎥⎦

⎤⎢⎣

⎡±+⎟⎟

⎞⎜⎜⎝

⎛−+− ±±

±

z

mm

m

s

ERRrVmrVrm

drd

rdrd

m

rR

h

( ) zz slrV1−+ ≠ mm δδ

Appendix

Page 20: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( )

( ) ( )

( )∑

∑∞

=

=

±

−+

−+

−=

⎭⎬⎫

⎩⎨⎧

−++−=

±=

1

22

1

222

sin21

cos2121

0

m

ii

m

iii

meek

B

meeeki

A

BAf

mm

mm

θπ

θπ

θ

δδ

δδδ

• Scattering amplitude (cross section: )

Spin polarization: −Pz for −θ direction

( ) ( )( ) ( )

( )2222

22*Re2

BAAB

ffff

Pz+

=+

−=

−+

−+

θθθθ

( ) ( ) 2θθσ ±± = f

• Spin polarization of scattered wave in θ direction

−+ ≠ mm δδ

Appendix

Page 21: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( ) ( ) ( ) ( )⎥⎦⎤

⎢⎣⎡ −±−−= ra

amraVraVrV δλθθ 00

2.2. SHE by a tunable potential well

• Fermi wavelength 2π/Radius of well a: ka=

• Strength of SO interaction: λ/a2=0.01 (at ka=1)

k: 10~100nm1, 2, 3

Page 22: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Resonant scattering of S wave (m=0) andP wave (m=0) at some values of |V0|(unitary limit)

centrifugalpotential

Unitary limit: 2πδ =±

m

• Scattering probability of partial waves (m=0,1)

Page 23: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Spin polatization in −y direction (θ=−π/2)

Around resonance, spin polarization is enhanced.

2/12/1

−=+=

z

z

ss

~30%

Page 24: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

SHE exists, butis very small.

ka=2, V0 > 0• Repulsive potential

Page 25: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Conductance and Pz Pz for each channel in incident wave

25%

73%

Channel 1 can be injectedselectively using QPC

−+

−+

+−

=GGGGPz and eConductanc

Application to 3-terminal spin filter

Page 26: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

2.3. Conclusions

• Formulation of extrinsic spin Hall effect (SHE) in 2D using partial wave expansion

• Enhanced SHE by resonant scattering by tuning attractive potential

• Three-terminal device including an antidot for spin injection, showing polarization ~30% for two channels and ~70% for single channel

ReferencesM. Eto and T. Yokoyama, J. Phys. Soc. Jpn. 78, 073710(2009); T. Yokoyama and M. Eto, PRB 80, 125311 (2009).

Page 27: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Outline

1. Introduction1.1. Spin-orbit interaction1.2. Spin Hall effect

2. Spin Hall effect in 2DEG with artificial potential

4. Search for Majorana fermions4.1. Topological quantum computer4.2. Majorana fermion

3. Semiconductor quantum dot3.1. Coulomb oscillation3.2. Spin Hall effect in quantum dot

Page 28: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Quantum dots: zero-dimensional systems of nano-meter scale

• Transport through “quantum levels” in quantum dots• Quantum levels are controlled by gate voltage.

peak structure of current

Coulomb oscillation(Coulomb blockade between peaks)

3.1. Coulomb oscillation in quantum dot

Page 29: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

What are “quantum levels”?

1. In absence of electron-electron interaction, “quantum levels” are single-electron energy levels.

2. In presence of electron-electron interaction (charging energy), increase in energy to put an electron on the dot (electro-chemical potential):

1−−= NNN EEμ

Page 30: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Constant interaction model with spin-degenerate levels

( )

( )UNEE

UNNE

NNNN

N

iiN

1

,2

1

1

1

−+=−=

−+=

=∑

εμ

ε

Discrete energy levels are occupied consecutively.Peak positions reflect the energy levels.

UU U+ΔεUU

U

32

24

23

12

11

+=+=+=

=

εμεμεμεμ

- Coulomb peak: resonant tunneling at kBT<Γ- Coulomb blockade regime: Kondo resonance at T<TK

Page 31: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Condition to observe Coulomb oscillation, blockade

(level spacing), (Charging energy) >> kBT, Γ

• Quantum fluctuation: “level broadening” Γ(due to finite lifetime by tunnel coupling to the leads)

( )

( )( )22

22

2

;,

21

2

,21

RL

RL

nknTkRL

VV

VV

dHk

+==Γ

+=

−= ∑=

πντ

νπ

εεδαπτ α

h

h

h

Page 32: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• InAs quantum dot: strong SO interaction- Y. Igarashi et al., PRB 76, 081303(R) (2007).- S. Takahashi et al., PRL 104, 246801(2010).

- Energy level splitting bySO interaction: 0.23meV

- Kondo effect

- C. Fasth et al., PRL 98, 266801 (2007).- A. Pfund et al., PRB 76, 161308(R) (2007).

