+ All Categories
Home > Documents > Set Theory t u V_2

Set Theory t u V_2

Date post: 16-Dec-2015
Category:
Upload: man
View: 277 times
Download: 10 times
Share this document with a friend
Description:
1. From Wikipedia, the free encyclopedia2. Lexicographical order
326
Set theory t u v From Wikipedia, the free encyclopedia
Transcript
  • Set theory t u vFrom Wikipedia, the free encyclopedia

  • Contents

    1 Admissible set 11.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 Almost 22.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    3 Benacerrafs identication problem 33.1 Historical motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    4 BIT predicate 54.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.3 Private information retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.4 Mathematical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.5 Construction of the Rado graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5 Cabal (set theory) 75.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    6 Cantors diagonal argument 86.1 Uncountable set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    6.1.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96.1.2 Real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    6.2 General sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.2.1 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.2.2 Version for Quines New Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    6.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    i

  • ii CONTENTS

    6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    7 Cantors rst uncountability proof 147.1 The article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.2 The proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167.3 Constructive or non-constructive nature of Cantors proof of the existence of transcendentals . . . . 177.4 The development of Cantors ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187.5 Why Cantors article emphasizes the countability of the algebraic numbers . . . . . . . . . . . . . . 187.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    8 Cantors paradise 248.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    9 Cantors theorem 259.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269.2 A detailed explanation of the proof when X is countably innite . . . . . . . . . . . . . . . . . . . 269.3 Related paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279.4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    10 Cardinal assignment 3010.1 Cardinal assignment without the axiom of choice . . . . . . . . . . . . . . . . . . . . . . . . . . 3010.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    11 Cardinality of the continuum 3111.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    11.1.1 Uncountability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3111.1.2 Cardinal equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3111.1.3 Alternative explanation for c = 2@0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    11.2 Beth numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.3 The continuum hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.4 Sets with cardinality of the continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3311.5 Sets with greater cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3411.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    12 Categorical set theory 3612.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3612.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

  • CONTENTS iii

    12.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    13 Changs conjecture 3713.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    14 Class (set theory) 3814.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.2 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.3 Classes in formal set theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3914.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    15 Class logic 4015.1 Class logic in the strict sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015.2 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4115.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    16 Club lter 4216.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    17 Club set 4317.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4317.2 The closed unbounded lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4317.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4417.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    18 Clubsuit 4518.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.2 and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4518.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    19 Code (set theory) 4619.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4619.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    20 Conality 4720.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4720.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4720.3 Conality of ordinals and other well-ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.4 Regular and singular ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.5 Conality of cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4820.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4920.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

  • iv CONTENTS

    21 Condensation lemma 5021.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    22 Continuous function (set theory) 5122.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    23 Continuum (set theory) 5223.1 Linear continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5223.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5223.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    24 Controversy over Cantors theory 5324.1 Cantors argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5324.2 Reception of the argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5424.3 Objection to the axiom of innity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5424.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5524.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    25 Cumulative hierarchy 5725.1 Reection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5725.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5725.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    26 Deductive closure 5826.1 Epistemic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5826.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    27 Denable real number 5927.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5927.2 Notion does not exhaust unambiguously described numbers . . . . . . . . . . . . . . . . . . . . 6027.3 Other notions of denability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    27.3.1 Denability in other languages or structures . . . . . . . . . . . . . . . . . . . . . . . . . 6027.3.2 Denability with ordinal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    27.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6027.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    28 Diaconescus theorem 6228.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6228.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    29 Diagonal intersection 6429.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

  • CONTENTS v

    29.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    30 Diamond principle 6530.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6530.2 Properties and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6530.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6630.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    31 Dimensional operator 6731.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6731.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6731.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    32 Eastons theorem 6832.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6832.2 No extension to singular cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6932.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6932.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    33 Equaliser (mathematics) 7033.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7033.2 Dierence kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7033.3 In category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7133.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7133.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7233.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7233.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    34 ErdsRado theorem 7334.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7334.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    35 Extension (semantics) 7435.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7435.2 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7435.3 Metaphysical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7535.4 General semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7535.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7535.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    36 Extensionality 7636.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7636.2 In mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7636.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

