+ All Categories
Home > Documents > Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf ·...

Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf ·...

Date post: 23-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
33
Discussion Paper Series No. 1804 November 2018 Membership Mechanism Seung Han Yoo The Institute of Economic Research - Korea University Anam-dong, Sungbuk-ku, Seoul, 136-701, South Korea, Tel: (82-2) 3290-1632, Fax: (82-2) 928-4948 Copyright © 2019 IER.
Transcript
Page 1: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Discussion Paper Series

No. 1804

November 2018

Membership Mechanism

Seung Han Yoo

The Institute of Economic Research - Korea UniversityAnam-dong, Sungbuk-ku, Seoul, 136-701, South Korea, Tel: (82-2) 3290-1632, Fax: (82-2) 928-4948

Copyright © 2019 IER.

Page 2: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Membership Mechanism∗

Seung Han Yoo†

November 2018

Abstract

This paper studies an environment in which a seller seeks to sell two different items

to buyers. The seller designs a membership mechanism that assigns positive allocations

to members only. Exploiting the restrictive set, the seller finds a revenue-maximizing

incentive compatible mechanism. We first establish the optimal allocation rule for this

membership mechanism given a regularity condition for a modified valuation distribu-

tion reflecting the set, which provides the existence of a member set and the optimal

payment rule. The optimal allocation enables us to compare membership with separate

selling of the two items, suggesting conditions under which membership dominates sep-

arate selling: interplay between the number of bidders and the degree of the stochastic

dominance of valuation distributions.

Keywords and Phrases: Mechanism design, Multidimensional screening, Auc-

tion

JEL Classification Numbers: D44, D82

∗I am indebted to Masaki Aoyagi and Joel Sobel for valuable suggestions. I am grateful to Kong-Pin

Chen, Byoung Heon Jun, Mark Machina, Joel Watson and Kiho Yoon for helpful comments. I also thank

seminar participants at Academia Sinica, Korea University and UCSD. Part of this work was done while the

author was visiting ISER, Osaka University. The hospitality of ISER is gratefully acknowledged. Of course,

all remaining errors are mine.

†Department of Economics, Korea University, Seoul, Republic of Korea 136-701

(e-mail: [email protected]).

Page 3: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

1 Introduction

Memberships are ubiquitous. One common usage of the group formations, especially with

the recent rise of electronic commerce, is sales memberships. A sales membership allows

its members to purchase multiple items in return for membership fees collected from them.

Despite the popularity of this daily business practice, the rationale behind membership, in

the area of selling multiple items, has not been investigated thoroughly. That is, why should

sellers prefer a membership to “separate selling” (Myerson (1981))?1

The single-item optimal sales mechanism has been extended to consider multidimensional

screening not only to respond to its purely theoretical challenges but to encompass real-

world sales environments. The setting with buyers having multidimensional valuations for

multiple items being natural, its analytical difficulty and anomaly are well documented, even

for mild extensions, such as only two items: there is no full characterization for the optimal

allocation.2

This paper suggests a new direction for multidimensional screening. First, in the model,

each buyer participates in the purchase of two items separately, to reflect the practice in

reality.3 We assume the buyer’s separate participation, after becoming a member, not just

to simplify the analysis; it is simply not our main focus in this paper.4 The driving force be-

hind membership mechanism is that the seller chooses a restrictive member set to exploit the

buyer’s multidimensional type, compared with separate selling. But it must resolve an exis-

tence problem of a member set before analyzing the comparison. A membership mechanism

assigns positive allocations to members only. As a result, the mechanism’s allocation and

payment may depend on a member set that the seller adopts, which in turn generates each

1The optimal mechanism of Myerson (1981) with a single item can be implemented through an auction,

but, in reality, posted prices are still commonly used, due to other institutional considerations. See, e.g.,

Wang (1993). Likewise, this membership mechanism is not only directly applicable to a type of membership

with auctions such as eBay but also has relevant insights for other types of sales membership.

2For instance, the bundling’s dominance by McAfee, McMillan and Whinston (1989) is established

for “mixed” bundling, posting both individual prices and bundle prices. The dominance between “pure”

bundling and separate selling is, however, not determinant, as observed by Thanassoulis (2004) and Manelli

and Vincent (2006).

3This requires direct mechanisms to represent such indirect mechanisms.

4We use the term “separate selling” by the seller differently from the term “separate participation” by

the buyers in this paper. The former refers to applying the optimal mechanism of Myerson (1981) to each

item, but the latter implies separable incentive compatibility for each buyer in a direct mechanism.

1

Page 4: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

buyer’s payoff, determining his or her willingness to become a member or not, or a member

set. Hence, in nature, the existence of a member set satisfying such incentive compatibility

involves a fixed point type argument.

