+ All Categories
Home > Documents > Sensitivity analysis for a class of semi-coercive...

Sensitivity analysis for a class of semi-coercive...

Date post: 01-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
66
Sensitivity analysis for a class of semi-coercive variational inequalities using recession tools. Samir ADLY Universit ´ e de Limoges France Workshop International sur les math ´ ematiques et l’environnement Essaouira, 23-24 novembre 2012.
Transcript
Page 1: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Sensitivity analysis for a class ofsemi-coercive variational inequalities

using recession tools.

Samir ADLYUniversite de Limoges

France

Workshop Internationalsur les mathematiques et l’environnement

Essaouira, 23-24 novembre 2012.

Page 2: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

References

The talk is based on the following papers :

I K. ADDI, S. ADLY, D. GOELEVEN, H. SAOUD,A sensitivity analysis of a class of semi-coercivevariational inequalities using recession tools, JOGO 2007.

I K. ADDI, S. ADLY, B. BROGLIATO, D. GOELEVEN,A method using the approach of Moreau andPanagiotopoulos for the mathematical formulation ofnon-regular circuits in electronics, Nonlinear Analysis,Hybrid Systems 2007.

I S. ADLY, E. ERNST, M. THERA, Stability of Non-coerciveVariational Inequalities, Communications in ContemporaryMathematics Vol. 4, 1, 145-160 (2002).

Page 3: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Outline

1. Non-coercive Variational inequalities : a state of art2. Stability of semi-coercive variational inequalities3. Ideal diode model : a complementarity formulation4. Set-Valued Ampere-Volt characteristics in

electronics : the convex case5. Some applications in electronics and mechanics

Page 4: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Outline

Non-coercive Variational inequalities : a state of art

Stability of semi-coercive variational inequalities

Ideal diode Model

Set-Valued Ampere-Volt characteristic in electronics

Some applications in electronics and mechanics

Page 5: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Position of the problem

Let us consider the problem :

V .I.(A, f ,Φ,K )

Find u ∈ K such that

〈Au − f , v − u〉+ Φ(v)− Φ(u) ≥ 0,

∀v ∈ KI X is a reflexive Banach space ,I K ⊂ X is a closed convex subset (nonemty),I A : X → X ∗ is an operator,I f ∈ X ∗,I Φ ∈ Γ0(X ) is a convex l.s.c. and proper function.

Page 6: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The coercive case

Several existence results for V .I.(A, f ,Φ,K ) are knownwhen the operator A

(i) is linear and coercive , i.e. ∃α > 0 such that :

〈Au,u〉 ≥ α‖u‖2, ∀u ∈ X,

(ii) is non-linear and coercive i.e. :

lim‖u‖→+∞

〈Au,u〉‖u‖ = +∞.

See the contributions of Brezis, Browder, J.L. Lions,Mosco, Stampacchia, Fichera etc . . .

Page 7: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The non-coercive case

For the Non-coercive case, we refer to the works of :I Fichera (1964)I J.L. Lions & G. Stampacchia (1967)I C. Baiocchi, F. Gastaldi, F. Tomarelli (1985)I C. Baiocchi, G. Buttazzo, F. Gastaldi, F. Tomarelli

(1988)I F. Tomarelli (1993)I D. Goeleven (1994)I S. Adly, D. Goeleven, M. Thera (1996) etc ...I A. Auslender (1996).

Page 8: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

MotivationLet us consider the following classical Neumann problem :

N (f )

find u ∈ H1(Ω) such that−∆u = f , in Ω∂u∂n

= 0, on ∂Ω

It is well-known that N (f ) has a solution if and only if∫Ω

f (x)dx = 0.

If we replace f by fε = f + ε (with ε > 0), then N (fε) hasno solutions.

The problem N (f ) is unstable.

