+ All Categories
Home > Documents > Session 1B Transparent Materials - Penn Engineeringnanosop/documents/Session1B_UPenn... · Session...

Session 1B Transparent Materials - Penn Engineeringnanosop/documents/Session1B_UPenn... · Session...

Date post: 31-Jul-2018
Category:
Upload: dangxuyen
View: 217 times
Download: 0 times
Share this document with a friend
56
©2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 Andrew Martin Session 1B Transparent Materials UPenn, February 2014
Transcript

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 1

Andrew Martin

Session 1B

Transparent Materials

UPenn, February 2014

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 2

Overview

Transparent substrates & films

– Cauchy equation

– Common complexities

Evaluating, comparing, & saving results

– Normal dispersion

– Environment Files

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 3

What do you mean transparent?

No or very little absorption – Extinction coefficient k=0 or very small (k<10-3)

Wavelength dependent! – Typical transparent materials in visible wavelength

range: polymers, glasses, oxides, etc…

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 4

Dispersion Equations

Definition: Mathematical description of the optical constants as a function of wavelength (not a list of n, k)

Advantages: Reduces the number of unknowns

Adjust optical constants with only a few parameters

Avoid noise in the data

Better for interpolating and extrapolating

Some maintain K-K consistency

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 5

Cauchy Dispersion Equation

Cauchy relationship is empirical description

of index (n) of transparent materials.

5

42)(

CBAn

Augustin-Louis Cauchy

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 6

Cauchy Dispersion Equation

Describes index (n) as a function of wavelength ()

For transparent materials only (k=0 or very small)

B and C give dispersion

shape

n () = A +B / 2+ C / 4

k () = 0

A sets index range

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 7

Transparent Substrates

Typical examples (VIS/NIR) include: – Glass

– Bulk polymers

– Other examples?

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 8

Data Features

Psi = flat and smooth

Delta = 0° or 180°, unless absorbing or

surface film is present

Experimental Data

Wavelength (nm)

0 300 600 900 1200 1500 1800

Y in

de

gre

es

0

5

10

15

20

25

30

Exp E 55°Exp E 65°Exp E 75°

Experimental Data

Wavelength (nm)

0 300 600 900 1200 1500 1800

D in

de

gre

es

-10

43

95

148

200

Exp E 55°Exp E 65°Exp E 75°

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 9

Common Complexities

Backside Reflections

Surface Roughness

Index Grading

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 10

Avoiding Backside Reflections

1. Roughen backside with grinder, sandpaper, or sandblaster.

2. Spatially Separate Front & Back reflections.

– Focusing optics / thick substrate.

– Wedged substrate.

3. Index-match backside to scatter/absorb light.

– Translucent Scotch tape for glass.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 11

Spatial Separation

Only collect Front Surface reflection

Surface of

interest

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 12

Surface Roughness

Ellipsometry is very sensitive to surface conditions – (effectively lower-index surface film)

Modeled by mixing optical constants of material

with 50% air/voids (n=1) – Effective Medium Approximation (EMA)

Model as srough.mat – Note that srough layer may include roughness, lower-index surface

layer, & contamination

0 cauchy 1 mm

1 srough 2.160 nm

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 13

Surface Roughness Effects (transparent substrate)

Delta deviates from 0°, 180°

Shorter wavelengths are more sensitive

Experimental Data

Wavelength (nm)

0 300 600 900 1200 1500 1800

D in

degre

es

0

30

60

90

120

150

180

Exp E 55°Exp E 65°Exp E 75°

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 14

1 Example1_uncoated_glass.dat

Open data

Add layer of Cauchy.mat into model

substrate

Turn on Cauchy A, B, and C and Fit

– (to match Psi)

Add surface roughness (srough.mat)

and Fit

– (to match Delta)

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 15

View Optical Constants

Right-Click on Graph

Window. Then Data >

Current Layer (Opt.

Const.)

Make sure > is pointing to

the layer of interest.