  • vi CONTENTS

    36.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    37 Fodors lemma 7837.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7837.2 Fodors lemma for trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7837.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    38 Game-theoretic rough sets 7938.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    39 Goodsteins theorem 8039.1 Hereditary base-n notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8039.2 Goodstein sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8139.3 Proof of Goodsteins theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8139.4 Extended Goodsteins theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8239.5 Sequence length as a function of the starting value . . . . . . . . . . . . . . . . . . . . . . . . . . 8239.6 Application to computable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8239.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8339.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8339.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8339.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    40 Gdel logic 8440.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    41 Hartogs number 8541.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8541.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    42 Hausdor gap 8642.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8642.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8642.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    43 Hereditarily countable set 8843.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8843.2 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    44 Hereditarily nite set 8944.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8944.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8944.3 Ackermanns bijection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9044.4 Rado graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9044.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

  • CONTENTS vii

    44.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    45 Hereditary property 9145.1 In topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9145.2 In graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    45.2.1 Monotone property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9145.3 In model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9245.4 In matroid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9245.5 In set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9245.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    46 Hereditary set 9446.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.2 In formulations of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9446.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    47 Humes principle 9547.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9547.2 Inuence on set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9547.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9647.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    48 Ideal (set theory) 9748.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9748.2 Examples of ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    48.2.1 General examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9748.2.2 Ideals on the natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9748.2.3 Ideals on the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9848.2.4 Ideals on other sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    48.3 Operations on ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9848.4 Relationships among ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9848.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9848.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    49 Implementation of mathematics in set theory 10049.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10049.2 Empty set, singleton, unordered pairs and tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . 10149.3 Ordered pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10149.4 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    49.4.1 Related denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10249.4.2 Properties and kinds of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

  • viii CONTENTS

    49.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10349.5.1 Operations on functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10349.5.2 Special kinds of function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    49.6 Size of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10449.7 Finite sets and natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10449.8 Equivalence relations and partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10549.9 Ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    49.9.1 Digression: von Neumann ordinals in NFU . . . . . . . . . . . . . . . . . . . . . . . . . 10749.10Cardinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10749.11The Axiom of Counting and subversion of stratication . . . . . . . . . . . . . . . . . . . . . . . 108

    49.11.1 Properties of strongly cantorian sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10849.12Familiar number systems: positive rationals, magnitudes, and reals . . . . . . . . . . . . . . . . . 10849.13Operations on indexed families of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10949.14The cumulative hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10949.15See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11149.16References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11149.17External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    50 Innitary combinatorics 11250.1 Ramsey theory for innite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11250.2 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11350.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11350.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    51 Information diagram 11451.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    52 Jensens covering theorem 11652.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    53 Jnsson function 11753.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    54 Kuratowskis free set theorem 11854.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    55 Laver function 11955.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11955.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11955.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    56 Limit cardinal 12056.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12056.2 Relationship with ordinal subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

  • CONTENTS ix

    56.3 The notion of inaccessibility and large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . 12156.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12156.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12156.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    57 List of exceptional set concepts 122

    58 List of set theory topics 12458.1 Articles on individual set theory topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12458.2 Lists related to set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12758.3 Set theorists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12758.4 Societies and organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    59 List of statements undecidable in ZFC 12959.1 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12959.2 Set theory of the real line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13059.3 Order theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13059.4 Abstract algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13059.5 Number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13159.6 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13159.7 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13159.8 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13159.9 Model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13259.10References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13259.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    60 Lvy hierarchy 13360.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13360.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    60.2.1 0=0=0 formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13360.2.2 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.3 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.4 1-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.5 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.6 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.7 2-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13460.2.8 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.2.9 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.2.10 3-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.2.11 4-formulas and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    60.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13560.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

  • x CONTENTS

    61 Mathematical structure 13661.1 Example: the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13661.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13761.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    62 Mengenlehreuhr 13862.1 Telling the time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13862.2 Kryptos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13862.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13862.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    63 MilnerRado paradox 14263.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14263.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    64 Morass (set theory) 14364.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14364.2 Variants and equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14364.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    65 Mostowski model 14565.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    66 Multiplicity (mathematics) 14666.1 Multiplicity of a prime factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14666.2 Multiplicity of a root of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    66.2.1 Behavior of a polynomial function near a multiple root . . . . . . . . . . . . . . . . . . . 14666.3 Intersection multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14766.4 In complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14866.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    67 Naive set theory 14967.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    67.1.1 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14967.1.2 Cantors theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15067.1.3 Axiomatic theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15067.1.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15067.1.5 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    67.2 Sets, membership and equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15167.2.1 Note on consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15167.2.2 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15267.2.3 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15267.2.4 Empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    67.3 Specifying sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