Page 9: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Obstacle problem without friction.Let Ω be an open bounded subset of R2 (representing athin elastic membrane).For f ∈ L2(Ω) and Ψ a given obstacle, we consider thefollowing problem :

(P)

−∆u ≥ f , in Ω(−∆u − f )(u −Ψ) = 0, in Ωu = 0, on ∂Ω

fdx

x1

x2

xu(x)

Page 10: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The variational formulation of the problem (P) is :

(P)

Find u ∈ K such that〈Au − f , v − u〉 ≥ 0, ∀v ∈ K

I X = H10 (Ω)

I K = v ∈ X | v ≥ ΨI 〈Au, v〉 =

∫Ω

∇u · ∇v dx

I 〈f , v〉 =

∫Ω

f vdx

Page 11: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

If the condition u = 0 on ∂Ω is replaced by∂u∂n

= 0 on ∂Ω

then the operator A : X := H1(Ω)→ X ′ is no morecoercive.

Page 12: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

If the problem (P) has a solution, then∫

Ω

fdx ≤ 0.

If∫

Ω

fdx < 0, then the problem has a solution.

Equivalently :

Necessary Condition : f ∈[

ker A ∩ K∞]

.

Suffisante Condition : f ∈ Int(

[ker A ∩ K∞])

.

The problem is unstable on the boundary.

Page 13: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

(ker(A) ∩ K∞

)

Stable

instableinstable

Page 14: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The puffed-up membrane

Membrane

Obstacle

Page 15: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The puffed-up membrane

Find u ∈ K = v ∈W 1,2(Ω) : v ≥ Ψ on Ω∫

Ω

∇u · ∇(v − u)dx +

∫∂Ω

g(|v | − |u|)dσ ≥∫

Ω

f (v − u)dx ,

∀v ∈ K .

Necessary condition :∫∂Ω

gdσ ≥∫

Ω

fdx .

Suffisante condition :∫∂Ω

gdσ >∫

Ω

fdx .

Page 16: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Outline

Non-coercive Variational inequalities : a state of art

Stability of semi-coercive variational inequalities

Ideal diode Model

Set-Valued Ampere-Volt characteristic in electronics

Some applications in electronics and mechanics

Page 17: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

We consider the following finite dimensional variationalinequality

VI(A, f , ϕ,K )

Find u ∈ K such that〈Mu − q, v − u〉+ Φ(v)− Φ(u) ≥ 0, ∀v ∈ K

I M ∈ Rn×n is a symmetric and positive semidefinitematrix ;

I Φ : Rn → R ∪ +∞ is a proper, convex, lowersemicontinuous and bounded from below ;

I K ⊂ Rn is a closed and convex set such that0 ∈ Dom Φ ∩ K .

Page 18: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

I The recession function :

Φ∞(x) = limt→+∞

Φ(x0 + tx)− Φ(x0)

t, x0 ∈ dom(Φ).

(epi (Φ)

)∞

= epi (Φ∞).

Page 19: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

I The polar cone :

C = f ∈ X ∗ : 〈f , x〉 ≤ 0, ∀x ∈ C.

C

C

Page 20: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

I The support function :

σC(f ) = supx∈C〈f , x〉.

σC (f

2 )

.

f2

f1

C

σC (f1 )

Page 21: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

I The Barrier cone : B(C) = dom σC.

Page 22: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

I The Fenchel-Legendre conjugate :

Φ∗(f ) = supx∈X〈f , x〉 − Φ(x).

Φ(x)

−Φ∗(f)

f

〈f,x〉

=0

Page 23: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Let us finally recall the following proposition

PropositionLet Ψ ∈ Γ0(Rn) and p ∈ Rn be given. We have :

(i) p ∈ Dom Ψ∗ ⇐⇒ Ψ∞(w) ≥ 〈p,w〉, ∀w ∈ Rn ;

(ii) p ∈ Int (Dom Ψ∗)⇐⇒ Ψ∞(w) > 〈p,w〉, ∀w ∈ Rn\0.