3.2. Spin Hall effect in quantum dot

Page 33: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

“Spin Hall effect” at quantum dot

• Strong SO interaction is present only in quantum dot• Multi-terminal system

- unpolarized current is injected from lead S- spin-polarized current to leads D1, D2,…

“Spin filter” effect

quantumdot

cf. Previous work for “open quantum dot” without tunnelbarriers: Krich and Halperin, PRB 78, 035338 (2008).

Page 34: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Model• Two energy levels in a quantum dot (minimal model)• Single channel in leads• No magnetic field: wavefunctions are real

1221 ,

2εεεεε −=Δ

+=d

2leads ofNumber

≥N

tunable by VG

Page 35: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

( )UH ∇×⋅= pσh

λSO

212

02211

SOSO

SOSO

σh ⋅=

==

iH

HH

Quantization axis // hSO

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ±ΔΔ−

+=±=SO

SO1 dot, 2

1i

iH dσ

( ) ( )122SO Ui ∇×= ph hλ

SOSO h=Δ

• SO interaction in the quantum dot

For details, seeEto and Yokoyama,

Poster WP-62

Page 36: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Three-terminal system

Γ≡Γ=Γ 1DS

1,321

2D21D22D11D1

2S1S

=−=

=

,,,,

,,

eeeeee

Γ=ΓΓ=Γ

Γ=ΓΓ=Γ

2 (d) (c)

5.0 (b)2.0 (a)

2D

2D

2D

2D

Γ=Δ 2.0SO

Γ=ΔΓ=−=Δ 2.012 εε

ΔSO=0.23 meVΓ ~ 1 meV

Page 37: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Γ≡Γ=Γ 1DS

1,321

2D21D22D11D1

2S1S

=−=

=

,,,,

,,

eeeeee

Γ=ΓΓ=Γ

Γ=ΓΓ=Γ

2 (d) (c)

5.0 (b)2.0 (a)

2D

2D

2D

2D

Γ=Δ 2.0SO

Γ=ΔΓ=−=Δ 2.012 εε

(1) Large spin polarization around current peakEnhancement of SHE by resonant tunneling

(2) Level spacing Δ ~ broadening ΓTwo levels should contribute to transport

(3) Control of SHE by tuning ΓD2 (tunnel coupling to D2)

Three-terminal system

Page 38: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

3.3. Enhanced SHE by Kondo resonanceKondo effect in quantum dot• Spin S=1/2 in quantum dot + Fermi sea in leads• Spin-singlet state (S=0)

Many-body ground state(Binding energy:

Kondo temperature TK)

Resonant level at EFwith width of TK

Page 39: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Addition and extraction energies ( )2

R2

L

B ,,

VV

TkEE

+=Γ

Γ>>−+

πν

Γ>>−+ ,, BTkEE

⎩⎨⎧

−=−=−+=−=

+

01

02

εμμμμεμμ

EUE

Coulomb blockade with single electron

• Sequential tunnel process is forbidden.• Higher-order tunnel process “cotunneling”

Page 40: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Spin-flip by cotunneling

• Anti-ferromagnetic coupling between localized spinand conduction electrons

[ ] ( ) ⎟⎠⎞

⎜⎝⎛ +=⋅=+= −+↓

+↑+∑ EE

VJJccSJH kkkk

kk11 ,22 2

''

' sSL

Page 41: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Ground state with antiferromagnetic coupling

• Two interacting spins:

• One spin and Fermi sea:

( )21212

1Grd ↑↓−↓↑=

Conduction electrons coherently couple with a localizedspin (spin is completely screened).

Spin-singlet state

Kondo singlet state(Many-body state)

Page 42: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• T>>TK: Spin S=1/2 is localized in the quantum dot (small G by Coulomb blockade)

• T<<TK: Kondo singlet state is formed. Resonant tunneling through the singlet state.

heG

22=

Conductance

Page 43: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Two levels in quantum dot

12 εε −=Δ

(1) TK < Δ: level 2 is irrelevant

Spin S=1/2 in level 1 is screened out(conventional “spin SU(2)” Kondo effect)

(2) TK > Δ:Both pseudo-spin (levels 1 and 2) and spin S=1/2 arescreened out (SU(4) Kondo effect)

Crossover of (1) and (2): slave-boson mean-field theorycf. J. S. Lim et al., PRB 74, 205119 (2006).