  • CONTENTS xi

    67.4 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15367.5 Universal sets and absolute complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15367.6 Unions, intersections, and relative complements . . . . . . . . . . . . . . . . . . . . . . . . . . . 15367.7 Ordered pairs and Cartesian products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15467.8 Some important sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15467.9 Paradoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15567.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15667.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15667.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15767.13External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    68 Normal function 15868.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15868.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15868.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15968.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    69 Ontological maximalism 16069.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    70 Open coloring axiom 16170.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16170.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    71 Ordinal arithmetic 16271.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16271.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16371.3 Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16471.4 Cantor normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16671.5 Factorization into primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16771.6 Large countable ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16771.7 Natural operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16871.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16971.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16971.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    72 Ordinal denable set 17072.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    73 Pairing function 17173.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17173.2 Cantor pairing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    73.2.1 Inverting the Cantor pairing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17173.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

  • xii CONTENTS

    74 Paradoxes of set theory 17474.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    74.1.1 Cardinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17474.1.2 Ordinal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17474.1.3 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    74.2 Paradoxes of the innite set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17574.2.1 Paradoxes of enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17574.2.2 Je le vois, mais je ne crois pas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17574.2.3 Paradoxes of well-ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    74.3 Paradoxes of the Supertask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17674.3.1 The diary of Tristram Shandy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17674.3.2 The Ross-Littlewood paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    74.4 Paradoxes of proof and denability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17674.4.1 Early paradoxes: the set of all sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17674.4.2 Paradoxes by change of language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17774.4.3 Paradox of Lwenheim and Skolem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    74.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17874.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17874.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17874.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    75 Paradoxical set 17975.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    75.1.1 BanachTarski paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17975.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    76 PCF theory 18076.1 Main denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18076.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18076.3 Unsolved problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18076.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18176.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18176.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    77 Permutation model 18277.1 Construction of permutation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18277.2 Construction of lters on a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18277.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    78 Preordered class 18378.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18378.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18378.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

  • CONTENTS xiii

    79 Primitive notion 18479.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18479.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18579.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    80 Primitive recursive set function 18680.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18680.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

    81 Pseudo-intersection 18781.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    82 Quasi-set theory 18882.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18882.2 Outline of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18882.3 Some further details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18982.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19182.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    83 Recursive ordinal 19383.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19383.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    84 Reection principle 19484.1 Motivation for reection principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19484.2 The reection principle in ZFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19484.3 Reection principles as new axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19584.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    85 S (set theory) 19685.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19685.2 Primitive notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19685.3 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19785.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19785.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19885.6 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    86 SchrderBernstein property 19986.1 SchrderBernstein properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19986.2 SchrderBernstein problems and SchrderBernstein theorems . . . . . . . . . . . . . . . . . . . 20086.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20186.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20186.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20186.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

  • xiv CONTENTS

    87 Scotts trick 20287.1 Application to cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20287.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    88 Separating set 20388.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20388.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    89 Set (mathematics) 20489.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20589.2 Describing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20589.3 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    89.3.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20789.3.2 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    89.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20889.5 Special sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20889.6 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    89.6.1 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20989.6.2 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21089.6.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21089.6.4 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

    89.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21389.8 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21389.9 Principle of inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21489.10De Morgans Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21489.11See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.12Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.13References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21589.14External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

    90 Set intersection oracle 21690.1 Minimum memory, maximum query time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21690.2 Maximum memory, minimum query time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21690.3 A compromise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21690.4 Reduction to approximate distance oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21790.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    91 Set notation 21891.1 Denoting a set as an object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21891.2 Focusing on the membership of a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21891.3 Metaphor in denoting sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21991.4 Other conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22091.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

  • CONTENTS xv

    91.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

    92 Set theory 22192.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22292.2 Basic concepts and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22392.3 Some ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22492.4 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22492.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22592.6 Areas of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

    92.6.1 Combinatorial set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22692.6.2 Descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22692.6.3 Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22692.6.4 Inner model theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22692.6.5 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22792.6.6 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22792.6.7 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22792.6.8 Cardinal invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22792.6.9 Set-theoretic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

    92.7 Objections to set theory as a foundation for mathematics . . . . . . . . . . . . . . . . . . . . . . . 22892.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22892.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22892.10Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22992.11External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    93 Set theory of the real line 23093.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23093.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

    94 Set-builder notation 23294.1 Direct, ellipses, and informally specied sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23294.2 Formal set builder notation sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23394.3 Expressions to the left of 'such that' rather than a variable . . . . . . . . . . . . . . . . . . . . . . 23394.4 Convention of annotating the variable domain on the left of the 'such that' . . . . . . . . . . . . . . 23494.5 Leaving the variable domain understood by context . . . . . . . . . . . . . . . . . . . . . . . . . 23494.6 Equivalent builder predicates means equivalent sets . . . . . . . . . . . . . . . . . . . . . . . . . 23594.7 Russells Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23594.8 Z notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23594.9 Parallels in programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23694.10Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23694.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    95 Set-theoretic limit 23795.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