Page 24: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The solutions set of VI(A, f , ϕ,K ) will be denoted bySol(M,q,Φ,K ).The following resolvent set will also play an important role

R(A,Φ,K ) = q ∈ Rn : Sol(M,q,Φ,K ) 6= ∅.

Page 25: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Let us introduce the following functionΨ : Rn → R ∪ +∞ defined by

Ψ(u) =12‖Qu‖2 + Φ(u) + IK (u), (1)

where Q = I − Pker(M) and Pker(M) denotes the orthogonalprojector from Rn to ker(M).

Page 26: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

LetΨ(u) =

12‖u − Pker(M)(u)‖2 + Φ(u) + IK (u),

We have the following lemma :

LemmaSuppose that the assumptions (H) hold. We have

I Dom Ψ∗ = R(M) + Dom(

Φ + IK)∗.

I Ψ∞(w) = Iker(M)(w) + Φ∞(w) + IK∞(w),

Page 27: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

PropositionA necessary condition for the existence of a solution ofVI(A, f , ϕ,K ) is that

Φ∞(w) ≥ 〈q,w〉, ∀w ∈ ker(M) ∩ K∞. (2)

Page 28: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

PropositionSuppose that assumptions (H) hold. We have

IntR(M,Φ,K ) =

q ∈ Rn : Φ∞(w) > 〈q,w〉,∀w ∈ ker(M) ∩ K∞ \ 0

Page 29: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

DefinitionThe variational inequality VI(A, f , ϕ,K ) is stable if thereexists ε > 0 such that for any Mε ∈ S+

n (R), any vectorqε ∈ q + εBn, any Φε ∈ Γ0(Rn) bounded from below, andany nonempty closed convex set Kε satisfying thefollowing conditions

0 ∈ Dom Φε ∩ Kε

ker(M) ∩ ker(Φ∞) ∩ K∞ = ker(Mε) ∩ ker((Φε)∞) ∩ (Kε)∞

the perturbed problem VI(Mε,qε,Φε,Kε) has at least onesolution.

Page 30: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

TheoremAssume that assumptions (H) are satisfied. Then thevariational inequality VI(A, f , ϕ,K ) is stable in the senseof Definition 2 if and only if

Φ∞(w) > 〈q,w〉, ∀w ∈ ker(M) ∩ K∞, w 6= 0.

Page 31: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Ideal diode Model

THE APPROACH OF MOREAU AND PANAGIOTOPOULOS:

USE IT IN ELECTRONICS

K. ADDI and D. GOELEVEN

IREMIA, University of La Reunion

97400 Saint-Denis, France

[email protected], [email protected]

S. ADLY

DMI-XLIM, University of Limoges

87060 Limoges, France

[email protected]

B. BROGLIATO

INRIA Rhones-Alpes

38334 Saint-Ismier, France

[email protected]

Ideal Diode

i (mA)

V (Volts)

+ !

i

V

• V < 0, i = 0 =⇒ diode is blocking ;• i > 0,V = 0 =⇒ diode is conducting ;

Page 32: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Complementarity formulation

V ≤ 0, i ≥ 0, Vi = 0 ⇐⇒ min−V , i = 0

V ∈ ∂ΨR+(i) ⇐⇒ i ∈ ∂Ψ∗R+(V ) = ∂ΨR−(V )

ΨR+(x) :=

0 if x ≥ 0+∞ if x < 0 ∂ΨR+(x) :=

R− if x = 00 if x > 0∅ if x < 0

Page 33: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Complementarity formulation

u =

Ri︷︸︸︷UR +

∈ ∂ΨR+ (i)︷︸︸︷V +E ⇐⇒ E + Ri − u ∈ −∂ΨR+(i)

Page 34: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Complementarity formulation

ER

+ i − uR∈ −∂ΨR+(i)⇐⇒ −E

R+

uR∈ i + ∂ΨR+(i)

i = (id + ∂ΨR+)−1(u − E

R) =

1R

max0,u − E

u < E =⇒ diode is blocking

u ≥ E =⇒ diode is conducting

Page 35: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Numerical simulation : Ideal diode

