+ All Categories
Home > Documents > Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in ...

Date post: 25-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
15
SCIENCES DES ALIMENTS, 26(2006) 394-408 © Lavoisier – La photocopie non autorisée est un délit ARTICLE ORIGINAL ORIGINAL PAPER Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) M. Tchoné 1 , G. Bärwald 2 , G. Annemüller 3 , L.-G. Fleischer * RÉSUMÉ Séparation et identification des composés phénoliques du topinambour (Helianthus tuberosus L.) Plusieurs méthodes chromatographiques telles que la colorimétrie, la chromato- graphie liquide à haute performance en phase inversée (RP-HPLC), le couplage de la chromatographie liquide et de la chromatographie en phase gaseuse à la spectrométrie de masse (LC-MS, GC-MS) ont été expérimentées et au besoin modifiées et adaptées pour la séparation, l’identification et la quantification des composés phénoliques dans différentes variétés de Topinambour. Vingt-deux composés phénoliques ont été identifiés. L’acide gallique (de 1 mg à 140 mg) ; l’acide protocatéchique (de 5 mg à 200 mg) ; l’esculine (de 4 mg à 270 mg) ; l’acide gentisique (de 30 mg à 3 g), la catéchine (de 1 mg à 300 mg), l’acide 4-hydroxybenzoïque (de 1 mg à 90 mg), l’acide chlorogénique (de 20 mg à 5 g), l’acide vanillique (de 1 mg à 520 mg), l’acide syringique (de 1 mg à 40 mg), l’acide caféique (de 1 mg à 240 mg), l’épicatéchine (de 4 mg à 800 mg), l‘acide 2-hydroxy-3-5-dinitrobenzoïque (de 2 mg à 140 mg), l’umbelliferone (de 2 mg à 110 mg), scopolétine (de 1 mg à 80 mg), l’acide p-coumarique (de 1 mg à 40 mg), l’acide coumarique-3-carbon (de 1 mg à 40 mg), l’acide ferulique (de 1 mg à 40 mg), l’acide sinapique (de 1 mg à 60 mg), l’acide 3-hydroxycinnami- que (trace) ; l’acide ellagique (de 2 mg à 40 mg), 4-hydroxycoumarine (de 4 mg à 300 mg) et l’acide salicylique (de 30 mg à 7 g). Toutes ces teneurs sont expri- mées pour 100 g de matière sèche. Parmi les composés phénoliques identifiés, vingt possèdent des vertus thérapeutiques. Mots clés topinambour, composés phénoliques, LC-ESI-MS, GC-CI-MS, HPLC, acide sali- cylique. 1. Dr.-Ing. Michel Tchoné – Technische Universität Berlin – Fakultät für Prozesswissenschaften – Sekr. ZI-3 – Amrumer Strasse 32, D-13353 Berlin – Email: [email protected] 2. Prof. Dr.-Ing. G. Bärwald – Technische Universität Berlin – Fakultät für Prozesswissenschaften – Sekr. ACK 25 Ackerstrasse 76, D-13355 Berlin 3. Prof. Dr. sc. techn. G. Annemüller – Technische Universität Berlin – Fakultät für Prozesswissenschaften – Sekr. ZI-1 Prozesstechnische Grundlagen der LMT – Amrumer Strasse 32, D-13353 Berlin – Email: Anne- [email protected] * Correspondance : Prof. Dr. sc. techn. L.-G. Fleischer – Technische Universität Berlin – Fakultät für Pro- zesswissenschaften – Sekr. ZI-1 Prozesstechnische Grundlagen der LMT – Amrumer Strasse 32, D- 13353 Berlin – Allemagne – Email : [email protected] SDA26_5_394-408 Page 394 Lundi, 11. décembre 2006 8:59 08 Cet article des Editions Lavoisier est disponible en acces libre et gratuit sur sda.revuesonline.com
Transcript
Page 1: Separation and Identification of Phenolic Compounds in ...

SCIENCES DES ALIMENTS, 26(2006) 394-408©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

ARTICLE ORIGINAL ORIGINAL PAPER

Separation and Identificationof Phenolic Compounds in Jerusalem Artichoke

(Helianthus tuberosus L.)

M. Tchoné1, G. Bärwald2, G. Annemüller3, L.-G. Fleischer*

RÉSUMÉSéparation et identification des composés phénoliques du topinambour(Helianthus tuberosus L.)

Plusieurs méthodes chromatographiques telles que la colorimétrie, la chromato-graphie liquide à haute performance en phase inversée (RP-HPLC), le couplagede la chromatographie liquide et de la chromatographie en phase gaseuse à laspectrométrie de masse (LC-MS, GC-MS) ont été expérimentées et au besoinmodifiées et adaptées pour la séparation, l’identification et la quantification descomposés phénoliques dans différentes variétés de Topinambour. Vingt-deuxcomposés phénoliques ont été identifiés. L’acide gallique (de 1 mg à 140 mg) ;l’acide protocatéchique (de 5 mg à 200 mg) ; l’esculine (de 4 mg à 270 mg) ;l’acide gentisique (de 30 mg à 3 g), la catéchine (de 1 mg à 300 mg), l’acide4-hydroxybenzoïque (de 1 mg à 90 mg), l’acide chlorogénique (de 20 mg à 5 g),l’acide vanillique (de 1 mg à 520 mg), l’acide syringique (de 1 mg à 40 mg),l’acide caféique (de 1 mg à 240 mg), l’épicatéchine (de 4 mg à 800 mg), l‘acide2-hydroxy-3-5-dinitrobenzoïque (de 2 mg à 140 mg), l’umbelliferone (de 2 mg à110 mg), scopolétine (de 1 mg à 80 mg), l’acide p-coumarique (de 1 mg à40 mg), l’acide coumarique-3-carbon (de 1 mg à 40 mg), l’acide ferulique (de1 mg à 40 mg), l’acide sinapique (de 1 mg à 60 mg), l’acide 3-hydroxycinnami-que (trace) ; l’acide ellagique (de 2 mg à 40 mg), 4-hydroxycoumarine (de 4 mg à300 mg) et l’acide salicylique (de 30 mg à 7 g). Toutes ces teneurs sont expri-mées pour 100 g de matière sèche. Parmi les composés phénoliques identifiés,vingt possèdent des vertus thérapeutiques.

