+ All Categories
Home > Documents > SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and...

SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and...

Date post: 21-Jan-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
26
ANDREAS ADITYA HENDRO 2310100093 PENGENDALIAN DEHIDRASI NATURAL GAS DENGAN TEG MENGGUNAKAN PID CONTROLLER DAN MODEL PREDICTIVE CONTROL PEMBIMBING : Prof. Ir. Renanto Handogo, MS., Ph.D. Juwari Purwo Sutikno, S.T., M.Eng., Ph.D. FERRY KURNIAWAN 2310100097 SEMINAR SKRIPSI
Transcript
Page 1: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

ANDREAS ADITYA HENDRO 2310100093

PENGENDALIAN DEHIDRASI NATURAL GAS DENGAN TEG MENGGUNAKAN PID CONTROLLER DAN MODEL PREDICTIVE

CONTROL

PEMBIMBING Prof Ir Renanto Handogo MS PhD

Juwari Purwo Sutikno ST MEng PhD

FERRY KURNIAWAN 2310100097

SEMINAR SKRIPSI

Natural Gas

bull mencegah pembentukan hidrat dan kondensasi bebas uap air di fasilitas pengolahan dan transportasi

bull memenuhi spesifikasi kadar air

bull mencegah korosi

KandunganKadar Air TEG Losses

Bagaimana mengontrol air dan TEG yang terikut gas dalam proses dehidrasi di TEG Dehydration

Unit

Bagaimana menentukan paramater tuning yang sesuai untuk proses TEG Dehydration

Melakukan konvergensi simulasi steady state dan dynamic dengan pendekatan proses absorbsi pada TEG Dehydration Unit

Melakukan penilaian unjuk kerja pengendali PID Controller dan Model Predictive Control (MPC) menggunakan metode Integral of The Absolute Value of Error (IAE)

Menentukan parameter tuning yang tepat untuk sistem pengendalian di TEG Dehydration Unit dengan menggunakan PID Controller dan Model Predictive Control (MPC)

Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg

Polimer yang lebih besar TEG dan TREG memiliki sifat terbaik untuk dehidrasi TREG memiliki sifat sedikit lebih baik daripada

TEG tetapi karena biaya tambahan TREG TEG menawarkan yang terbaik kompromi biaya manfaat dan karena itu glikol tersebut

yang paling umum digunakan

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 2: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Natural Gas

bull mencegah pembentukan hidrat dan kondensasi bebas uap air di fasilitas pengolahan dan transportasi

bull memenuhi spesifikasi kadar air

bull mencegah korosi

KandunganKadar Air TEG Losses

Bagaimana mengontrol air dan TEG yang terikut gas dalam proses dehidrasi di TEG Dehydration

Unit

Bagaimana menentukan paramater tuning yang sesuai untuk proses TEG Dehydration

Melakukan konvergensi simulasi steady state dan dynamic dengan pendekatan proses absorbsi pada TEG Dehydration Unit

Melakukan penilaian unjuk kerja pengendali PID Controller dan Model Predictive Control (MPC) menggunakan metode Integral of The Absolute Value of Error (IAE)

Menentukan parameter tuning yang tepat untuk sistem pengendalian di TEG Dehydration Unit dengan menggunakan PID Controller dan Model Predictive Control (MPC)

Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg

Polimer yang lebih besar TEG dan TREG memiliki sifat terbaik untuk dehidrasi TREG memiliki sifat sedikit lebih baik daripada

TEG tetapi karena biaya tambahan TREG TEG menawarkan yang terbaik kompromi biaya manfaat dan karena itu glikol tersebut

yang paling umum digunakan

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 3: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Bagaimana mengontrol air dan TEG yang terikut gas dalam proses dehidrasi di TEG Dehydration

Unit

Bagaimana menentukan paramater tuning yang sesuai untuk proses TEG Dehydration

Melakukan konvergensi simulasi steady state dan dynamic dengan pendekatan proses absorbsi pada TEG Dehydration Unit