INPUT SIGNAL t 7→ u(t)

D. Goeleven - Variational inequalities in electronics - 16

Numerical simulation: Ideal diode

INPUT SIGNAL t !" u(t)

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

input vo

ltage

OUTPUT SIGNAL t !" Vo(t) := V (t) + E = u(t) # Ri(t)

= u(t) # R max0,u(t) # E

R = u(t) + min0, E # u(t)

= minu(t), E

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

outp

ut vo

ltage

Page 36: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Numerical simulation : Ideal diode

OUTPUT SIGNAL t 7→ Vo(t) := V (t) + E = u(t)− Ri(t)

= u(t)− R max0, u(t)− ER

= u(t) + min0,E − u(t)

= minu(t),E

D. Goeleven - Variational inequalities in electronics - 16

Numerical simulation: Ideal diode

INPUT SIGNAL t !" u(t)

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

input vo

ltage

OUTPUT SIGNAL t !" Vo(t) := V (t) + E = u(t) # Ri(t)

= u(t) # R max0,u(t) # E

R = u(t) + min0, E # u(t)

= minu(t), E

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

outp

ut vo

ltage

Page 37: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Outline

Non-coercive Variational inequalities : a state of art

Stability of semi-coercive variational inequalities

Ideal diode Model

Set-Valued Ampere-Volt characteristic in electronics

Some applications in electronics and mechanics

Page 38: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic inelectronics

• Diode• Zener Diode• Varactor• Triode• Tetrode• Transistor• Diac• Triac• SiliconControlledRectifier

Page 39: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic : theDiode model

V

i

+ -

V1

V2

1

-100

V (Volts)

i (mA)

There is a voltage point, called the knee voltage V1, at whichthe diode begins to conduct and a maximum reverse voltage,called the peak reverse voltage V2,that will not force the diodeto conduct.

Page 40: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic : thecomplete diode model

V1

V2

IR

i (mA)

-100

100

1

-0.001

V (Volts)

Illustrates a complete diode model which includes theeffects of the natural resistance of the diode

Page 41: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic : theZener diode model

V

i

+ -

V1

V2

I1I2

-10

-10

1

V (Volts)

i (mA)

Zener diode is a good voltage regulator to maintain aconstant voltage regardless of minor variations in loadcurrent or input voltage.

Page 42: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic inelectronics

V

V

i

+ -

V1

V2

i

VV1

V2

i

(a) (b)

I1

I2

Illustrates a typical voltage current characteristics of adiac.

Page 43: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Set-Valued Ampere-Volt characteristic inelectronics

V

I

IG

i

V

i

(a) (b)

V

i

(c)

V

IG3

IG2

IG1

<IG3<IG2=IG10

+

_

Illustrates the AV-characteristic of a three-terminal siliconcontrolled rectifier which is used for start/stop controlcircuit for a direct current motor, lamp...

Page 44: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Outline

Non-coercive Variational inequalities : a state of art

Stability of semi-coercive variational inequalities

Ideal diode Model

Set-Valued Ampere-Volt characteristic in electronics

Some applications in electronics and mechanics

Page 45: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Clipping circuit

u(t)

R

V+

-

+-

E

i

V

i

+ -

V1

V2

1

-100

V (Volts)

i (mA)

Page 46: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

The electrical superpotential of the practical diode is

ϕPD(x) =

V1x if x ≥ 0

V2x if x < 0, (x ∈ R).