Mots cléstopinambour, composés phénoliques, LC-ESI-MS, GC-CI-MS, HPLC, acide sali-cylique.

1. Dr.-Ing. Michel Tchoné – Technische Universität Berlin – Fakultät für Prozesswissenschaften – Sekr. ZI-3– Amrumer Strasse 32, D-13353 Berlin – Email: [email protected]

2. Prof. Dr.-Ing. G. Bärwald – Technische Universität Berlin – Fakultät für Prozesswissenschaften – Sekr.ACK 25 Ackerstrasse 76, D-13355 Berlin

3. Prof. Dr. sc. techn. G. Annemüller – Technische Universität Berlin – Fakultät für Prozesswissenschaften –Sekr. ZI-1 Prozesstechnische Grundlagen der LMT – Amrumer Strasse 32, D-13353 Berlin – Email: [email protected]

* Correspondance : Prof. Dr. sc. techn. L.-G. Fleischer – Technische Universität Berlin – Fakultät für Pro-zesswissenschaften – Sekr. ZI-1 Prozesstechnische Grundlagen der LMT – Amrumer Strasse 32, D-13353 Berlin – Allemagne – Email : [email protected]

SDA26_5_394-408 Page 394 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 2: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 395©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

SUMMARYSeveral methods such as colorimetry, reversed-phase high performance liquidchromatography (RP-HPLC), the coupling of liquid chromatography and gaschromatography with mass spectrometry (LC-MS, GC-MS) were examined fortheir suitability and applied to the separation, identification and quantification ofphenolic compounds in different varieties of Jerusalem artichoke. Twenty twophenolic compounds have been separated, identified and quantitated as gallicacid (from 1 mg up to 140 mg), protocatechuic acid (from 5 mg up to 200 mg),esculin (from 4 mg up to 270 mg), gentisic acid (from 30 mg up to 3 g), catechin(from 1mg up to 300 mg), 4-hydroxybenzoic acid (from 1 mg up to 90 mg), chlo-rogenic acid (from 20 mg up to 5 g), vanillic acid (from 1 mg up to 520 mg),syringic acid (from 1 mg up to 40 mg), caffeic acid (from 1 mg up to 240 mg),epicatechin (from 4 mg up to 800 mg), 2-hydroxy-3-5-dinitrobenzoic acid (from2 mg up to 140 mg), umbelliferon (from 2 mg up to 110 mg), scopoletin (from1 mg up to 80 mg), p-cumaric acid (from 1 mg up to 40 mg), cumaric-3-carbonacid (from 1 mg up to 40 mg), ferulic acid (from 1 mg up to 40 mg), sinapic acid(from 1 mg up to 60 mg), 3-hydroxycinnamic acid (trace) ; ellagic acid (from 2 mgup to 40 mg), 4-hydroxycumarin (from 4 mg up to 300 mg) and salicylic acid(from 30 mg to 7 g). These phenolics contents are expressed for 100 g tubers orskins dry weight.

Twenty of the identified phenolic compounds are of interest in the medicine andwith diets.

Keyworks

Jerusalem artichoke, phenolic compounds, GC-CI-MS, LC-ESI-MS, HPLC,salicylic acid.

1 – INTRODUCTION

Various functions and actions have been attributed to phenolic compounds,making determination of their concentration in foods highly desirable. They havebeen shown to play vital physiological roles. The suggested advantageous healtheffects (maintenance of health and protection from diseases such as cancer andcoronary heart disease) of plant phenolics and the possibility to use antioxidantplant constituents as food ingredients has motivated plant phenolics research.

Several studies concerning phenolic compounds in wine, juice, fruit and vegeta-bles have been published (FRANKEL et al. 1995, DAWES and KEENE, 1999, HÄKKINENet al. 1999, KARADENIZ et al. 2000, OWEN et al. 2000, SCHLESIER et al. 2001, JEN-KUNet al.1998). Many analytical methods have been used for their determination. Theclassical method for determination of phenolic compounds is the colorimetric proce-dure, which uses the Folin-Ciocalteu reagent. However, this method is characterizedby poor specificity, as other compounds present in the matrix such as FeII, ascorbicacid, glucose, urea, sulphite, nucleic acid fragments and amino acid such ascysteine, tryptophan and tyrosine, free SO2 may contribute to the absorbance(SCHOLTEN and KACPROWSKI, 1993, MÖBIUS and GÖRTGES,1974). Moreover, it is notpossible to quantify the individual phenols because the Folin-Ciocalteu procedureevaluates total phenols. Procedures that provide for the separation and quantitative

SDA26_5_394-408 Page 395 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 3: Separation and Identification of Phenolic Compounds in ...

396 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

determination of individual phenolic compounds by either gas chromatography orliquid chromatography are much more satisfactory. Ultraviolet detection has beenused extensively in the detection of phenolic compounds (ROMANI et al. 1999, HÄK-KINEN et al. 1999, HOHL et al. 2001, FRIEDMAN, 1997, CECCON et al. 2001,CZYZOWSKA and POGORZELSKI, 2002). Reverse-phase HPLC often achieves excellentseparations of nonvolatile polar chemicals from complex mixtures under conditionsthat allow for the isolation of thermally labile compounds, but if unknown com-pounds are separated, their identification will be difficult becauce it does not provideinformations about structure and molecular weight of the analyte. Gas chromatogra-phy is a fast, efficient and accurate technique, but it requires a derivation step dueto the thermally labile compounds. The needs for alternative analytical methods aretherefore obvious. The combination of liquid chromatography and gas chromatogra-phy with mass spectrometry is considered to be such alternative.