  • xvi CONTENTS

    95.1.1 The two denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23795.1.2 Monotone sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

    95.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23895.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23995.4 Probability uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    95.4.1 BorelCantelli lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24095.4.2 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

    95.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

    96 Set-theoretic topology 24296.1 Objects studied in set-theoretic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

    96.1.1 Dowker spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24296.1.2 Normal Moore spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24296.1.3 Cardinal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24296.1.4 Martins axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24396.1.5 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

    96.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24496.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

    97 Sierpiski set 24597.1 Example of a Sierpiski set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24597.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    98 Simplied morass 24698.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    99 Soft set 24799.1 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24799.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    100Solovay model 248100.1Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248100.2Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248100.3Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248100.4References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

    101Square principle 250101.1Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250101.2Variant relative to a cardinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250101.3Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    102Stationary set 251102.1Classical notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251102.2Jechs notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

  • CONTENTS xvii

    102.3Generalized notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251102.4References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252102.5External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    103Stratication (mathematics) 253103.1In mathematical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253103.2In set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253103.3In singularity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254103.4In statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

    104Structuralism (philosophy of mathematics) 255104.1Historical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255104.2Contemporary schools of thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256104.3References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256104.4Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256104.5See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257104.6External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

    105Subclass (set theory) 258105.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

    106Successor cardinal 259106.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260106.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

    107Sunower (mathematics) 261107.1 lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262107.2 lemma for !2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262107.3Sunower lemma and conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262107.4References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    108Superstrong cardinal 263108.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    109Supertransitive class 264109.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264109.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

    110Support (mathematics) 265110.1Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265110.2Closed support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265110.3Compact support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266110.4Essential support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266110.5Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

  • xviii CONTENTS

    110.6In probability and measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267110.7Support of a distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267110.8Singular support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267110.9Family of supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267110.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268110.11References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    111Suslin representation 269111.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269111.2External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

    112Symmetric set 270112.1Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270112.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

    113Tail sequence 271

    114Tarskis theorem about choice 272114.1Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272114.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

    115The Paradoxes of the Innite 273115.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

    116Total order 274116.1Strict total order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274116.2Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275116.3Further concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

    116.3.1 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275116.3.2 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275116.3.3 Finite total orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276116.3.4 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276116.3.5 Order topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276116.3.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276116.3.7 Sums of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

    116.4Orders on the Cartesian product of totally ordered sets . . . . . . . . . . . . . . . . . . . . . . . . 277116.5Related structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277116.6See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277116.7Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277116.8References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

    117Transitive model 279117.1Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279117.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

  • CONTENTS xix

    118Transitive reduction 280118.1In directed acyclic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280118.2In graphs with cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280118.3Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281118.4Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281118.5References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282118.6External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

    119Transitive set 283119.1Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283119.2Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283119.3Transitive closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283119.4Transitive models of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283119.5See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284119.6References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284119.7External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

    120Tree (set theory) 285120.1Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285120.2Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285120.3Tree (automata theory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

    120.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286120.4See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286120.5References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287120.6External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

    121Ulam matrix 288121.1Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288121.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

    122Uniformization (set theory) 289122.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

    123Vicious circle principle 291123.1See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292123.2References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292123.3External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    124-logic 293124.1References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293124.2External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294124.3Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 295

    124.3.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295124.3.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

  • xx CONTENTS

    124.3.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

  • Chapter 1

    Admissible set

    In set theory, a discipline within mathematics, an admissible set is a transitive set A such that hA;2i is a model ofKripkePlatek set theory (Barwise 1975).The smallest example of an admissible set is the set of hereditarily nite sets. Another example is the set of hereditarilycountable sets.

    1.1 See also Admissible ordinal

    1.2 References Barwise, Jon (1975). Admissible Sets and Structures: An Approach to Denability Theory, Perspectives inMathematical Logic, Volume 7, Springer-Verlag. Electronic version on Project Euclid.

    1

  • Chapter 2

    Almost

    For other uses, see Almost (disambiguation).

    In set theory, when dealing with sets of innite size, the term almost or nearly is used to mean all the elements exceptfor nitely many.In other words, an innite set S that is a subset of another innite set L, is almost L if the subtracted set L\S is ofnite size.Examples:

    The set S = fn 2 Njn kg is almost N for any k in N, because only nitely many natural numbers are lessthan k.

    The set of prime numbers is not almost N because there are innitely many natural numbers that are not primenumbers.