(use arrow keys to adjust)

What should the optical constants look like?

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 16

Normal Dispersion

Without absorption: Increasing index with

decreasing λ

Desired outcome with Cauchy layer is

positive Cauchy coefficients

cauchy Optical Constants

Wavelength (nm)

0 300 600 900 1200 1500 1800

Ind

ex o

f R

efr

actio

n 'n

'

Extin

ctio

n C

oe

fficie

nt 'k

'

1.45

1.50

1.55

1.60

1.65

1.70

1.75

0.00

0.02

0.04

0.06

0.08

0.10

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 17

Unphysical Dispersion

Decreasing index with decreasing λ – Anything other than increasing index with

decreasing λ

– Negative B usually unphysical

– Negative C sometimes unphysical

▪ all negative C values are acceptable IF the results are still physical (probably insensitive to C)

cauchy Optical Constants

Wavelength (nm)

0 300 600 900 1200 1500 1800

Ind

ex o

f R

efr

action

'n

'

Extin

ctio

n C

oe

fficie

nt 'k

'

1.15

1.20

1.25

1.30

1.35

1.40

1.45

0.00

0.02

0.04

0.06

0.08

0.10

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 18

Which results are physical?

A= 1.555

B= -0.00177

C= 0.01640

A= 1.520

B= 0.015

C= -0.001

A= 1.643

B= 0.009

C= -4.8600E-05

A= 1.643

B= -0.04009

C= 0.009

n () = A +B / 2+ C / 4

A

C

B

D

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 19

2,3 Example2_free_standing_transparent_film.dat

Example3_bare_quartz.dat

Model data set using same

procedure as Example 1.

Verify result has Normal Dispersion.

Is roughness required?

MSE Roughness (nm) A B C

example2 1.635 3.085 1.5003 0.007497 0

example3 1.086 0.043 1.4469 0.00303 4.96E-05

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 20

Transparent Films

Typical examples (VIS/NIR) include: » Optical coating materials

• SiO2, TiO2, Ta2O5, MgF2…

» Some Nitrides

• Si3N4, AlN…

» Organic Films

• Photoresists, PMMA, spin-on polymers…

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 21

Data Features

Multiple reflections cause

interference pattern –

oscillations in data.

Pattern affected by thickness

and index.

0~n

1~n

2~n

Transparent -

oscillations

Wavelength (nm)

0 300 600 900 1200 1500 1800

Y in

de

gre

es

0

5

10

15

20

25

30

Photon Energy (eV)

0 2 4 6 8

Y in

de

gre

es

0

5

10

15

20

25

30

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 22

Thickness Effects

# of oscillations ~ thickness

Thicker films = more interference oscillations

Bare Si

1 µm

500 nm

100 nm Thickness

Meter

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 23

Index Effects

Psi magnitude ~ index Δ between film/substrate

Greater contrast = greater amplitude

Index also affects # of oscillation peaks

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 24

4 Example4_thermal_SiO2_on_Si.dat

Open data

Add Si_JAW.mat into model substrate

Add Cauchy.mat

Turn on Cauchy A, B, C and Thickness

Adjust Thickness to match # oscillations

Adjust A to match Psi amplitude

Fit

Verify normal dispersion

(view Cauchy layer optical constants)

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 25

Start Value Matters

“local”

minima

“global”

minimum

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 26

Normal Fit

Marquardt-Levenberg algorithm used to quickly determine the minimum (BEST FIT)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MS

E

Thick.1

Starting

Point local minima

Start Values Matter!…What if

nominal values are not known?

W.H. Press et al., Numerical Recipes in C, Cambridge, UK: Cambridge University Press, 1988.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 27

How to get good start values?

Global fit – Searches a ‘grid’ of starting points for the best match

Particularly useful to avoid local MSE minimums – Complicated models with

many parameters

– Thick films

Parm A

Pa

rm B

2D grid

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 28

Global Fit in WVASE Select model parameters

– Check parameter “fit box” in model layer.