Applications of modern GC- and LC-MS include environmental analysis, foren-sics, drug testing, and pharmacological studies.

These techniques have been used successfully for the analysis of plant pheno-lics as well as several compounds isolated from biological mixtures (GELBMANN et al.1997, HARTL and HUMPF, 1999, SCHLÖSSER et al. 1998, DERUITER et NOGGLE, 1998,SEWRAM et al. 1999).

This study reports for the first time the application of liquid chromatography-electrospray ionization (ESI) mass spectrometry and gas chromatography-chemicalionization (CI) mass spectrometry for the qualitative and quantitative determinationof phenolic compounds in nine varieties of Jerusalem artichoke. The total phenoliccontents as well as the effect of the harvest period on phenolics content are alsomonitored.

2 – MATERIAL AND METHODS

2.1 Reagents

The standards used throughout this investigation were catechin, chlorogenicacid, vanillic acid, epicatechin, umbelliferone, p-cumaric acid, ferulic acid, gallic acidmonohydrate (from Roth, Karlsruhe, Germany), 4-hydroxibenzoic acid, 2-hydroxi-3-5-dinitrobenzoic acid, (from Merck, Darmstadt, Germany), protocatechuic acid,esculin, gentisic acid, syringic acid, scopoletin, cumaric-3-carbon acid, sinapic acid,3-hydroxicinnamic acid, ellagic acid, 4-hydroxicumarin and salicylic acid (fromFluka, Sigma-Aldrich Chemie GmbH, Germany) and caffeic acid (from Serva Feinbi-ochemica, Heidelberg, Germany).

SDA26_5_394-408 Page 396 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 4: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 397©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

3 – METHODS

3.1 Extraction of phenolic compounds

Fresh tubers of Jerusalem artichoke were cleaned under cold water with a scrubbrush prior using. A sample of 50 g tubers or skins were homogenized in a Waring“blendor” with 100 ml extracting solution (ethyl acetate-methanol 1:1 (v/v)) for 5 min.The glass beaker of the “blendor” was rinsed with an additional 10 ml of extractingsolution. The homogenate was heated with the blendor’s beaker in a ultra soundbath at 80°C for 10 min followed by pressing with a mechanical press after thehomogenisation. The resulting residue was mixed with an additional 100 ml extract-ing solution, heated with the Blendor beaker in a ultra sound bath at 80°C for10 min and pressed. The second residue was mixed with an additional 50 ml of theextracting solution and treated in the same way. The extracts were combined andthe solution was allowed to cool before it was made up to final volume of 250 ml.This extract was concentrated under vacuum and rinsed with methanol to 50 ml finalvolume prior determination of total phenolics or HPLC analyses.

3.2 Effect of the harvest period on phenolics content

Jerusalem artichoke tubers (Gigant, Gute Gelbe, Medius Brückmann, MediusLindhoop, Large White, Petit Blanc, RoZo, Stamm and Waldspindel varieties, 2000harvest) were purchased from German farmers and used throughout this investiga-tion. The nine varieties of Jerusalem artichoke were kept after harvest in our labora-tory under garden soil. For each variety tuber samples were picked at the beginning,after 12, 21, 33 and 52 days. The skins from each sample were subjected to thephenolic compounds extraction according to our developed method as describedabove.

4 – QUALITATIVE AND QUANTITATIVE ANALYSIS

4.1 LC-MS

A Hewlett-Packard model 1100 HPLC system equipped with G1312 A binarypump, G1313 A autosampler, G1322 A degasser and G1315 A diode array detectorwas used for the liquid chromatography. Chromatographic separation was performedon a Hypersil LichroCART® 250-4 HPLC column and Nucleosil® LichroCART® 4x4HPLC pre-colomn by scanning from 210 nm to 360 nm on Hewlett Packard system.The mobile phase consisted of acetic acid (3.5 % in water) (A) and acetonitrile (B).Concentration of the latter solvent was mixed to produce a flow rate of 1 ml/min with16 min B, 5-25%; 5 min B, 25%; 10 min B, 25-5% and 15 min B, 5%.

Detection and quantification were carried out using external standards in meth-anolic solution.

ESI-MS (Electrospray ionization mass spectrometry) were recorded on a micro-mass platform LCZ system equipped with an electrospray ionization source and aWaters 2690 separation module.

SDA26_5_394-408 Page 397 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 5: Separation and Identification of Phenolic Compounds in ...

398 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

4.2 GC-MS

GC analysis was performed on a Hewlett Packard gas chromatograph 5890Series II equipped with a 30 m long, 0.25 mm id, 0.25 µm film thickness HP1-MScapillary column linked to a triple quadrupole Finnigan type TSQ 700 mass spec-trometer system equipped with an EI/CI combination ion source, digital alpha sta-tion, ICIS 8.3 data system and with a Finnigan ESI ion source. The columntemperature setting was programmed to begin at 80°C for 2 min, then increase atthe rate of 17°C/min to 280°C. The injection temperature was 250°C. Helium wasused as a carrier gas with a constant flow at 1.5 ml/min. Samples were ionized bysolvent-mediated chemical ionization (CI) induced by a discharge electrode held at apotential of 1000 V.

In GC-MS the TIC is registered instead of a conventional GC detector trace andone can obtain mass spectra for all GC peaks, thus allowing identification and/orquantitation of most components of a mixture. Further help to detect a specificcomponent may be obtained by plotting of RICs of the expected molecular weightand/or of some fragment ions from the data.

The identification of individual phenolic compounds was carried out by co-injec-tions of references compounds with the samples and also by comparison of theirmass spectra and retention times (RT) with those of standards. The standards andsamples were derivatized using N, O-bis (trimethylsilyl)-trifluoroacetamide at roomtemperature prior gas chromatographic analysis.