Melakukan penilaian unjuk kerja pengendali PID Controller dan Model Predictive Control (MPC) menggunakan metode Integral of The Absolute Value of Error (IAE)

Menentukan parameter tuning yang tepat untuk sistem pengendalian di TEG Dehydration Unit dengan menggunakan PID Controller dan Model Predictive Control (MPC)

Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg

Polimer yang lebih besar TEG dan TREG memiliki sifat terbaik untuk dehidrasi TREG memiliki sifat sedikit lebih baik daripada

TEG tetapi karena biaya tambahan TREG TEG menawarkan yang terbaik kompromi biaya manfaat dan karena itu glikol tersebut

yang paling umum digunakan

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 4: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Melakukan konvergensi simulasi steady state dan dynamic dengan pendekatan proses absorbsi pada TEG Dehydration Unit

Melakukan penilaian unjuk kerja pengendali PID Controller dan Model Predictive Control (MPC) menggunakan metode Integral of The Absolute Value of Error (IAE)

Menentukan parameter tuning yang tepat untuk sistem pengendalian di TEG Dehydration Unit dengan menggunakan PID Controller dan Model Predictive Control (MPC)

Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg

Polimer yang lebih besar TEG dan TREG memiliki sifat terbaik untuk dehidrasi TREG memiliki sifat sedikit lebih baik daripada

TEG tetapi karena biaya tambahan TREG TEG menawarkan yang terbaik kompromi biaya manfaat dan karena itu glikol tersebut

yang paling umum digunakan

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 5: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg

Polimer yang lebih besar TEG dan TREG memiliki sifat terbaik untuk dehidrasi TREG memiliki sifat sedikit lebih baik daripada

TEG tetapi karena biaya tambahan TREG TEG menawarkan yang terbaik kompromi biaya manfaat dan karena itu glikol tersebut

yang paling umum digunakan

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 6: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

PID merupakan kontrol konvensional yang sudah dipakai untuk berbagai macam variabel proses

industri dengan konsep feedback controller

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 7: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

MPC adalah kontrol tingkat lanjut dengan kemampuan yaitu

MPC dapat digunakan untuk multivariabel process dengan mudah dapat digunakan untuk berbagai

macam constraint

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 8: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Start

Pengumpulan amp Pengolahan Data

Simulasi Process Steady State dengan ASPEN

HYSYS

Validasi Hasil Simulasi

Sizing dan Perubahan ke Dynamic Mode

Analisa Pengendalian dengan MPC

Yes

No

Analisa Pengendalian dengan PID Control

End

Membandingkan pengendalian dengan IAE

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 9: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Pemilihan Fluid Package Peng Robinson

Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2

Simulasi Steady State TEG Dehydration Unit

TEG Regeneration Package

PumpTEG Cooler

Dry Gas

TEG Flash Gas

TEG Contactor TEG Flash

Drum

KODrum

Rich TEG

Lean TEG

Hot TEG Exch

Cold TEG Exch

ReboilerTo Regenerator

Lean TEG

Sweet Gas

Hydrocarbon liquid

Dehydrated Gas

Water gas

TEG Make-upSaturated Water

Feed Gas

QReboiler

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 10: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Tabel Validasi

Kolom Kontaktor

Dry Gas Rich TEG

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 002 002 0 2673 2551 456

TEG 0 0 0 7063 7178 -162

Suhu (OC) 4593 4575 039 4586 4574 026

Flowrate (kmolhr) 6461 6451 015 7049 6936 16

Sweet Gas Lean TEG

Design Simulasi Eror() Design Simulasi Eror()

Komponen (mol)

H2O 022 022 0 844 844 0

TEG 0 0 0 9156 9156 0

Suhu (OC) 4824 4824 0 4824 4824 0

Flowrate (kmolhr) 6476 6476 0 5438 5438 0

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 11: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Tabel Validasi

Kolom Regenerasi

To Regenerator Water Gas

Design Simulasi Eror () Design Simulasi Eror ()

Komponen (mol)

H2O 72 73 139 9619 096 02

TEG 27 26 37 002 002 0

Suhu (OC) 165 165 0 102 102 0

Flowrate (kmolhr) 6915 6801 165 1478 1364 772

Hot Lean TEG

Design Simulasi Eror()

