+ All Categories
Home > Documents > Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,...

Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,...

Date post: 03-Jan-2016
Category:
Upload: louise-quinn
View: 214 times
Download: 0 times
Share this document with a friend
33
Semiconductor spintronics Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich, David Williams, et al. Institute of Physics ASCR, Prague a Shick, Jan Mašek, Vít Novák, Kamil Olejník n Kučera, Karel Výborný, Jan Zemen, et al. University of Texas Texas A&M Univ. Allan MacDonald, Qian Niu et al. Jairo Sinova, et al. NERC SWAN
Transcript
Page 1: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Semiconductor spintronicsSemiconductor spintronics

Tomáš Jungwirth

University of Nottingham

Bryan Gallagher, Tom Foxon, Richard Campion, et al.

Hitachi Cambridge

Jorg Wunderlich, David Williams, et al.

Institute of Physics ASCR, Prague

Sasha Shick, Jan Mašek, Vít Novák, Kamil OlejníkJan Kučera, Karel Výborný, Jan Zemen, et al.

University of Texas Texas A&M Univ.

Allan MacDonald, Qian Niu et al. Jairo Sinova, et al.

NERCSWAN

Page 2: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

1.1. Basic Basic physical principles of the operation of spintronic devicesphysical principles of the operation of spintronic devices

2.2. Current metal Current metal sspipintronics in HDD read-heads and memory chipsntronics in HDD read-heads and memory chips

3.3. Research in semiconductor Research in semiconductor sspintronipintronics cs

4. Summary4. Summary

Page 3: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Electron has a charge (electronics) and

spin (spintronics)

Electrons do not actually “spin”,they produce a magnetic moment that is equivalent to an electron spinning clockwise or anti-clockwise

Page 4: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

quantum mechanics & special relativity particles/antiparticles & spin Dirac equation

E=p2/2mE ih d/dtp -ih d/dr. . .

E2/c2=p2+m2c2

(E=mc2 for p=0)

high-energy physics solid-state physicsand microelectronics

Page 5: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

ResistorResistor

classicalclassical

spinspintronic tronic

ee--

external manipulation ofexternal manipulation ofcharge & spincharge & spin

internal communication between internal communication between charge & spincharge & spin

Page 6: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Pauli exclusion principle & Coulomb repulsionPauli exclusion principle & Coulomb repulsion FerromagnetismFerromagnetism

total wf antisymmetric = orbital wf antisymmetric * spin wf symmetric (aligned)

FEROFERO MAGMAG NETNET

ee--

• RobustRobust (can be as strong as bonding in solids)(can be as strong as bonding in solids)

• Strong coupling to magnetic fieldStrong coupling to magnetic field (weak fields = anisotropy fields needed (weak fields = anisotropy fields needed only to reorient macroscopic moment)only to reorient macroscopic moment)

many-body

Page 7: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

ee--

relativistic single-particle

effSO BsH

p)V(cm2

1B

22eff

V

BBeffeff

pss

Spin-orbit couplingSpin-orbit coupling (Dirac eq. in external field V(r) & 2nd-order in v /c around non-relativistic limit)

• Current sensitive to magnetizationCurrent sensitive to magnetization directiondirection

Page 8: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

1.1. Basic Basic physical principles of the operation of spintronic devicesphysical principles of the operation of spintronic devices

2.2. Current metal Current metal sspipintronics in HDD read-heads and memory chipsntronics in HDD read-heads and memory chips

3.3. Research in semiconductor Research in semiconductor sspintronipintronics cs

4. Summary4. Summary

Page 9: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Current spintronics applications Current spintronics applications

First hard discFirst hard disc (1956) (1956) - - classical electromagnet for read-outclassical electromagnet for read-out

From PC hard drives ('90)From PC hard drives ('90)to mto miicro-discscro-discs - - spintronispintronic read-headsc read-heads