5 – RESULTS AND DISCUSSION

Table 1 shows the highest total phenolics content of Jerusalem artichoke tubersfrom different varieties. Slight differences among the varieties were found in theirtotal phenolics content (from 4 to 6 g phenolic compounds/100 g tuber dry weightand from 19 to 23 g phenolic compounds /100 g skins dry weight. The skins con-tained the greatest quantities of total phenolic compounds. The highest total phe-nolic contents occurred in the skin extract of the RoZo variety (23 g phenoliccompounds/100 g skins dry weight) (table 1).

These results suggest that the phenolics compounds are localized in the externalcell wall of Jerusalem artichoke. Quantitative data on the phenolics in Jerusalemartichoke are not available. Only qualitative statement have been found in the litera-ture (IBRAHIM et al. 1971, PAUPARDIN and GAUTHERET, 1965). Data about total con-tent of phenolic compounds in fruits and vegetables are seldom published.According to the investigations from Böhm and co-workers (BÖHM et al. 1999), theamounts of the total phenolics expressed as gallic acid equivalents, are 63 g phe-nolic compounds/ kg red grapes and 19 g phenolic compounds/kg black carrot. Thecontent of phenolics compounds of Jerusalem artichoke, expressed as gallic acidequivalent (our own investigations) varies from 26 to 59 g phenolic compounds/ kgtubers dry weight.

SDA26_5_394-408 Page 398 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 6: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 399©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

Table 1Highest contents of total phenolics of Jerusalem artichoke from different varieties

expressed as salicylic acid equivalent in methanol.Data in g salicylic acid / 100 g skins or tubers dry weight.

Tableau 1Teneur en composés phénoliques totaux de plusieurs variétés de Topinambour exprimées en g d’acide salicylique pour 100 g de matière sèche de tubercules

ou d’épluchures : les valeurs les plus élevées sont données.

5.1 Phenolic composition of Jerusalem artichoke

The aim of the experimental work was to know the phenolic composition of ninevarieties of Jerusalem artichoke and the effect of the harvest period on their phe-nolic content. Figure 1 shows a representative LC-MS chromatogram of of the phe-nolic compounds in the methanolic mixture of 22 standards.

All the phenolic compounds separated in the standards mixture were also foundin the skin extract of Jerusalen artichoke. In the skin extract of Jerusalem artichokedominated protonated molecules [M+H]+. Some of them were not identified due tothe complexity of the extract. All the standards yielded protonated molecules.Figure 2 shows an example of GC-MS chromatogram (CI mode) from a mixturecontaining 22. Different molecular ions were present in the skin extracts of Jerusa-lem artichoke. The protonated molecules [M+H]+ were dominant but [M+4]+ ions(rest of reagent gas or gain of 4H), [M+15]+ ions (gain of CH3), [M-15]+ ions (loss ofCH3) and [M-18]+ ions (loss of one molecule water) were also present in CI spectradue to the thermal decomposition and additional fragmentation.

The melting-point and solubility of the standards used are given in table 2. All thephenolic compounds used in this work as standards remained stable as shown intable 2 at the temperatures ranges over 100°C ; some are insoluble in water.

As shown in table 2, some standards used are decomposed at the temperaturerange over 202°C. The derivatization step has to be optimized to avoid fragmenta-tion in the ion source and decomposition during the evaporation of the analyte priorto ionization. This evaporation should be done at the temperatures under the meltingpoint.

PAUPARDIN and GAUTHERET, 1965 have found only seven phenolic compounds inJerusalem artichoke tubers. The LC-MS and GC-MS techniques allowed the qualita-tive and quantitative determination of phenolic compounds listed in table 3.

Varieties Tubers extract Skins extractRoZo 4.1 23.1Stamm 4.8 20.6Gigant (Topianka) 3.5 19.1Medius Lindhoop 4.9 19.9Medius Brückmann 8.0 19.9Gute Gelbe 6.1 19.1Petit Blanc 5.4 20.4Large White 5.5 21.0Waldspindel 5.4 21.1

SDA26_5_394-408 Page 399 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 7: Separation and Identification of Phenolic Compounds in ...

400 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

3.26: gallic acid – 4.79: protocatechuic acid – 7.43: esculin – 8.21: gentisic acid – 8.48: 4-hydroxybenzoic acid8.91: catechin – 9.46: chlorogenic acid – 11.64: caffeic acid – 11.84: epicatechin – 13.43: umbelliferon13.78 scopoletin (7-hydroxy-6-methoxycumarin), p-cumaric acid 15.19: ferulic acid, sinapic acid, 3-hydroxycinnamic acid – 16.49: salicylic acid

Figure 1LC-MS separation of individual phenolic compounds from a mixture

of 22 standards in methanol.

Figure 1Séparation par LC-MS des composés phénoliques d’un mélange méthanolique

de 22 standards.

SDA26_5_394-408 Page 400 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 8: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 401©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

180: gallic acid – 194: cumarin-3-carbonic acid – 241: 4-hydroxycumarin – 276: 4-hydroxybenzoic acid317: umbelliferon (7-hydroxycumarin) – 417: salicylic acid – 458: vanillic acid – 479: syringic acid519: chlorogenic acid

Figure 2Phenolic compounds in a methanolic mixture of 22 standards: GC-MS chromatogram

in CI mode.

Figure 2Composés phénoliques d’un mélange méthanolique de 22 standards :

Chromatogramme GC-MS en mode CI.

SDA26_5_394-408 Page 401 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 9: Separation and Identification of Phenolic Compounds in ...

402 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

Table 2Melting-point and solubility of the standards used from Merck and Fluka catalog.

Tableau 2Point de fusion et solubilité des substances de référence utilisées commercialisées

par Merck et Fluka.