    This is conceptually similar to the almost everywhere concept of measure theory, but is not the same. For example,the Cantor set is uncountably innite, but has Lebesgue measure zero. So a real number in (0, 1) is a member of thecomplement of the Cantor set almost everywhere, but it is not true that the complement of the Cantor set is almostthe real numbers in (0, 1).

    2.1 See also Almost all Almost surely

    2

  • Chapter 3

    Benacerrafs identication problem

    Benacerrafs identication problem is a philosophical argument, developed by Paul Benacerraf, against set-theoreticPlatonism.[1] In 1965, Benacerraf published a paradigm changing article entitled What Numbers Could Not Be.[1][2]Historically, the work became a signicant catalyst in motivating the development of structuralism in the philosophyof mathematics.[3] The identication problem argues that there exists a fundamental problem in reducing naturalnumbers to pure sets. Since there exists an innite number of ways of identifying the natural numbers with pure sets,no particular set-theoretic method can be determined as the true reduction. Benacerraf infers that any attempt tomake such a choice of reduction immediately results in generating a meta-level, set-theoretic falsehood, namely inrelation to other elementarily-equivalent set-theories not identical to the one chosen.[1] The identication problemargues that this creates a fundamental problem for Platonism, which maintains that mathematical objects have a real,abstract existence. Benacerrafs dilemma to Platonic set-theory is arguing that the Platonic attempt to identify thetrue reduction of natural numbers to pure sets, as revealing the intrinsic properties of these abstract mathematicalobjects, is impossible.[1] As a result, the identication problem ultimately argues that the relation of set theory tonatural numbers cannot have an ontologically Platonic nature.[1]

    3.1 Historical motivationsThe historical motivation for the development of Benacerrafs identication problem derives from a fundamentalproblem of ontology. Since Medieval times, philosophers have argued as to whether the ontology of mathematicscontains abstract objects. In the philosophy of mathematics, an abstract object is traditionally dened as an entity that:(1) exists independent of the mind; (2) exists independent of the empirical world; and (3) has eternal, unchangeableproperties.[4] Traditional mathematical Platonismmaintains that some set ofmathematical elementsnatural numbers,real numbers, functions, relations, systemsare such abstract objects. Contrarily, mathematical nominalism denies theexistence of any such abstract objects in the ontology of mathematics.In the late 19th and early 20th century, a number of anti-Platonist programs gained in popularity. These includedintuitionism, formalism, and predicativism. By the mid-20th century, however, these anti-Platonist theories had anumber of their own issues. This subsequently resulted in a resurgence of interest in Platonism. It was in this historiccontext that the motivations for the identication problem developed.

    3.2 DescriptionThe identication problem begins by evidencing some set of elementarily-equivalent, set-theoretic models of thenatural numbers.[1] Benacerraf considers two such set-theoretic methods:

    Set-theoretic method I0 = 1 = {}2 = {{}}3 = {{{}}}

    3

  • 4 CHAPTER 3. BENACERRAFS IDENTIFICATION PROBLEM

    ...

    Set-theoretic method II0 = 1 = {}2 = {, {}}3 = {, {}, {, {}}}...

    As Benacerraf demonstrates, both method I and II reduce natural numbers to sets.[1] Benacerraf formulates thedilemma as a question: which of these set-theoretic methods uniquely provides the true identity statements, whichelucidates the true ontological nature of the natural numbers?[1] Either method I or II could be used to dene thenatural numbers and subsequently generate true arithmetical statements to form a mathematical system. In theirrelation, the elements of such mathematical systems are isomorphic in their structure. However, the problem ariseswhen these isomorphic structures are related together on the meta-level. The denitions and arithmetical statementsfrom system I are not identical to the denitions and arithmetical statements from system II. For example, the twosystems dier in their answer to whether 0 2, insofar as is not an element of {{}}. Thus, in terms of failing thetransitivity of identity, the search for true identity statements similarly fails.[1] By attempting to reduce the naturalnumbers to sets, this renders a set-theoretic falsehood between the isomorphic structures of dierent mathematicalsystems. This is the essence of the identication problem.According to Benacerraf, the philosophical ramications of this identication problem result in Platonic approachesfailing the ontological test.[1] The argument is used to demonstrate the impossibility for Platonism to reduce numbersto sets that reveals the existence of abstract objects.

    3.3 See also Philosophy of mathematics Structuralism (philosophy of mathematics) Paul Benacerraf

    3.4 References[1] Paul Benacerraf (1965), What Numbers Could Not Be, Philosophical Review Vol. 74, pp. 4773.[2] Bob Hale and Crispin Wright (2002) Benacerrafs Dilemma Revisited European Journal of Philosophy, Issue 10:1.[3] Stewart Shapiro (1997) Philosophy of Mathematics: Structure and Ontology New York: Oxford University Press, p. 37.

