+ All Categories
Home > Documents > Series & Parallel AC Circuits Analysis ET 242 Circuit Analysis II Electrical and Telecommunication...

Series & Parallel AC Circuits Analysis ET 242 Circuit Analysis II Electrical and Telecommunication...

Date post: 02-Jan-2016
Category:
Upload: abigayle-miller
View: 236 times
Download: 1 times
Share this document with a friend
Popular Tags:
14
Series & Parallel AC Circuits Analysis ET 242 Circuit Analysis II Electrical and Telecommunication Engineering Technology Professor Jang
Transcript

Series & Parallel AC Circuits Analysis

ET 242 Circuit Analysis II

Electrical and Telecommunication Engineering Technology

Professor Jang

AcknowledgementAcknowledgement

I want to express my gratitude to Prentice Hall giving me the permission to use instructor’s material for developing this module. I would like to thank the Department of Electrical and Telecommunications Engineering Technology of NYCCT for giving me support to commence and complete this module. I hope this module is helpful to enhance our students’ academic performance.

OUTLINESOUTLINES

Introduction to Series - Parallel

ac Circuits Analysis

Analysis of Ladder Circuits

Reduction of series parallel Circuits to Series Circuits

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 2

Key Words: ac Circuit Analysis, Series Parallel Circuit, Ladder Circuit

Series & Parallel ac Networks - Introduction

In general, when working with series-parallel ac networks, consider the following approach:

1. Redraw the network, using block impedances to combine obvious series and parallel elements, which will reduce the network to one that clearly reveals the fundamental structure of the system.

2. Study the problem and make a brief mental sketch of the overall approach you plan to use. In some cases, a lengthy, drawn-out analysis may not be necessary. A single application of a fundamental law of circuit analysis may result in the desired solution.

3. After the overall approach has been determined, it is usually best to consider each branch involved in your method independently before tying them together in series-parallel combinations. In most cases, work back from the obvious series and parallel combinations to the source to determine the total impedance of the network.

4. When you have arrived a solution, check to see that it is reasonable by considering the magnitudes of the energy source and the elements in the circuit.

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 3

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 12

Ex. 16-1 For the network in Fig. 16.1: a. Calculate ZT. b. Determine Is. c. Calculate VR and VC. d. Find IC.

e. Compute the power delivered. f. Find Fp of the network.

a. As suggested in the introduction, the network has been redrawn with block impedances, as shown in Fig. 16.2. Impedance Z1 is simply the resistor R of 1Ω, and Z2 is the parallel combination of XC and XL.

Figure 16.1 Example 16.1.

54.8008.661

906901

06

1

06

32

)903)(902(

)90)(90(//

0

21

2

1

21

jZZZand

j

jj

jXjX

XXZZZ

RZ

withZZZ

bydefinedisimpedancetotalThe

T

LC

LCLC

TFigure 16.2 Network in Fig. 16.1 after assigning the block impedances.

80.5419.74A

80.546.08Ω

0120

Z

EIb

Ts.

9.46118.44V)90)(6Ω80.54(19.74AZIV

80.5419.74V)0)(1Ω80.54(19.74AZIV

:lawsOhm'ofnapplicatiodirectaby

foundbecanVandVthatfindweFig.16.2.toReferringc

2sC

1sR

CR.

leading0.164cos80.54cosθFf

W389.67(1Ω1(19.74A)RIPe

80.5459.22A902Ω

9.46118.44V

Z

VI

:lawsOhm'usingfound

alsobecanIcurrenttheknown,isVthatNowd

p

22sdel

C

CC

CC

.

.

.

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 5

6.8780A53.135

60400

j43

60400

j4Ω4(3Ωj8Ω8(

)30)(50A90(8Ω

ZZ

IZI

yieldsruledividercurrenttheUsing

908Ωj8ΩjXZ

53.135Ωj4Ω3ΩjXRZ

havewe16.4,Fig.inascircuittheRedrawinga

12

2

C2

L1

.

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 6

Ex. 16-2 For the network in Fig. 16.3: a. If I is 50A∟30o, calculate I1 using the current divider rule.

b. Repeat part (a) for I2.c. Verify Kirchhoff’s current law at one node.

Figure 16.3 Example 16.2.

Figure 16.4 Network in Fig. 16.3 after assigning the block impedances.(checks)3050A3050A

j25.043.31

j34.57)(-36.12j9.57)-(79.43

136.2650A6.8780A3050A

IIIc

136.2650A53.135

83.13250

53.135Ω

)30)(50A53.13(5Ω

ZZ

IZIb.

21

12

12

.

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 2

Ex. 16-3 For the network in Fig. 16.5: a. Calculate the voltage VC using the voltage divider rule.

b. Calculate the current Is.

Figure 16.5 Example 16.3.

Figure 16.6 Network in Fig. 16.5 after assigning the block impedances.

62.246.1838.6713

70240

125

)2020)(9012(

9088

901212

055

,6.16.

.

21

2

3

2

1

VV

j

V

ZZ

EZV

jZ

jZ

Z

withFigin

shownasredrawnisnetworkThea

C

41.051.23Aj0.810.93I

j1.54)(0.07j2.35)(0.86

87.381.54A702.5AIII

and

87.381.54A67.3813Ω

2020V

ZZ

EI

702.5A53.138Ω

2020V

Z

EIb.

s

21s

212

31

26.5622.36A26.564.472Ω

0100V

Z

EIand

26.564.472Ω10.3011.18

16.2650Ω

j211

16.2650Ω

Ω)jΩ(Ω)jΩ(

).Ω)(.Ω(

ZZ

ZZZ

36.8710Ωj6Ω8ΩjXRZ

53.135Ωj4Ω3ΩjXRZ

obtainweFig.16.8,inascircuittheRedrawinga

Ts

21

21T

C22

L11

6843

87361013535

.