Standards Melting-point in °C Observations

Solubilityin water

at 20 °C (g/ l)

Gallic acid 255-265 15

Gentisic acid 202-206 Soluble

Protocatechuic acid 202-204 Decomposition 20

4-hydroxybenzoic acid 212-215 Ignition temperature 8

Salicylic acid 158-161 2

Vanillic acid 208-210 Hardly soluble

Syringic acid 204-207 Insoluble

Ellagic acid > 350

Caffeic acid 234-237 Decomposition Hardly soluble

Ferulic acid 169-175

Sinapic acid 195-200 Decomposition, 202°C

Chlorogenic acid 203-205 Decomposition, 208-210°C

3-hydroxycinnamic acid 192-195 Hardly soluble

p-cumaric acid 219-222 Decomposition, 214-217°C Hardly soluble

4-hydroxycumarin 211-214 Hardly soluble

Umbelliferone (7-hydroxycumarin) 226-229 Hardly soluble

Cumarin-3-carbonic acid 188-191 13

Esculin (6,7-dihydroxycumarin-6 200 1.5

Beta-D-glucopyranosid)

Scopoletin (7-hydroxy-6-methoxicumarin) 204-206

2-hydroxi-3-5-dinitrobenzoic acid 170-174 Soluble

(3,5-dinitrosalicylic acid)

Catechin 200 Decomposition

Epicatechin 240-245 Decomposition

SDA26_5_394-408 Page 402 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 10: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 403©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

Table 3Content of specific phenolic compounds in methanolic skin extracts of different Jerusalem

artichoke varieties expressed as g phenolic compound/100 g skin dry weight:highest values are given.

Tableau 3Teneur en composés phénoliques individuels des extraits méthanoliques d’épluchures

de différentes variétés de Topinambour exprimée en g de composés phénoliquespour 100 g de matière sèche d’épluchures : Les valeurs maximales sont données.

Twenty two phenolic compounds have been separated, identified and quanti-tated as gallic acid, protocatechuic acid, esculin, gentisic acid, catechin, 4-hydroxy-benzoic acid, chlorogenic acid, vanillic acid, syringic acid, caffeic acid, epicatechin,2-hydroxy-3-5-dinitrobenzoic acid, umbelliferon, scopoletin, p-cumaric acid,cumaric-3-carbonic acid, ferulic acid, sinapic acid, 3-hydroxycinnamic acid, ellagicacid, 4-hydroxycumarin and salicylic acid.

From the identified phenolic compounds 15 were determined for the first time inJerusalem artichoke: gallic acid, protocatechuic acid, esculin, catechin, syringicacid, epicatechin, 2-hydroxy-3-5-dinitrobenzoic acid, umbelliferon, scopoletin,cumaric-3-carbonic acid, sinapic acid, 3-hydroxycinnamic acid, ellagic acid, 4-hydroxycumarin and salicylic acid. Salicylic acid was quantitatively the main phe-nolic compound found in all of varieties under investigation. Chlorogenic acid is themain phenolic compound in apple juice, apple wine and apple vinegar (MÜLLER and

Compounds Gigant Gute Gelbe Large White Medius B. Medius L. Petit Blanc RoZo Stamm Waldspindel

Gallic acid 0,026 0,005 0,02 0,016 0,01 0,012 0,05 0,013 0,14 New

Protocatechuic acid 0,116 0,13 0,08 0,09 0,09 0,15 0,2 0,09 0,14 New

Esculin 0,093 0,11 0,15 0,18 0,12 0,15 0,14 0,25 0,27 New

Gentisic acid 0,95 0,52 0,33 2,78 0,4 1 0,7 0,75 0,63

Catechin 0,035 0,06 0,07 0,02 0,09 0,07 0,06 0,3 0,06 New

4-hydroxybenzoic acid 0,09 0,03 0,03 0,02 0,04 0,04 0,03 0,07

Chlorogenic acid 1,15 0,86 0,66 1 1 0,89 1,17 2,4 4,51

Vanillic acid 0,023 0,02 0,05 0,02 0,05 0,52 0,02 0,02 0,07

Syringic acid 0,03 0,008 0,02 0,04 0,009 0,02 New

Caffeic acid 0,019 0,02 0,04 0,02 0,07 0,24 0,06 0,16 0,05

Epicatechin 0,48 0,25 0,2 0,4 0,42 0,22 0,46 0,8 0,26 New

2-hydroxy-3-5-dinitrobenzoic acid 0,04 0,04 0,1 0,06 0,14 0,03 0,07 0,01 New

Umbelliferon (7-hydroxycumarin) 0,07 0,08 0,07 0,045 0,07 0,09 0,11 0,11 0,09 New

Scopoletin (7-hydroxy-6-methoxycumarin) 0,05 0,06 0,02 0,03 0,05 0,05 0,03 0,08 0,08 New

p-cumaric acid 0,03 0,02 0,02 0,02 0,01 0,02 0,03 0,04 0,022

Cumarin-3-carbonic acid 0,02 0,008 0,02 0,01 0,04 New

Ferulic acid 0,02 0,013 0,01 0,03 0,008 0,03 0,04 0,02

Sinapic acid 0,02 0,03 0,012 0,02 0,008 0,06 0,02 0,06 0,06 New

3-hydroxycinnamic acid 0,009 0,0001 trace 0,007 0,003 0,004 New

Ellagic acid 0,007 0,03 0,02 0,026 0,04 0,02 0,02 0,03 0,04 New

Salicylic acid 2,62 3,2 2,71 2,54 4,5 3,6 4,37 6,5 4,95 New

4-hydroxycumarin 0,22 0,15 0,12 0,12 0,2 0,15 0,21 0,27 0,3 New

SDA26_5_394-408 Page 403 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 11: Separation and Identification of Phenolic Compounds in ...

404 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

TREUTTER, 2001). The neo-chlorogenic acid is abundant in cherry and blackcurrantwines (CZYZOWSKA and POGORZELSKI, 2002). Gallic acid is no more detectable in afinished wine from normal treated grapes (HENNIG and BURKHARDT, 1958).