    ISBN 0195139305[4] Michael Loux (2006) Metaphysics: A Contemporary Introduction (Routledge Contemporary Introductions to Philosophy),

    London: Routledge. ISBN 0415401348

    3.5 Bibliography Benacerraf, Paul (1965) What Numbers Could Not Be Philosophical Review Vol. 74, pp. 4773. Benacerraf, Paul (1973) Mathematical Truth, in Benacerraf & Putnam Philosophy ofMathematics: SelectedReadings, Cambridge: Cambridge University Press, 2nd edition. 1983, pp. 403420.

    Hale, Bob (1987) Abstract Objects. Oxford: Basil Blackwell. ISBN 0631145931 Hale, Bob and Wright, Crispin (2002) Benacerrafs Dilemma Revisited European Journal of Philosophy,Issue 10:1.

    Shapiro, Stewart (1997) Philosophy of Mathematics: Structure and Ontology New York: Oxford UniversityPress. ISBN 0195139305

  • Chapter 4

    BIT predicate

    In mathematics and computer science, the BIT predicate or Ackermann coding, sometimes written BIT(i, j), is apredicate which tests whether the jth bit of the number i is 1, when i is written in binary.

    4.1 History

    The BIT predicate was rst introduced as the encoding of hereditarily nite sets as natural numbers by WilhelmAckermann in his 1937 paper[1][2] (The Consistency of General Set Theory).Each natural number encodes a nite set and each nite set is represented by a natural number. This mapping uses thebinary numeral system. If the number n encodes a nite set A and the ith binary digit of n is 1 then the set encodedby i is element of A. The Ackermann coding is a primitive recursive function.[3]

    4.2 Implementation

    In programming languages such as C, C++, Java, or Python that provide a right shift operator >> and a bitwiseBoolean and operator &, the BIT predicate BIT(i, j) can be implemented by the expression (i>>j)&1. Here the bitsof i are numbered from the low order bits to high order bits in the binary representation of i, with the ones bit beingnumbered as bit 0.[4]

    4.3 Private information retrieval

    In the mathematical study of computer security, the private information retrieval problem can be modeled as one inwhich a client, communicating with a collection of servers that store a binary number i, wishes to determine the resultof a BIT predicate BIT(i, j) without divulging the value of j to the servers. Chor et al. (1998) describe a method forreplicating i across two servers in such a way that the client can solve the private information retrieval problem usinga substantially smaller amount of communication than would be necessary to recover the complete value of i.[5]

    4.4 Mathematical logic

    The BIT predicate is often examined in the context of rst-order logic, where we can examine the system resultingfrom adding the BIT predicate to rst-order logic. In descriptive complexity, the complexity class FO + BIT resultingfrom adding the BIT predicate to FO results in a more robust complexity class.[6] The class FO + BIT, of rst-orderlogic with the BIT predicate, is the same as the class FO + PLUS + TIMES, of rst-order logic with addition andmultiplication predicates.[7]

    5

  • 6 CHAPTER 4. BIT PREDICATE

    4.5 Construction of the Rado graphAckermann in 1937 and Richard Rado in 1964 used this predicate to construct the innite Rado graph. In theirconstruction, the vertices of this graph correspond to the non-negative integers, written in binary, and there is anundirected edge from vertex i to vertex j, for i < j, when BIT(j,i) is nonzero.[8]

    4.6 References[1] Ackermann, Wilhelm (1937). Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114:

    305315. doi:10.1007/bf01594179. Retrieved 2012-01-09.

    [2] Kirby, Laurence (2009). Finitary Set Theory. Notre Dame Journal of Formal Logic 50 (3): 227244. doi:10.1215/00294527-2009-009. Retrieved 31 May 2011.

    [3] Rautenberg,Wolfgang (2010). AConcise Introduction toMathematical Logic (3rd ed.). NewYork: Springer Science+BusinessMedia. p. 261. doi:10.1007/978-1-4419-1221-3. ISBN 978-1-4419-1220-6.

    [4] Venugopal, K. R. (1997). Mastering C++. Muhammadali Shaduli. p. 123. ISBN 9780074634547..

    [5] Chor, Benny; Kushilevitz, Eyal; Goldreich, Oded; Sudan, Madhu (1998). Private information retrieval. Journal of theACM 45 (6): 965981. doi:10.1145/293347.293350..