– Actual values of fit parameters do not matter.

Define range and step for each parameter – “Edit Parms” from “Fit” Window.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 29

Edit Parms for Global Fit

1. Highlight a fit parameter

2. Set minimum, maximum and number of guesses

3. ‘Change Parm Coupling’ to update the changes

4. Repeat until all fit parameters have defined ranges and number of guesses

5. Perform “global” fit

1 3

2

5

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 30

Global Fit Guidelines

Use ~50 guesses per 1 micron thickness range

Use ~10-20 guesses for Index range of 1 (An)

Avoid global fitting dispersion (Bn, Cn)

Try to keep total number of guesses under 1000

Helpful with bi-layer films.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 31

4 Example4_thermal_SiO2_on_Si.dat (REPEAT)

Open Experimental data

Add Si_JAW.mat into model substrate

Add Cauchy.mat

Turn on Cauchy A, B, C and thickness

Global fit for Thickness

Global fit for A parameter

Fit

Verify normal dispersion (view Cauchy

layer optical constants)

Remember to hit

‘Change Parm Coupling’

after entering each

parameter!

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 32

Saving Environment Files

Environment File includes data, model, fit result, & material files!

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 33

Environment Files

Saves a copy of data, model, and fit

results – all in one file with *.env extension.

Useful when:

– Final result is reached.

– Before you are trying something that may

jeopardize your fit.

– When sending your data/results to other WVASE

users (i.e. sending to J.A. Woollam Company).

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 34

5,6,7,8 Examples 5, 6, 7 & 8

Example5_HfO2_on_Si.dat

Example6_MgF2_on_Si.dat

Fit all 4 data sets

Use Global Fit? Use Mouse Scroll Wheel?

Verify Normal Dispersion

Save Environment file when finished.

Example7_Ta2O5_on_Si.dat

Example8_SiN_on_Si.dat

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 35

Saving a Material File

Right-click on layer

Then ‘Save’

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 36

Saving a Material File

Two formats: Parameterized (YES)

– Will save dispersion parameters, such as Cauchy A, B and C.

– Can extrapolate and interpolate using dispersion equation.

Tabulated (NO) – Will save a table of n and k in the

measured wavelength range.

– Linear extrapolation or interpolation based on two points.

Saving Optical Constants of a layer

Both are *.mat files!

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 37

Saving a Model

Model:

Layered structure with results and fit parameters.

TIP: Save material files FIRST to retain layer names.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 38

Evaluating Results

Compare experimental and generated data

Are the results physically meaningful?

– Normal dispersion

– Positive thickness values, reasonable index values, etc

– K-K consistency

How low is MSE? Can it be lowered by increasing model complexity?

Check other mathematical “goodness of fit” indicators

– Correlation matrix

– Error bars

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 39

Common Complexities

Surface Roughness

Index Grading

Backside Reflections*

*Covered later this week

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 40

Surface Roughness Ellipsometry very sensitive to surface conditions

– (effectively lower-index surface film)

Modeled by mixing optical constants of material

with 50% air/voids (n=1) – Effective Medium

Approximation (EMA)

Simple to model, just add srough.mat – But may include roughness, lower-index surface layer, & contamination

Rough Surface EMA approximation

t

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 41

Surface Roughness Effects (Films)

0~n

1~n

2~n

Transparent

oscillations Rough Surface

– shifts in data

0~n

1~n

2~n

Not obvious for

transparent films

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 42

Index Grading Optical properties can vary with depth into a film.

Modeled by dividing film into ‘slices’ where optical constants can vary between each.

Right-click layer to Grade Layer

TiO 2 TiO 2

BK7

TiO2

BK7

2 Graded TiO2

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 43

Index Grading Effects

Oscillations too narrow or too wide

TiO 2 TiO 2

BK7

TiO2

BK7

2 Graded TiO2

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 44

Index Grading Slices

Each step represents

a ‘Slice’.