These examples confirm that the reference compound depends on the substra-tum used.

Examining table 3, one can see that 4-hydroxybenzoic and 2-hydroxy-3-5-dini-trobenzoic acid were not found in the skin extract of the Jerusalem artichoke Stammvariety. Syringic acid was not found in Gigant, Medius Brückmann and Waldspindelvarieties. Cumarin-3-Carbonic acid was not found in Gigant, RoZo, Medius Brück-mann and Waldspindel varieties. Ferulic acid was not found in the sort Gigant. 3-Hydroxycinnamic acid was not found in RoZo, Waldspindel and Gute Gelbe varie-ties. There are no reports on the specific phenolics content of Jerusalem artichoke.

5.2 Changes in phenolic compounds in Jerusalem artichoke grown in laboratory conditions

The study on the effect of the growth period on phenolics content in Jerusalemartichoke grown in laboratory has shown that the phenolic content varied qualita-tively and quantitatively with the growth period. Except for the cultivars RoZo andWaldspindel, it increased during the growing period, reached a maximum anddecreased. This variation depends on growing conditions and stage of developmentof tubers. Table 4 shows the highest amount of total phenolics, expressed as sum ofspecific phenolic content.

Table 4Effect of the growth period in laboratory on highest amount of total phenolics,

expressed as sum of specific phenolic content (g phenolic compounds/100 g skins dry weight).

Tableau 4Influence de la période de développement sur la teneur maximale exprimée

comme somme des composés phénoliques individuels en g de composés phénoliquespour 100 g d’épluchures, poids sec.

Great variations in phenolic content were observed among the varieties studied(table 4). The red varieties Stamm and Waldspindel yielded the highest phenoliccontents. The changes in polyphenols were closely related to their chemical struc-tures, degree of the metabolism activation, variation of the moisture, specific electri-cal conductibility, and pH in the tubers.

Previous results have also shown a positive effect of the light intensity on phe-nolic compounds synthesis (IBRAHIM et al. 1971, PAUPARDIN and GAUTHERET 1965).

0 day 12 days 33 days

RoZo (6) Gigant (8) Gute Gelbe (5)Waldspindel (10) Large White (4) Petit Blanc (6)

Medius Brückmann (5)Medius Lindhoop (6)Stamm (10)

SDA26_5_394-408 Page 404 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 12: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 405©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

Flavonols and anthocyanins that are also present in fruits and vegetables skinscould’t be determinated with the methods described and would need anothermethod or column.

All the phenolic compounds found in Jerusalem artichoke are except cumarin-3-carbonic and 2-hydroxy-3-5-dinitrobenzoic acids antioxidants and potential bioac-tive compounds. The antioxidant activities of catechin, caffeic, ellagic, p-coumaric,ferulic and chlorogenic acids were determinated by Meyer and co-workers (MEYERet al. 1998 a, b). In addition, those of 4-hydroxycoumarin, umbelliferon and scopole-tin were reported by Foti and co-workers (FOTI et al. 1996). Tannins, particulary gallicacid and cathechin, exhibits an antioxydative activity on linoleic acid (CHUANG-YE etal. 1995, TAKUO et al. 1983, RIGO et al. 2000). Other investigations have shown thatgallic, ferulic protocatechuic and caffeic acids exhibited a peroxy radical scavengingcapacity (TAKAHASHI et al. 1999, WALTERS et al.1996). The radical scavenging capac-ity of caffeic and chlorogenic acids has been found to be stronger than those of α–tocopherol and buthylhydroxytoluen (CHEN and HO, 1997). Salicylic acid exhibits anantimicrobial effect on E. coli K12AM, Staphylococcus aureus IAM1011 and Bacillussubstilis IAM 1521 (NGUYEN et al. 1982). The two methoxyl groups and the hydroxylgroup in sinapic acid have been found to be effective for antibacterial activityagainst E. coli (TESAKI et al. 1998).

6 – CONCLUSION

A method for the extraction of phenolic compounds from vegetables was devel-oped during this work. Up to 23 g phenolic compounds/100 g skins dry weightcould be extracted from the skins of the Jerusalen artichoke sort RoZo. This result isa real progress compared to the process described by Paupardin and Gautheret(1965) till now. The method was with a variation coefficient of 6% reproducible.Hereby is a suitable extractant to be used because some phenolic compounds suchas vanillic, caffeic, 3-hydroxycinnamic, p-coumaric, 4-hydroxycoumaric acid andumbelliferone are either hardly soluble or insoluble in water.

The measurement of Jerusalem artichoke phenolic contents shows that thistuber is rich in phenolic compounds among them salicylic acid is the major compo-nent identified. The phenolics compounds in Jerusalem artichoke are mainlyextracted from the skins. A new general problem to be resolve result in an efficientutilisation of distiller wash and waste water which are rich in the identified phenolics.Distiller wash is for example used till now either in the agriculture as fertiliser or ani-mals food. The biological disintegration of phenolic compounds is certainly limitedbecause a lot of them might exhibit an antimicrobial activity. Further more, phenolicantioxidants (up to 2 g/l) have been found in the waste water from an Italian olive oilmill (ROBLES, 2000). The manufacture of fruit and vegetable juices produces enor-mous quantities of residues (up to one third of the raw material quantity), which arerich in phenolic compounds and other precious nutrients. An additional option is toproduce phenolic antioxidants from those residues. So the developed procedure ofextraction can be integrated in an existing process. The solvent used should beevaporated under vacuum, adjusted and used again in order to avoid further envi-ronmental load. The phenolics produced either as concentrate or flour may serve in“functional foods” as natural food ingredients (antioxidant or coloring sbstances).

SDA26_5_394-408 Page 405 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 13: Separation and Identification of Phenolic Compounds in ...