    [6] Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. ISBN 0-387-98600-6.

    [7] Immerman, Neil (1999). Descriptive Complexity. New York: Springer-Verlag. pp. 1416. ISBN 0-387-98600-6.

    [8] Rado, Richard (1964). Universal graphs and universal functions. Acta Arith. 9: 331340..

  • Chapter 5

    Cabal (set theory)

    The Cabal was, or perhaps is, a grouping of set theorists in Southern California, particularly at UCLA and Caltech,but also at UC Irvine. Organization and procedures range from informal to nonexistent, so it is dicult to say whetherit still exists or exactly who has been a member, but it has included such notable gures as Donald A. Martin, YiannisN. Moschovakis, John R. Steel, and Alexander S. Kechris. Others who have published in the proceedings of theCabal seminar include Robert M. Solovay, W. Hugh Woodin, Matthew Foreman, and Steve Jackson.The work of the group is characterized by free use of large cardinal axioms, and research into the descriptive settheoretic behavior of sets of reals if such assumptions hold.Some of the philosophical views of the Cabal seminar were described in Maddy 1988a and Maddy 1988b.

    5.1 Publications Kechris, A. S. et al. (1978). Cabal Seminar 76-77: Proceedings. Caltech-UCLA Logic Seminar 1976-77.Springer. ISBN 0-387-09086-X.

    Kechris, A. S. (editor) (1983). Cabal Seminar 79-81: Proc Caltech-UCLA Logic Seminar 1979-81 (LectureNotes in Mathematics). Springer. ISBN 0-387-12688-0.

    Martin, D. A., A. S. Kechris, J. R. Steel (1988). Cabal Seminar 81-85: Proceedings Caltech UCLA LogicSeminar (Lecture Notes in Mathematics, No 1333). Springer. ISBN 0-387-50020-0.

    Alexander S. Kechris, Benedikt Lwe, John R. Steel (2008). Games, Scales, and Suslin cardinals: The CabalSeminar Volume I: Lecture Notes in Logic. CUP. ISBN 9780521899512.

    5.2 References Maddy, Penelope (1988). Believing the Axioms I (PDF). The Journal of Symbolic Logic 53 (2): 481511. Maddy, Penelope (1988). Believing the Axioms II (PDF). The Journal of Symbolic Logic 53 (3): 736764.

    7

  • Chapter 6

    Cantors diagonal argument

    In set theory, Cantors diagonal argument, also called the diagonalisation argument, the diagonal slash argu-ment or the diagonal method, was published in 1891 by Georg Cantor as a mathematical proof that there are innitesets which cannot be put into one-to-one correspondence with the innite set of natural numbers.[1][2][3] Such sets arenow known as uncountable sets, and the size of innite sets is now treated by the theory of cardinal numbers whichCantor began.The diagonal argument was not Cantors rst proof of the uncountability of the real numbers; it was actually pub-lished much later than his rst proof, which appeared in 1874.[4][5] However, it demonstrates a powerful and generaltechnique that has since been used in a wide range of proofs, also known as diagonal arguments by analogy withthe argument used in this proof. The most famous examples are perhaps Russells paradox, the rst of Gdelsincompleteness theorems, and Turings answer to the Entscheidungsproblem.

    6.1 Uncountable setIn his 1891 article, Cantor considered the set T of all innite sequences of binary digits (i.e. consisting only of zeroesand ones). He begins with a constructive proof of the following theorem:

    If s1, s2, , sn, is any enumeration of elements from T, then there is always an element s of T whichcorresponds to no sn in the enumeration.

    To prove this, given an enumeration of arbitrary members from T, like e.g.

    he constructs the sequence s by choosing its nth digit as complementary to the nth digit of sn, for every n. In theexample, this yields:

    By construction, s diers from each sn, since their nth digits dier (highlighted in the example). Hence, s cannotoccur in the enumeration.Based on this theorem, Cantor then uses an indirect argument to show that:

    The set T is uncountable.

    He assumes for contradiction that T was countable. Then (all) its elements could be written as an enumeration s1,s2, , sn, . Applying the previous theorem to this enumeration would produce a sequence s not belonging tothe enumeration. However, s was an element of T and should therefore be in the enumeration. This contradicts theoriginal assumption, so T must be uncountable.

    8

  • 6.1. UNCOUNTABLE SET 9

    An illustration of Cantors diagonal argument (in base 2) for the existence of uncountable sets. The sequence at the bottom cannotoccur anywhere in the enumeration of sequences above.