Thenϕ∗PD(z) = I[V2,V1](z), (z ∈ R)

We see that

∂ϕPD(x) =

V2 if x < 0

[V2,V1] if x = 0

V1 if x > 0

, (x ∈ R)

Page 47: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

∂ϕ∗PD(z) =

R− if z = V2

0 if z ∈]V2,V1[

R+ if z = V1

∅ if z ∈ R\ [V2,V1]

, (z ∈ R).

recovers the volt-ampere characteristic (V , i). Theampere-volt characteristic of the practical diode can thusbe written as

V ∈ ∂ϕPD(i)⇐⇒ i ∈ ∂ϕ∗PD(V )⇐⇒ ϕPD(i) + ϕ∗PD(V ) = iV .

Page 48: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Using Kirchhoff’s law the problem is equivalent toVI(R,E− u, ϕPD,R), i.e.

i ∈ K := R : (Ri+E−u)(v−i)+ϕPD(v)−ϕPD(i) ≥ 0,∀v ∈ R.

Here R > 0 and for each E ,u ∈ R.

Page 49: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Moreover :

i(t) = (idR + ∂ϕPD)−1(u(t)− E

R)

= argminx∈R12|x − (

u(t)− ER

)|2 + ϕPD(x).

andVo(t) = u(t)− Ri(t). (3)

Page 50: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

A static model

E1 < E2

D2D1

u(t)

R

V1 V2

i2

i1

i

KIRCHOFF’S LAWS

E1 + R(i1 + i2)− u = +V1 ∈ −∂ΨR−(i1)

E2 + R(i1 + i2)− u = −V2 ∈ −∂ΨR+(i2)

Page 51: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-coercive complementarity formalism

A︷ ︸︸ ︷(R RR R

) I︷ ︸︸ ︷(i1i2

)+

U︷ ︸︸ ︷(E1 − uE2 − u

)∈ −∂ΨR−×R+(I).

Here the matrix A is positive semidefinite and symmetric.A sufficient condition for the existence of at least onesolution is :

〈q, v〉 > 0, ∀v ∈ kerA ∩ (R− × R+) \ 0.

Page 52: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-coercive complementarity formalism

〈q, v〉 > 0, ∀v ∈ kerA ∩ (R− × R+) \ 0.We have

kerA∩(R−×R+) = v = (v1, v2) ∈ R2 : v1 ≤ 0, v2 = −v1.

Then, for all v ∈ kerA ∩ R− × R+, v 6= 0, we get

qT v = (E1 − u)v1 + (E2 − u)v2 = v2(E2 − E1) > 0.

Page 53: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Then I is determined as the unique solution of thecomplementarity system :

I ∈ K , AI + U ∈ K ∗, IT (AI + U) = 0

m

VARIATIONAL INCLUSION SYSTEM

AI + U ∈ −∂ΨR+×R+(I)

Moreover

i1 + i2 =

u − E1

Rif u < E1

0 if E1 ≤ u ≤ E1u − E2

Rif u > E2

.

Page 54: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

inpu

t vol

tage

D. Goeleven - Variational inequalities in electronics - 4

INPUT t !" u(t)

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

input voltage

OUTPUT t !" Vo(t) = Ri(t)

0 1 2 3 4 5 6 7 8 9 10!1.5

!1

!0.5

0

0.5

1

1.5

time

outp

ut voltage

Page 55: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-regular electronic circuits

• A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rn×p,• j : R×Rm → R, x 7→ j(t , x) locally Lipschitz for all t ≥ 0,• u ∈ L1

loc(0,+∞;Rp), x0 ∈ Rn.Problem P(x0) : Find x : [0,+∞[→ Rn; andyL : [0,+∞[→ Rm such that :

x ∈ C0([0,+∞[;Rn), ByL ∈ L1loc(0,+∞;Rn),

dxdt∈ L1

loc(0,+∞;Rn), x(0) = x0,

dxdt

(t) = Ax(t)− ByL(t) + Du(t), a.e. t ≥ 0,

y(t) = Cx(t), ∀ t ≥ 0, and yL(t) ∈ ∂2j(t , y(t)), a.e. t ≥ 0.