406 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

Phenolic compounds that appear to have desirable antioxidant and medicinalproperties were found in Jerusalem artichoke. Some have been reported to be anti-tumor agents and to exhibit antiviral and antimicrobial activities, hypotensive effectsand antioxidant properties.

Among the identified 22 phenolic compounds, 15 were found for the first time inthis plant. The use of these compounds as substances for food preservation shouldbe profitable. Jerusalem artichoke powder could be used as antioxidants or supple-ment in other powders for example potatoe powder.

Chemical ionization is a relatively soft ionization method and in fact, it representsthe first soft ionization introduced to mass spectrometry, but the derivatization andthe evaporation of the analyte prior to ionization remain the critical steps.

7 – ABBREVATIONS USED

°C: Celsius degree

CI: chemical ionization

ESI: electrospray ionization

GC-MS: gas chromatography coupled with mass spectrometry

LC-MS: liquid chromatography coupled with mass spectrometry

M: molecular mass

min: minute

nm: nanometer

m/z: mass-to-charge ratio

RIC: reconstructed ion chromatogram

RP-HPLC: reversed-phase-high performance liquid chromatography

RT: retention time

TIC: total ion current or total ion chromatogram

u: atom mass unit

UV: ultra violet

V: volt

ACKNOWLEDGEMENT

The collaboration of the following is acknowledged: Dr. Martin Steiof, Dr. Buhr,Dr. Idler, PD Dr. Seidel, Pastor Sorie Mansaray, Dipl.-Ing. Vigelahn, Gabriel Takam,Beata Koegel, Barbara Lewerenz-Leschnitzer, Fe Kouodom Justin, Hans Latta andGünter Baude.

SDA26_5_394-408 Page 406 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 14: Separation and Identification of Phenolic Compounds in ...

Separation and Identification of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) 407©

Lav

oisi

er –

La

phot

ocop

ie n

on a

utor

isée

est

un

délit

REFERENCES

BÖHM V., SCHLESIER K., BITSCH R., 2000. Kritis-che Betrachtung der protektiven Wirkung vonFrucht- und Gemüsekonzentraten. Lebensmittel,3, 280-282.

CECCON L., SACCÙ D., PROCIDA G., CARDINALIS., 2001. Liquid chromatographic determinationof simple phenolic compounds in waste watersfrom olive oil production plants. Journal of theAssociation of Official Agricultural ChemistsInternational, 84, 6, 1739-1744.

CHEN J. H., HO C. T., 1997. Antioxidant activities ofcaffeic acid and its related hydroxycinnamiccompounds. Journal of Agricultural and FoodChemistry, 45, 2374-2378.

CHUANG-YE W., CHEIN-PING W., SHIAN-SUO H.,FENG-LIN H., 1995. The inhibitory effect of tan-nins on lipid peroxidation of rat heart mitochon-dria. Journal of Pharmacy and Pharmacology,47, 138-142.

CZYZOWSKA A., POGORZELSKI E., 2002. Changesto polyphenols in the process of production ofmust and wines from blackcurrants and cher-ries. Part I. Total polyphenols and phenolicacids. European Food Research and Techno-logy, 214, 2, 148-154.

DAWES H. M., KEENE J. B., 1999. Phenolic compo-sition of kiwi juice. Journal of Agricultural andFood Chemistry, 47, 2398-2403.

DERUITER J., NOGGLE F. T., 1998. Gas chromato-graphic-mass spectrometric and high-perfor-mance liquid chromatographic analyses of thebromination products of the regiosomericdimethoxyphenethylamine: differentiation ofnexus from five positional isomers. Journal ofChromatographic Sciences, 36, 23-28.

FRANKEL E. N., WATERHOUSE A. L., TEISSEDREP. L., 1995. Principal phenolic phytochemicals inselected california wines and their antioxidantactivity in inhibition oxidation of Human Low-Density Lipoproteins (LDL). Journal of Agricultu-ral Food Chemistry, 43, 890-894.

FOTI M., PIATTELLI M., BARATA M. T., RUBERTOG., 1996. Flavonoids, coumarins, and cinnamicacids as antioxidants in a micellar system.Structure-activity relationship. Journal of Agri-cultural and Food Chemistry, 44, 497-501.

FRIEDMAN M., 1997. Chemistry, biochemistry, anddietary role of potato polyphenols. Journal ofAgricultural and Food Chemistry, 45, 1523-1540.

GELBMANN D., PRAECEPTOR A., SALZBRUNN W.,EDER R., 1997. Quantitative Bestimmungflüchtiger Phenole in Rotweinen mittels Gas-chromatographie-Massenspektroskopie. Mittei-lungen Klosterneuburg, 47, 95-103.

HÄKKINEN S. H., KÄRENLAMPI S. O., HEINONEN I.M., MYKKÄNEN, H. M., TÖRRÖNEN A. R.,1999. Content of the flavonols quercetin, myri-

cetin, and kaempferol in 25 edible berries. Jour-nal of Agricultural and Food Chemistry, 47,2274-2279.

HARTL M., HUMPF H. U., 1999. Simultaneous deter-mination of fumonisin B1 and hydrolyzed fumo-nisin B1 in corn products by liquidchromatography-electrospray ionization massspectrometry. Journal of Agricultural and FoodChemistry, 47, 5078-5083.

HENNIG K., BURKHARDT R., 1958. Der Nachweisphenolartiger Verbindungen und hydroaromatis-cher Oxycarbonsäure in Traubenbestandteilen,Wein und weinähnlichen Getränken II. Weinbergund Keller, 5, 593-600

HOHL U., NEUBERT B., PFORTE H., SCHONHOF I.,B÷HM H., 2001. Flavonoid concentrations in theinner leaves of head lettuce genotypes. Euro-pean Food Research and Technology, 213, 205-211.

IBRAHIM R. K., THAKUR M. L., PERMANAND B.,1971. Formation of anthocyanins in callus tissuecultures. Lloydia, 34, 2, 175-182.