Komponen (mol)

H2O 844 844 0

TEG 9156 9156 0

Suhu (OC) 2045 2045 0

Flowrate (kmolhr) 5438 5438 0

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 12: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Simulasi Dynamic

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 13: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Simulasi Dynamic

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 14: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Pemasangan Controller

Simbol Controlled Variable Manipulated Variable

PIC -100 Tekanan Condenser Laju alir Water Gas

PIC-101 Tekanan Flash Drum Laju alir Flash Gas

LIC-100 Level Flash Drum Laju alir To Hot HE

LIC-101 Level Reboiler Laju alir Hot Lean TEG

TIC-100 Suhu top product kolom Regenerator Condenser Duty

TIC-101 Suhu bottom product kolom Regenerator Reboiler Duty

Disturbance

Komposisi H2O pada Sweet Gas

00022 (mol) 00019 (mol) 00024 (mol) -10 +10

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 15: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Tuning Parameter

Controller Kc τi (menit) τd (menit)

PIC -100 432 247E-2 55E-3

PIC-101 253 641E-3 -

LIC-100 264 0528 -

LIC-101 267 15 -

TIC-100 884 869E-2 193E-2

TIC-101 147 0632 014

PID

Control Horizon (M) 25

Prediction Horizon (P) 5

Sample Time (T) 20

Model Horizon (N) 2000

MPC

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 16: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

+10 disturbance -10 disturbance

Flash Drum

5249

52495

525

52505

5251

0 10000 20000 30000 40000

Pre

ssu

re (

bar

g)

Time (s)

Flash Drum Pressure

9699

97

9701

9702

9703

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

9698

9699

97

9701

0 10000 20000 30000 40000

Leve

l (

)

Time (s)

Flash Drum Level

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 17: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

+10 disturbance -10 disturbance

Kolom Regenerator

4994

4996

4998

50

5002

5004

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

4999

50

5001

5002

0 5000 10000 15000

Leve

l (

)

Time (s)

Reboiler Level

900E-02

900E-02

900E-02

900E-02

900E-02

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time(s)

Condenser Pressure

008998

008999

009

009001

0 5000 10000 15000

Pre

ssu

re (

bar

g)

Time (s)

Condenser Pressure

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 18: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

+10 disturbance -10 disturbance

Kolom Regenerator

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 19: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

PID

204534

204536

204538

20454

204542

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Hot Lean TEG Temp

1019995

102

1020005

102001

0 5000 10000 15000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temp

203

204

205

206

0 2000 4000 6000 8000 10000

Tem

pe

ratu

re (

oC

)

Time(s)

Hot Lean TEG Temperature

1019

10195

102

10205

1021

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

+10 disturbance

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 20: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

PID

-10 disturbance

204534

204536

204538

20454

204542

0 5000 10000 15000

Tem

p (

oC

)

Time (s)

Hot Lean TEG Temp

101994

101996

101998

102

102002

0 5000 10000 15000Tem

pe

ratu

re (

OC

)

Time (s)

Water Gas Temp

203

204

205

206

207

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Waktu (s)

Hot Lean TEG Temp

1018

1019

102

1021

1022

0 2000 4000 6000 8000 10000Tem

pe

ratu

re (

oC

)

Time (s)

Water Gas Temperature

MPC

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 21: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Kandungan Air pada Dry Gas

78

8

82

84

86

88

9

92

94

96

98

0 10000 20000 30000 40000

Kan

du

nga

n a

ir (

lbM

MSC

F)

Time (s)

Kandungan Air pada Dry Gas

Sebelum dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sebelum Dikontrol (-10disturbance)

Sesudah Dikontrol (-10disturbance)

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 22: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Jumlah TEG Losses

470E-02

520E-02

570E-02

620E-02

670E-02

720E-02

770E-02

820E-02

870E-02

0 5000 10000 15000 20000 25000 30000 35000 40000

TEG

Lo

sse

s (g

alM

MSC

F)