    6.1.1 Interpretation

    The interpretation of Cantors result will depend upon ones view of mathematics. To constructivists, the argumentshows no more than that there is no bijection between the natural numbers and T. It does not rule out the possibilitythat the latter are subcountable. In the context of classical mathematics, this is impossible, and the diagonal argumentestablishes that, although both sets are innite, there are actually more innite sequences of ones and zeros than thereare natural numbers.

  • 10 CHAPTER 6. CANTORS DIAGONAL ARGUMENT

    YX123

    x

    246

    2x. .

    . .

    An innite set may have the same cardinality as a proper subset of itself, as the depicted bijection f(x)=2x from the natural to theeven numbers demonstrates. Nevertheless, innite sets of dierent cardinalities exist, as Cantors diagonal argument shows.

    6.1.2 Real numbers

    The uncountability of the real numbers was already established by Cantors rst uncountability proof, but it also fol-lows from the above result. To see this, we will build a one-to-one correspondence between the set T of innite binarystrings and a subset of R (the set of real numbers). Since T is uncountable, this subset of R must be uncountable.Hence R is uncountable.To build this one-to-one correspondence (or bijection), observe that the string t = 0111 appears after the binarypoint in the binary expansion 0.0111. This suggests dening the function f(t) = 0.t, where t is a string in T.Unfortunately, f(1000) = 0.1000 = 1/2, and f(0111) = 0.0111 = 1/4 + 1/8 + 1/16 + = 1/2. So thisfunction is not a bijection since two strings correspond to one numbera number having two binary expansions.However, modifying this function produces a bijection from T to the interval (0, 1)that is, the real numbers > 0and < 1. The idea is to remove the problem elements from T and (0, 1), and handle them separately. From (0, 1),remove the numbers having two binary expansions. Put these numbers in a sequence: a = (1/2, 1/4, 3/4, 1/8, 3/8,5/8, 7/8, ). From T, remove the strings appearing after the binary point in the binary expansions of 0, 1, and thenumbers in sequence a. Put these eventually-constant strings in a sequence: b = (000, 111, 1000, 0111,01000, 11000, 00111, 10111, ...). A bijection g(t) from T to (0, 1) is dened by: If t is the nth string insequence b, let g(t) be the nth number in sequence a; otherwise, let g(t) = 0.t.To build a bijection from T to R: start with the tangent function tan(x), which provides a bijection from (/2, /2)to R; see right picture. Next observe that the linear function h(x) = x - /2 provides a bijection from (0, 1) to(/2, /2); see left picture. The composite function tan(h(x)) = tan(x - /2) provides a bijection from (0, 1) toR. Compose this function with g(t) to obtain tan(h(g(t))) = tan(g(t) - /2), which is a bijection from T to R. Thismeans that T and R have the same cardinalitythis cardinality is called the "cardinality of the continuum.

  • 6.2. GENERAL SETS 11

    6.2 General sets

    Illustration of the generalized diagonal argument: The set T = {n: nf(n)} at the bottom cannot occur anywhere in the range off:P(). The example mapping f happens to correspond to the example enumeration s in the above picture.

    A generalized form of the diagonal argument was used by Cantor to prove Cantors theorem: for every set S the powerset of S; that is, the set of all subsets of S (here written as P(S)), has a larger cardinality than S itself. This proofproceeds as follows:Let f be any function from S to P(S). It suces to prove f cannot be surjective. That means that some member T ofP(S), i.e. some subset of S, is not in the image of f. As a candidate consider the set:

    T = { s S: s f(s) }.

    For every s in S, either s is in T or not. If s is in T, then by denition of T, s is not in f(s), so T is not equal to f(s).On the other hand, if s is not in T, then by denition of T, s is in f(s), so again T is not equal to f(s); cf. picture. Fora more complete account of this proof, see Cantors theorem.

    6.2.1 Consequences

    This result implies that the notion of the set of all sets is an inconsistent notion. If S were the set of all sets then P(S)would at the same time be bigger than S and a subset of S.Russells Paradox has shown us that naive set theory, based on an unrestricted comprehension scheme, is contra-dictory. Note that there is a similarity between the construction of T and the set in Russells paradox. Therefore,

  • 12 CHAPTER 6. CANTORS DIAGONAL ARGUMENT

    depending on how we modify the axiom scheme of comprehension in order to avoid Russells paradox, argumentssuch as the non-existence of a set of all sets may or may not remain valid.The diagonal argument shows that the set of real numbers is bigger than the set of natural numbers (and therefore,the integers and rationals as well). Therefore, we can ask if there is a set whose cardinality is between that ofthe integers and that of the reals. This question leads to the famous continuum hypothesis. Similarly, the questionof whether there exists a set whose cardinality i


Recommended