The first main result shows that the highest valuation for an item among members wins

the item if a modified virtual valuation distribution reflecting the restrictive member set

satisfies monotonicity. The finding resembles a single dimension, but we must find the

optimal allocation without being able to pin down the payoff of a buyer with the lowest

valuation in one item; in a multidimension, the buyer’s payoff and his decision to be a

member depend on valuation for the other good as well, unlike in a single dimension. The

optimal allocation solves the existence problem, implying a “normalization” of the optimal

payment rule. Essentially, the problem of choosing a member set and a membership fee is

reduced to choosing a membership fee, considering the incentive compatibility condition.

Membership’s dominance over separate selling requires a systematic approach. A direct

approach that compares closed-form solutions, shown for an illustrative example with an

uniform distribution, is futile with general environments, such as non-uniform distributions

(Section 5). We find a link between the two mechanisms, membership and separate selling,

by connecting a member set’s intercept to an optimal reserve price from separate selling. In

a membership, unlike separate selling, a bidder whose valuation is low in one dimension can

be a member if the other valuation is sufficiently high. Hence, those bidder types’ expected

payment becomes an additional source of the seller’s revenue. On the other hand, with

membership mechanism, without a “reserve” price, lower winning bids can realize, which

decreases the seller’s revenue. In other words, a membership induces a larger set of types to

participate, but some of them can win with lower bids. As the number of bidders increases,

the former effect dominates the latter; membership generates a higher revenue than separate

selling.

The opposite case is also examined. Selling two goods separately dominates the opti-

mal membership mechanism if bidders’ valuation distributions become sufficiently stochas-

tic dominant. Under the condition, in a membership, the revenue decrease from low bids

dominates the additional revenue from low valuations when valuation distributions include

more high valuations.

The well-known equivalence between a reserve price and an (interim) entry fee in a single

dimension no longer holds in multidimensional types: a single entry fee, which we call a

membership fee in this model, cannot capture two different reserve prices in two dimensions.

2

Page 5: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

This failure makes room for the comparison between membership with a single fee and

separate selling with two separate reserve prices. This new approach can shed light on how

a mechanism in multidimensional types can outperform the mechanism by Myerson (1981).

Although the robustness of a non-negligible set of not-participating buyer types in mul-

tidimensions was well established by Armstrong (1996) and Rochet and Chone (1998), the

full characterization of the optimal allocation for participating buyer types is generally in-

tractable. The study on this restricted domain enables us to find the optimal allocation for

members of this model so that we can compare its performance with separate selling.

The anomaly of multidimensional screening was reported by early pioneers, Thanassoulis

(2004) and Manelli and Vincent (2006), and further important findings were provided by

Hart and Reny (2015) and Hart and Nisan (2017). The complexities are not our main

concern in this model with the buyer’s separate participation. Yet, it is critical for the

seller of this paper to utilize a modified joint distribution that incorporates a member set,

despite the independence of two valuations, which is different from Carroll (2017), in which

the principal has beliefs only about each marginal distribution. The focus of this paper,

the seller exploiting a multidimension with a restrictive set, makes our problem differ from

the literature on bundling (see Manelli and Vincent (2006), Manelli and Vincent (2007) and

Hart and Nisan (2017)).

This paper is also related to auctions with budget constraints, as a membership fee

constrains a buyer’s feasible choices. We study an incomplete information model with two

items, unlike the complete information case by Che and Gale (1998), Che and Gale (2000)

and Benoit and Krishna (2001), and the single-item case by Pai and Vohra (2014). The

setting with incomplete information and two items makes sense of the comparison between

its performance and that of its counterpart, separate selling by Myerson (1981). In addition,

choosing a membership fee and the constraint it imposes is the seller’s endogenous variable,

not an exogenous environment like a budget constraint.

The model is in Section 2 and membership mechanism is introduced in Section 3. Sec-

tions 4 and 5 provide the main results: the optimal characterization of membership and its

dominance over separate selling. The dominance of separate selling is found Section 6 and

the concluding remarks are in the last section. All the proofs are collected in an appendix.

3

Page 6: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

2 Model

One seller seeks to sell two non-identical items to N ≥ 2 potential buyers. Each of the two

items, good A and good B, is a single unit of an indivisible good. Buyer i ∈ I ≡ {1, ..., N}receives value vi from good A, and value wi from good B. We call buyer i’s valuations (vi, wi)

buyer i’s type, denoted by θi ≡ (vi, wi) ∈ Θi ≡ [v, v]×[w,w]. We suppose that two valuations

are not related for all buyers; vi and wi are independently drawn from [v, v], v > v ≥ 0, and