Time (s)

TEG Losses

Sebelum Dikontrol (+10disturbance)

Sesudah dikontrol (+10disturbance)

Sesudah Dikontrol (-10disturbance)

Sebelum dikontrol (-10disturbance)

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 23: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

10 -10 Vessel Pressure 989E-05 0000101

Vessel Level 0014327 0006476 Condenser Pressure 275E-05 288E-05

Hot Lean TEG 0127799 0126832 Water Gas Temp 0000313 0000539 Reboiler Level 0041899 0014523

Perbandingan IAE

MPC 10 -10 Hot Lean TEG 1032108963 1618996

Water Gas 1440531279 1576381

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 24: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Cara untuk meminimalkan TEG Losses adalah dengan cara mengendalikan suhu pada kolom regenerator di mana dapat dilakukan baik menggunakan Proportional Integral Derivative Control (PID) Control maupun dengan Model Predictive Control (MPC)

Dari perbandingan IAE dapat disimpulkan bahwa MPC menghasilkan nilai yang lebih besar dari 2 controller PID untuk temperatur

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 25: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

Bahadori A amp Vuthaluru H B 2009 Simple Methodology for Sizing of Absorbers for TEG (Triethylene Glycol) Gas Dehydration Systems Energy 34 1910-1916 Chen and Mathias 1999 Applied Thermodynamics For Process Modelling AiChe Journal February 2002 Vol 48 No 2 Christensen D L 2009 Gas Dehydration(Themodynamic Simulation of The WaterGlycol Mixture) K10 ndash Aalborg University Esbjerg Gandhidasan P Al-Farayedhi A A Al-Mubarak A A 2001 Dehydration of Natural Gas Using Solid Desiccants Energy 26855-68 Gironi F M Maschietti V Piemonte 2012 Modelling Triethylene Glycol ndash Water system for Natural Gas Dehydration Universitagrave degli Studi di Roma ldquoLa Sapienzardquo Roma Italy GPSA 2004 Gas Processors and Suppliers Engineer Databook USATulsa Hernandez-Valencia Vincente N Hlavinka Michael W amp Bullin Jerry A 2006 Design Glycol Units for Maximum Efficiency Texas Bryan Bryan Research amp Engineering Inc Kvamsdal H M Jakobsen JP amp Hoff KA 2009 Dynamic Modeling and Simulation of a CO2 Absorber Column for Post-Combustion CO2 Capture Chemical Engineering and Processing 48 135-144 Nasution Anggi Arifin dan Anton Santoso 2008 Strategi Tuning Unconstrained Model Predictive Control untuk Multivariabel Proses (2x2 Fopdt) dengan Memperhatikan Interaksi Proses Skripsi S1 ITS Surabaya Nivargi J P Gupta D F Shaikh S J amp Shah K T 2005 TEG Contactor for Gas Dehydration Asubhai Media PVT Ltd Oslashi Lars Erik amp Selstoslash Elisabeth Tyvand 2003 Process Simulation of Gycol Regeneration Telemark University College Oyenekan BA amp Rochelle GT 2007 Alternative Stripper Configurations for CO2 Capture by Aqueous Amine AlCheJournal 53(12) 3144-3154 Prosim 2010 ProSim Plus Application Example Natural Gas Dehydration Unit with Tryethylene Glycol Labegravege France Seborg Dale E Edgar Thomas F amp Mellichamp Duncan A 2004 Process and Dynamic Control 2nd edition John Wiley amp Sons Inc Singapore Tu H amp Rinard IH 2006 ForeSee ldquoA Hierarchial Dynamic Modelling and Simulation System for Complex Processesrdquo Computers amp Chemical Engineering 30(9) 1324-1345

THANK YOU

TERIMA KASIH

谢谢

Page 26: SEMINAR SKRIPSI · (Triethylene Glycol) Gas Dehydration Systems. Energy 34, 1910-1916 Chen and Mathias. 1999. Applied Thermodynamics For Process Modelling. AiChe Journal, February

THANK YOU

TERIMA KASIH

谢谢


Recommended