JEN-KUN L., CHIH-LI L., YU-CHIH L., SHOEI-YNLIN-SHIAU I-MING J., 1998. Survey ofcatechins, gallic acid, and methylxanthines ingreen oolong, puerch, and black teas. Journal ofAgricultural Food Chemistry, 46, 3635-3642.

KARADENIZ F., DURST R. W., WROLSTAD R. E.,2000. Polyphenolic composition of raisins. Jour-nal of Agricultural and Food Chemistry. 48,5343-5350.

MEYER A. A., HEINONEN M., FRANKEL E. N., 1998 a.Antioxidant interactions of catechin, cyanidin,caffeic acid, quercetin, and ellagic acid on humanLDL oxidation. Food Chemistry, 61, 1/2, 71-75.

MEYER A. S., DONOVAN J. L., PEARSON D. A.,WATERHOUSE A. L., FRANKEL E. N., 1998 b.Fruit hydroycinnamic acids inhibit human low-density lipoprotein oxidation in vitro. Journal ofAgricultural and Food Chemistry, 46, 1783-1787.

MÖBIUS C. H., GÖRTGES S., 1974. Polyphenolbes-timmung für die Praxis. Die Weinwissenschaft,29 (5), 241-25.

MÜLLER C., TREUTTER D., 2001. Phenolische Ver-bindungen in Apfelsaft, Apfelwein und Apfeles-sig. Mitteilungen Klosterneuburg, 51, 138-147

NGUYEN, V. C., KURATA T., KATO H., FUJIMAKI M.,1982. Antimicrobial activity of kumazasa (Sasaalbo-marginita). Agricultural and Biological Che-mistry, 46, 4, 971-978.

OWEN R. W., MIER W., GIACOSA A., HULL W. E.,SPIEGELHALDER B., BARTSCH H., 2000. Phe-nolic compounds and squalene in olive oils: theconcentration and antioxidant potential of totalphenols, simple phenols, scoiridoids, ligans andsqualene. Food and Chemical Toxicology, 38,647-659.

SDA26_5_394-408 Page 407 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com

Page 15: Separation and Identification of Phenolic Compounds in ...

408 Sci. Aliments 26(5), 2006 M. Tchoné et al.

© L

avoi

sier

– L

a ph

otoc

opie

non

aut

oris

ée e

st u

n dé

lit

PAUPARDIN C., GAUTHERET R., 1965. Sur la naturedes acides–phénols présents dans les tissus detubercules de Topinambour ( Helianthus tubero-sus L., varieté Violet de Rennes) cultivés in vitro.Comptes Rendus des Séances de l’Académiedes Sciences, 261, 4206-4208.

RIGO A., VIANELLO F., CLEMENTI G., ROSSETTOM., SCARPA M., VRHOV≥EK U., MATTIVI F.,2000. Contribution of proanthocyanidins to theperoxy radical scavenging capacity of some ita-lian red wines. Journal of Agricultural and FoodChemistry, 48, 1996-2002.

ROBLES A., 2000. “Phenoloxidase activity in strains ofthe hyphomycete Chalara paradoxa isolated fromolive mill wastewater disposal ponds”. Enzymeand Microbial Technology, 26, 484-490.

ROMANI A., PINELLI P., MULINACCI N., VINCIERIF.F., TATTINI M., 1999. Identification and quanti-fication of polyphenols in leaves of Myrtus com-munis L.. Chromatographia, 49, 1/2, 17-20.

SCHLESIER K., BÖHM V., BITSCH R., 2001. Unters-chiede im protektiven Potential von Grün- undSchwarztee. Ernährung im Fokus, 2, 2-4.

SCHLÖSSER J., MEHLICH A., BALLWANZ F., PETZM., 1998. Preparation of doubly 13C-labelledbenzylpenicillin as internal standard for residueanalytical use with GC-MS and LC-MS. Frese-nius Journal of the Analytical Chemistry, 360,498-501.

SCHOLTEN G., KACPROWSKI M., 1993. Zur Analy-tik von Polyphenolen in Wein. Die Weinwissens-chaft, 48, 33-38.

SEWRAM V., NIEUWOUDT T. W., MARASAS W. F.O., SHEPHARD G. S., RITIENI A., 1999. Deter-mination of the Fusarium mycotoxins, fusaproli-ferin and beauvericin by high-performance liquidchromatography-electrospray ionisation massspectrometry. Journal of Chromatography A,858, 175-185.

TAKAHASHI H., IUCHI M., FUJITA Y., MINAMI H.,FUKUYAMA Y., 1999. Cumaroyl triterpenes fromCasuarina equisetifolia. Phytochemistry, 51,543-550.

TAKUO O., YOSHIYUKI K., TAKASHI Y., TSUTOMUH., HIROMICHI O., SHIGERU A., 1983. Studieson the activities of tannins and related com-pounds from medical plants and drugs I. Inhibi-tory effect on lipid peroxidation in mitochondriaand microsomes of liver. Chemical Pharmaceuti-cal Bulletin, 31, 5, 1625-1631.

TESAKI S., TANABE S., ONO H., FUKUSHI E.,KAWABATA J., WATANABE M., 1998. 4-Hydroxy-3-nitrophenylacetic and sinapinsäureas antibacterial compounds from mustardseeds. Bioscience, Biotechnology and Bioche-mistry, 62, 5, 998-1000.

WALTERS M. T., HUGHES P. S., BAMFORTH C. W.,1996. The evaluation of natural antioxidants inbeer and its raw materials. The Institute ofBrewing-Asia Pacific Section: Proceedings ofthe Twenty-Fourth Convention, Singapore, 103-109.

SDA26_5_394-408 Page 408 Lundi, 11. décembre 2006 8:59 08C

et a

rtic

le d

es E

ditio

ns L

avoi

sier

est

dis

poni

ble

en a

cces

libr

e et

gra

tuit

sur

sda.

revu

eson

line.

com


Recommended