MBMB’s’s

10’s-100’s 10’s-100’s GBGB’s’s

1 bit: 1mm x 1mm1 bit: 1mm x 1mm

1 bit: 101 bit: 10-3-3mm x 10mm x 10-3-3mmmm

Page 10: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Anisotropic magnetoresistance (AMR) read headAnisotropic magnetoresistance (AMR) read head1992 - dawn of spintronics1992 - dawn of spintronics

Appreciable sensitivity, simple design, scalable, cheap

Giant magnetoresistance (GMR) read head - 1997Giant magnetoresistance (GMR) read head - 1997

High sensitivity

and are almost on and off states:

“1” and “0” & magnetic memory bit

Page 11: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

MEMORY CHIPSMEMORY CHIPS

.DRAMDRAM (capacitor) - high density, cheephigh density, cheep x

high power, volatile

.SRAMSRAM (transistors) - low power, fastlow power, fast x low density,

expensive, volatile

.Flash (floating gate) - non-volatilenon-volatile x slow, limited lifetime,

expensive

Operation through electron chargecharge manipulation

Page 12: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

MRAM – universal memoryMRAM – universal memory fast, small, low-power, durable, and non-volatile

2006- First commercial 4Mb MRAM

Page 13: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

RAM chip that actually won't forget instant on-and-off computers

Based on Tunneling Magneto-Resistance (similar to GMR but insulating spacer)

Page 14: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Page 15: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

RAM chip that actually won't forget instant on-and-off computers

Based on Tunneling Magneto-Resistance (similar to GMR but insulating spacer)

Page 16: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

1.1. Basic Basic physical principles of the operation of spintronic devicesphysical principles of the operation of spintronic devices

2.2. Current metal Current metal sspipintronics in HDD read-heads and memory chipsntronics in HDD read-heads and memory chips

3.3. Research in semiconductor Research in semiconductor sspintronipintronics cs

4. Summary4. Summary

Page 17: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Dilute moment nature of ferromagnetic semiconductorsDilute moment nature of ferromagnetic semiconductors

GaAs Mn

Mn

10-100x smaller Ms

One

Current induced switchingreplacing external field Tsoi et al. PRL 98, Mayers Sci 99

Key problems with increasing MRAM capacity (bit density):

- Unintentional dipolar cross-links- External field addressing neighboring bits

10-100x weaker dipolar fields

10-100x smaller currents for switching

Sinova et al., PRB 04, Yamanouchi et al. Nature 04

Page 18: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Mn

Ga

AsMn

FeFerromagnetic semiconductorsrromagnetic semiconductors

GaAs - GaAs - standard III-V semiconductorstandard III-V semiconductor

Group-II Group-II Mn - Mn - dilute dilute magneticmagnetic moments moments & holes& holes

(Ga,Mn)As - fe(Ga,Mn)As - ferrromagneticromagnetic semiconductorsemiconductor

More tricky than just hammering an iron nail in a silicon wafer

Page 19: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Mn-d-like localmoments

As-p-like holes

Mn

Ga

AsMn

EF

DO

S

Energy

spin

spin

GaAs:Mn – extrinsic p-type semiconductor

with 5 d-electron local moment

on the Mn impurity

valence band As-p-like holes

As-p-like holes localized on Mn acceptors

<< 1% Mn

onset of ferromagnetism near MIT

Jungwirth et al. RMP ‘06

~1% Mn >2% Mn

Page 20: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

One

Dipolar-field-free current induced switching nanostructuresDipolar-field-free current induced switching nanostructures

Micromagnetics (magnetic anisotropy) without dipolar fields (shape anisotropy)

~100 nm

(b)

Domain wall

Strain controlled magnetocrystalline (SO-induced) anisotropy

Can be moved by ~100x smaller currents than in metals

Humpfner et al. 06,Wunderlich et al. 06

see J. Zemen 12:05, T2

Page 21: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

electric && magneticmagnetic

control of CB oscillations

Coulomb blockade AMR spintronic transistorCoulomb blockade AMR spintronic transistor

Wunderlich et al. PRL 06

Source Drain

GateVG

VDQ

[010]

M[110]

[100]