Page 56: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-regular circuit with VAP-admissibledevice

(H) There exists a symmetric and invertible matrixR ∈ Rn×n such that

R−2CT = B.

Problem Q(x0) : Find z : [0,+∞[→ Rn; t 7→ z(t) suchthat :

z ∈ C0([0,+∞[;Rn),dzdt∈ L1

loc(0,+∞;Rn), z(0) = Rx0,

dzdt

(t) ∈ RAR−1z(t) + RDu(t)− R−1CT∂2j(t ,CR−1z(t)).

Page 57: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-regular circuit with VAP-admissibledevice

Suppose that assumption (H) is satisfied.

If (x , yL) is solution of Problem P(x0) then z = Rx issolution of Problem Q(x0).

Reciprocally, if z is solution of Problem Q(x0) then thereexists a function yL such that (R−1z, yL) is solution ofProblem P(x0).

Page 58: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-regular circuit with VAP-admissibledevice

SetL = CR−1.

andJ(t ,X ) = j(t ,LX ), (X ∈ Rn, t ≥ 0)

then

∂2J(t ,X ) ⊂ R−1CT∂2j(t ,CR−1X ), (X ∈ Rn, t ≥ 0)

DIFFERENTIAL INCLUSION

dzdt

(t) ∈ RAR−1z(t) + RDu(t)− ∂2J(t , z(t)), a.e. t ≥ 0

Page 59: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Non-regular circuit with VAP-admissibledevice

DIFFERENTIAL INCLUSION

dzdt

(t) ∈ RAR−1z(t) + RDu(t)− ∂2J(t , z(t)), a.e. t ≥ 0

VARIATIONAL INEQUALITY

〈dzdt

(t)− RAR−1z(t)− RDu(t), v − z(t)〉+

+J(t , v)− J(t , z(t)) ≥ 0,∀v ∈ Rn, a.e. t ≥ 0.

Page 60: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Example

IG

u(t)

R

L

C0

Page 61: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Example

dx1

dtdx2

dt

=

A︷ ︸︸ ︷ 0 1

− 1LC0

−RL

( x1

x2

)−

B︷ ︸︸ ︷(0

−1L

)yL+

D︷ ︸︸ ︷(01L

)u,

y =

C︷ ︸︸ ︷(0 −1

)( x1

x2

)and

yL ∈ ∂C,2jSCR(., y).

Page 62: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

(H) There exists a symmetric and invertible matrixR ∈ Rn×n such that

R−2CT = B.

R =

1√C0

0

0√

L

Hence assumption (H) is satisfied.

Page 63: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Example 2

u

L2

L3

R1

R2

R3

C4

Page 64: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

dx1

dtdx2

dtdx3

dt

=

A︷ ︸︸ ︷0 1 0

− 1L3C4

−(R1 + R3)

L3

R1

L3

0R1

L2−(R1 + R2)

L2

x1

x2

x3

B︷ ︸︸ ︷0 0

1L3

1L3

− 1L2

0

(

yL,1

yL,2

)+

D︷ ︸︸ ︷00

1L2

u,

yL,1 ∈ ∂jD(−x3 + x2)yL,2 ∈ ∂jZ (x2)

(4)

Page 65: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

Setting

y =

C︷ ︸︸ ︷(0 1 −10 1 0

) x1

x2

x3

jZD(X ) = jZ (X1) + jD(X2), (X ∈ R2)

yL,1 ∈ ∂jD(−x3 + x2)yL,2 ∈ ∂jZ (x2)

⇐⇒ yL ∈ ∂jZD(Cx).

Page 66: Sensitivity analysis for a class of semi-coercive ...este.uca.ma/workshop2012/wp-content/uploads/2012/10/Samir2.pdf · 1. Non-coercive Variational inequalities : a state of art 2.

A simple computation shows that the matrix

R =

1√C4

0 0

0√

L3 0

0 0√

L2

is convenient.Hence assumption (H) is satisfied.


Recommended