Number of slices can be

changed in the model.

Adding slices may not

improve MSE.

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 45

9 Example9_SiC_on_Si.dat

Use Si_jaw.mat for substrate

Use Cauchy.mat to model SiC

Add roughness

Remove roughness, add grading

Add both roughness and grading

Compare MSE and Results from each

step.

Which answer is correct?

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 46

Example 9 Results

Rough & Graded (MSE=5.1) Ideal Model (MSE=14.3)

Grading increases sensitivity to surface roughness…

better contrast with high index at surface

Generated and Experimental

Wavelength (nm)

600 800 1000 1200 1400 1600 1800Y

in

de

gre

es

0

10

20

30

40

Model Fit Exp E 45°Exp E 60°Exp E 75°

Generated and Experimental

Wavelength (nm)

600 800 1000 1200 1400 1600 1800

Y in

de

gre

es

0

10

20

30

40

Model Fit Exp E 45°Exp E 60°Exp E 75°

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 47

10 Example10_GaN_on_SiC.SE

Make sure to use correct substrate!

– sic_palik.mat in Semiconductor Folder

Try Roughness, Grading, Both? … What

is best model?

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 48

10 Example10_GaN_on_SiC.SE RESULTS

SimpleGradedIndex Optical Constants

Wavelength (nm)

300 600 900 1200 1500 1800

Ind

ex o

f R

efr

action

'n

'

Extin

ctio

n C

oe

fficie

nt 'k

'

2.25

2.30

2.35

2.40

2.45

2.50

2.55

0.00

0.02

0.04

0.06

0.08

0.10

n topn bottomk topk bottom

0 sic_palik 1 mm

1 cauchy 0.000 nm

2 SimpleGradedIndex (cauchy) 204.010 nm

3 srough 1.716 nm

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 49

Summary

Methods to Analyze and Report Results for Transparent Materials:

Dispersion Equations – Cauchy for Transparent Substrates and Films

Normal Dispersion – Increasing index w/ decreasing λ (for transparent materials/regions)

Starting Values Matter – Use Mouse Scroll & Global Fit

Common Complexities – Avoiding backside reflections

– Surface Roughness and Index Grading

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 50

Additional Content

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 51

Thickness Effects of Films on Glass Thickness ~ # of oscillations

Thicker films = more interference oscillations

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 52

Index Effects (Glass substrate) Index Δ between film/substrate ~ Ψ magnitude

greater contrast = greater amplitude

Index also affects # of oscillation peaks

Watch for index-matched films (n~1.5)

Is film index higher or lower than substrate?

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 53

11 Example11_transparent_film_on_glass.dat

Use 7059_C.MAT as substrate

Use Cauchy.mat for film

Try with & without roughness

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 54

Absorption Tails

Cauchy.mat also includes 3 parameters for

modeling absorption tails

This is the only exception for modeling absorption

with Cauchy layer

Limited shape (exponential), UV only

cauchy Optical Constants

Wavelength (nm)

0 300 600 900 1200 1500 1800

Ind

ex o

f R

efr

actio

n 'n

'

Extin

ctio

n C

oe

fficie

nt 'k

'

1.45

1.50

1.55

1.60

1.65

1.70

1.75

0.00

0.02

0.04

0.06

0.08

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 55

Absorption Tails - Parameters

k Amplitude – Often the only fit

parameter needed

(of these 3)

– Controls amplitude of

the exponential tail

Exponent – Controls shape of the tail

– Default value often ok (if not, another model may be best)

Band Edge – Specifies point at which k = k Amp

– Typically set to shortest λ (not critical)

©2014 J.A. Woollam Co., Inc. www.jawoollam.com 56

12 Example12_SiN_on_Si.dat

Could restrict λ range…

Fit for k amp.

Fit for exponent?

Compare results for Cauchy with

and without Urbach tail.


Recommended