[110][010]

Anisotropic chemical potential

Page 22: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

• Combines electrical transistor action with magnetic storage

• Switching between p-type and n-type transistor by M programmable logic

CBAMR SET

Page 23: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

SpintronSpintronics in non-magnetic semiconductorsics in non-magnetic semiconductors

way around the problem of low Curie T in ferromagnetic semiconductors & back to exploring spintronics fundamentals

Page 24: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Spintronics relies on extraordinary magnetoresistance

B

V

I

_

+ + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ FL

Ordinary magnetoresistance:response in normal metals to external magnetic field via classical Lorentz force

Extraordinary magnetoresistance:response to internal spin polarization in ferromagnets often via quantum-relativistic spin-orbit coupling

e.g. ordinary (quantum) Hall effect

I

_ FSO__

Vand anomalous Hall effect

anisotropic magnetoresistance

M

Known for more than 100 years

Page 25: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

intrinsic skew scattering

I

_ FSO

FSO

_ __majority

minority

V

Anomalous Hall effect in ferromagnetic conductors:spin-dependent deflection & more spin-ups transverse voltage

I

_ FSO

FSO

_ __

V=0

non-magnetic

Spin Hall effect in non-magnetic conductors:spin-dependent deflection transverse edge spin polarization

V

BBeffeff

pss

Spin-orbit coupling

Page 26: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

n

n

p

SHE microchip, 100A superconducting magnet, 100 A

Spin Hall effect detected optically in GaAs-based structures

Same magnetization achievedby external field generated bya superconducting magnet with 106 x larger dimensions & 106 x larger currents

Cu

SHE detected elecrically in metals SHE edge spin accumulation can beextracted and moved further into the circuit

Wunderlich et al. PRL 05

Page 27: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

1.1. Basic Basic physical principles of the operation of spintronic devicesphysical principles of the operation of spintronic devices

2.2. Current metal Current metal sspipintronics in HDD read-heads and memory chipsntronics in HDD read-heads and memory chips

3.3. Research in semiconductor Research in semiconductor sspintronipintronics cs

4. Summary4. Summary

Page 28: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

• Information reading

Ferro

Magnetization

Current

• Information reading & storage

Tunneling magneto-resistance sensor and memory bit

• Information reading & storage & writing

Current induced magnetization switching

• Information reading & storage & writing & processing

Spintronic single-electron transistor::magnetoresistance controlled by gate voltage

• Materials: Dilute momentferromagnetic semiconductors Mn

GaAs Mn

Spintronics explores new avenues for:

& non-magnetic – spin Hall effect

Page 29: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Page 30: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

III = I + II Ga = Li + Zn

GaAs and LiZnAs are twin SC

(Ga,Mn)As and Li(Zn,Mn)As

should be twin ferromagnetic SC

But Mn isovalent in Li(Zn,Mn)As

no Mn concentration limit

possibly both p-type and n-type ferromagnetic SC

(Li / Zn stoichiometry)

In (Ga,Mn)As Tc ~ #MnGa (Tc=170K for 6% MnGa)

But the SC refuses to accept many group-II Mnon the group-III Ga sublattice

Materials research of DMSsMaterials research of DMSs

Masek et al. PRL 07

Page 31: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

(Ga,Mn)As material(Ga,Mn)As material

5 d-electrons with L=0 S=5/2 local moment

moderately shallow acceptor (110 meV) hole

- Mn local moments too dilute (near-neghbors cople AF)

- Holes do not polarize in pure GaAs

- Hole mediated Mn-Mn FM coupling

Mn

Ga

AsMn

Page 32: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Mn

Ga

AsMn

Mn–hole spin-spin interaction

hybridization

Hybridization like-spin level repulsion Jpd SMn shole interaction

Mn-d

As-p

Page 33: Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,

Heff

= Jpd

<shole> || -x

MnAs

Ga

heff

= Jpd

<SMn> || x

Hole Fermi surfaces

Ferromagnetic Mn-Mn coupling mediated by holes


Recommended