Ex. 16-4 For Fig. 16.7: a. Calculate the current Is.

b. Find the voltage Vab.

Figure 16.7 Example 16.4.

Figure 16.8 Network in Fig. 16.7 after assigning the block impedances.

73.74100Vj9628j48)(36j48)(64

53.1360V36.8780VVVVor

0VVV

12

21

RRab

RRab

36.8780V)0)(8Ω36.87(10AZIV

53.1360V)0)(3Ω53.13(20AZIV

36.8710A36.8710Ω

0100V

Z

EI

53.1320A53.135Ω

0100V

Z

EI

law,sOhm'Byb.

22

11

R1R

R1R

22

11

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 8

Ex. 16-6 For the network in Fig. 16.12: a. Determine the current I.

b. Find the voltage V.

51.4022.626mAj2.052mA1.638mA

4mAj2.052mA5.638mA04mA206mAIT

63.43522.361kΩ

j20kΩ10kΩZ

01.545kΩ

0//6.8kΩ02kΩZ

obtainweFig.16.13,inas

circuittheRedrawing

2

1

111.410.18mA

60.0041023.093

51.4024.057A

10j201011.545

51.4024.057A

j20kΩ10kΩ1.545kΩ

)51.402)(2.626mA0(1.545kΩ

ZZ

IZI

ruledividerCurrent

333

21

T1

:

a. The equivalent current source is their sum or difference (as phasors).

47.973.94V

)63.435)(22.36kΩ111.406(0.176mAIZVb 2.

Figure 16.12 Example 16.6.

Figure 16.8

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 9

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 10

Ex. 16-7 For the network in Fig. 16.14: a. Compute I. b. Find I1, I2, and I3 c. Verify KCL by showing that

I = I1 + I2 + I3. d. Find total impedance of the circuit;.

6

10

.

j8

j9-j3Ω8Ω

jXjXRZ

j4Ω3ΩjXRZ

0ΩRZ

wherenetworkparallel

strictlyarevealsFig.16.15in

ascircuittheRedrawinga

CL32

L22

11

2

1

43.18316.01.03.0

06.008.016.012.01.0

87.361.013.532.01.087.3610

1

13.535

11.0

68

1

43

1

10

1

111

tan

321321

SSjS

SjSSjSS

SSS

S

jj

ZZZYYYY

isceadmittotalThe

T

435.182.63

)435.18326.0)(0200(

:

A

VEYI

IcurrentThe

T

Figure 16.14 Example 16.7.

Figure 16.15 Network in Fig. 16.14 following the assignment of the subscripted impedances.

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 11

87.362087.3610

0200

13.534013.535

0200

020010

0200

,.

33

22

11

AV

Z

EI

AV

Z

EI

AV

Z

EI

branchesparallelacrosssametheisvoltagetheSinceb

44.1817.3435.18316.0

11.

)(20602060

)1216()3224()020(

87.362013.53400202060

. 321

SYZd

checksjj

jjj

j

IIIIc

TT

Ex. 16-8 For the network in Fig. 16.18: a. Calculate the total impedance ZT. b. Compute I. c. Find the total power factor. d. Calculate I1 and I2. e. Find the average power delivered to the circuit.

87.3610

4

.

j6Ω8ΩjXRZ

37.87-11.40j7Ω9ΩjXRZ

0ΩRZ

haveewFig.16.19,inascircuittheRedrawinga

L33

C22

11

Figure 16.18 Example 16.8.

Figure 16.19 Network in Fig. 16.14 following the assignment of the subscripted impedances.

ET 242 Circuit Analysis II – Series-Parallel Circuits Analysis Boylestad 12

5.168.10

28.068.1028.068.64

37.269.6437.303.17

00.11144

)68()79(

)87.3610)(87.374.11(4

:.

32

32121

T

T

Z

jj

jj

ZZ

ZZZZZZ

impedancetotalThenetworkredrawnthein

conservedwerequantitiesdesiredtheallthatNotice

684.10

68.10cos.

5.136.95.1684.10

0100.

TTp

T

Z

RFc

AV

Z

EIb

3627.6

37.303.17

37.397.106

117

37.397.106

)68()79(

)5.136.9)(87.3740.11(

:.

32

22

A

A

j

A

jj

A

ZZ

IZI

ruledividercurrentd

72.385.544.329.4

)69.307.5()25.036.9(

)3627.6()5.136.9(21

AjA

AjjA

AA

III

yieldsKCLApplying

W

AV

EIPe TT

68.935

)99966.0)(936(

5.1cos)36.9)(100(

cos.

Ladder networks were discussed in some detail in Chapter 7. This section will simply apply the first method described in Section 7.6 to the general sinusoidal ac ladder network in Fig. 16.22. The current I6 is desired.

ET 242 Circuit Analysis II – Parallel ac circuits analysis Boylestad 13

Ladder Networks

T

'T21T

''T43

'T

65''T

31

TTT

ZEIThen

//ZZZZwith

//ZZZZand

ZZZ

16.23.Fig.indefinedareIandI

currentsandZandZZceIndependan

''' ,,

Figure 16.22 Ladder network.

Figure 16.23 Defining an approach to the analysis of ladder networks.


Recommended