Page 44: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Two-terminal system

−+ = ,1,1 GG

∞=U

Kondo regime : − εd << Γ

charge fluctuationregime: −εd ~ Γ

Page 45: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Three-terminal system

Γ≡Γ=Γ 1DS

1,321

2D21D22D11D1

2S1S

=−=

=

,,,,

,,

eeeeee

Γ=ΓΓ=Γ

Γ=ΓΓ=Γ

2 (d) (c)

5.0 (b)2.0 (a)

2D

2D

2D

2D

Γ=Δ 2.0SO

TK decreases with decreasing εd:- SU(4) Kondo: TK > Δ- SU(2) Kondo: TK < Δ

Γ=−=Δ 2.012 εε∞=U

Page 46: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

3.4. Conclusions

• Formulation of spin Hall effect at quantum dot- needs two levels in the dot, more than two leads

• Enhancement of SHE by resonant tunneling and Kondo resonance (SU(4) Kondo effect)

[Observation by “inverse SHE”]• Ferromagnet (magnetization p) + InAs quantum dot:

Hamaya et al., APL (2007)

−+−

++

= ,1,11 2cos1

2cos1 GpGpG θθ θ: angle between

magnetization and hSO

[Reference]Eto and Yokoyama, J. Phys. Soc. Jpn. 79, 123711 (2010).

Page 47: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Outline

1. Introduction1.1. Spin-orbit interaction1.2. Spin Hall effect

2. Spin Hall effect with artificial potential

4. Search for Majorana fermions4.1. Topological quantum computer4.2. Majorana fermion

3. Semiconductor quantum dot3.1. Coulomb oscillation3.2. Spin Hall effect in quantum dot

Page 48: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Conventional quantum computer(1) qubit: single electron spin

4.1. Topological quantum computer

(2) Easy to manipule using ESR, etc.(3) Decoherence problem: continuous phase error

↓+↑=ψ 10 CC

↓+↑⇒↓+↑ θieCCCC 1010

overcome by “quantum error correction”

Page 49: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• Topological quantum computer(1) Many-body states of interacting electrons

(2) Topologically protected:robust against local perturbation

(3) Manipulation by exchanging quasi-particlesNon-Abelian braiding statistics

states) ground e(degenerat ∑ Ψ=j

jjCψ

1 2 3

Page 50: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

1 2 3 4 …

( ) ( )KK ,3,2,1,3,1,2 Ψ=Ψ

( ) ( )KK ,3,2,1,3,1,2 Ψ−=Ψ

( ) ( )KK ,3,2,1,3,1,2 Ψ=Ψ αie

Boson

Fermion

“Anyon”

Suggested for high Tc cuprates∞=U 2D,

Page 51: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

1 2 3 4 …

( ) ( )∑ Ψ=Ψj

jiji C KK ,3,2,1,3,1,2 Non-Abelian

1 2 3 1 2 3

2 3 1 3 1 2

≠2112 TTTT ≠

Page 52: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

Candidates• Fractional Quantum Hall effect with ν=5/2

• Half-quantum vortex in p-wave superconductorStrontium ruthenate Sr2Ru2O4: Science 331, 186 (2011).

( ) ( )↓↓−↑↑±Δ=Δ2

10 yx ikk

1,1 ±== zLL 1=S

“chiral states”clockwise vs. anticlockwise

Spin triplet“equal spin pairing”

Page 53: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

- Usual spin-singlet superconductor

( ) ( )e

hn2

flux 2 =Φ⇒Δ=+Δ θπθ

- p-wave (chiral) superconductore

hn22

flux =Φ

Bogoliubov-de Gennes eq. yields quasi-particleoperators

( ) ( )EEvu−=

Ψ+Ψ=+

++

γγ

γ

( ) ( )00 ===∴ + EE γγ

1=zL

Vortexcore

1−=zL

Page 54: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

4.2. Majorana fermions

• Creation and annihilation operators are self conjugate

- possibly neutrino- Half-quantum vortex at E=0

γγ =+

• 2n half-quantum vortices: ( )niii 2,,2,1 L==+ γγ

( )( )⎩

⎨⎧

−=+=

−+

2/2/

212

212

iii

iii

ididγγγγ

n “usual” fermions0,1== +

iii ddn

2n degenerate states

* Majorana fermion is a “half” of usual fermion

Page 55: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

• 2n degenerate states• Non-Abelian braiding statistices

1

1

=−=

>−=

jiTTTTTT

jiTTTT

jijiji

ijji

* Majorana fermions enable topological quantum computation

D. A. Ivanov, PRL 86, 268 (2001).

Page 56: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

4.3. Majorana fermions in semiconductor

• Rashba spin-orbit interaction

2DEG

• S-wave superconductivity (proximity effect) + magnetic field

1D

Similar to chiral superconductivity

cf. Wray’s talk: topological insulator + superconductivity

Page 57: Semiconductor quantum dots with spin-orbit …...Semiconductor quantum dots with spin-orbit interaction Mikio Eto Faculty of Science and Technology, Keio University, Japan Spintech6

(1) Semiconductor thin film

(2) InAs nanowire

J.D.Sau et al., PRL 104,040502 (2010)

J. Alicea et al., Nat. Phys. 7,412 (2011)

A pair of Majoranas


Recommended