[w,w], w > w ≥ 0, respectively. In addition, for each good, valuations across buyers are

independently and identically drawn, according to a differentiable cumulative distribution

function Fk with density fk > 0, for k ∈ {A,B}.An outcome x = (xA, xB) specifies which good is assigned to a buyer, or not sold, with

a set of outcomes X ≡ {0} ∪ I × {0} ∪ I.5 The probability that outcome x occurs, denoted

by q(x), generates its marginal probabilities: for xA, xB ∈ I, qA(xA) ≡∑

xB∈{0}∪I q(x) the

probability of good A sold to buyer xA, and qB(xB) ≡∑

xA∈{0}∪I q(x) the probability of

good B sold to buyer xB. Each buyer’s total benefit from trade being the sum of the two

valuations, buyer i obtains expected payoff qA(i)vi+qB(i)wi− ti if he purchases good A with

probability qA(i) and good B with probability qB(i), by paying a transfer ti to the seller,

and the seller obtains revenue∑

i∈I ti if for each i ∈ I, buyer i transfers ti to him.

For each k ∈ {A,B}, we assume that Fk satisfies the standard monotone hazard rate

condition: 1−Fk(x)fk(x)

is non-increasing, and that the type distribution Fk is common knowledge

among players. Finally, each buyer’s reservation payoff is normalized as zero.

3 Membership mechanism

A direct mechanism can be defined with measurable functions (q, t1, ...., tN), where q : Θ→∆(X) and ti : Θ→ R, with a set of all probability distributions over X, denoted by ∆(X),

and a type profile is θ ≡ (θ1, ..., θN) ∈ Θ ≡ Θ1 × · · · ×ΘN . If buyer i reports θi for all i ∈ I,

the seller commits to an outcome x with probability q(x|θ) by collecting a transfer ti(θ) from

buyer i.

We restrict it to define a membership mechanism, called a direct M-mechanism, which

allows only a member to purchase two goods separately. Buyer i becomes a member if his

reported type satisfies a criterion m(θi) ≥ 0, by paying a membership fee e ∈ R. The

5For example, x = (0, 2) indicates that good A remains with the seller and good B is sold to buyer 2.

4

Page 7: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

vi

wi

0 12

12

1

1

Figure 1: Membership of example 1

function m is continuous, and it is, weakly, monotonic, which includes Example 1, m(θi) =

max{vi, wi} − 12

in figure 1.6 A set of types satisfying the criterion, a set of member types,

is denoted by M(m) such that7

M(m) ≡ {θi ∈ Θi : m(θi) ≥ 0}. (1)

The set is closed and connected from the assumptions on m.8 In addition, denote by M(m) ≡{θi ∈ Θi : m(θi) = 0} a set of member types that are qualified just enough to satisfy the

criterion.

With a set of member types M(m), or simply M , an M-mechanism has an allocation

rule qM(x|θ) and its marginal probabilities qMA (xA|θ) ≡∑

xB∈{0}∪I qM(x|θ) and qMB (xB|θ) ≡∑

xA∈{0}∪I qM(x|θ). The separate purchases of the two goods for the mechanism require two

different transfers: tM = (tMA , tMB ) such that for each k ∈ {A,B}, tMk : Θ → RN , where

6Formally, (v′i, w′i) >> (vi, wi) implies m(v′i, w

′i) > m(vi, wi). Note for two vectors, a and b, we say that

a >> b if ak > bk for all k; a > b if ak ≥ bk for all k and a 6= b; and a ≥ b if ak ≥ bk for all k.

7The continuity and especially the monotonicity of the member mapping restricts the types of indirect

mechanisms. For example, consider an indirect mechanism in which each buyer completes an application

form, based on which their membership is decided. This continuous and monotonic direct member mapping

is thus valid only when the corresponding composite mapping from indirect application and evaluation

processes satisfies the two properties as well.

8As is well known from the classical utility theory, the role of the continuity of m is to make the upper

contour set closed, and the role of the monotonicity is to make it connected. The monotonicity also implies

that M(m) is not “thick.”

5

Page 8: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

tMk (i|θ) is a transfer from buyer i for good k. We define an M-mechanism formally.9

Definition 1 A direct mechanism (qM , tM ,m, e) is an M-mechanism if for all i ∈ I, there

exists a continuous and monotonic function m : Θi → R such that for each θ ∈ Θ,

qMA (i|θ) = qMB (i|θ) = 0 for all θi ∈ Θi \M(m). (2)

Let θ−i be a vector of all buyers’ types except for buyer i’s, as an element of Θ−i,

and, similarly, v−i and w−i be defined, and additionally, let Fv−i(v−i) ≡ ×j∈I\{i}FA(kj)

and Fw−i(w−i) ≡ ×j∈I\{i}FB(kj). The expected probabilities that buyer i obtains good

A and B, respectively, are defined as QMA (θi) ≡

∫Θ−i

qMA (i|θ)dFv−i(v−i) × Fw−i

(w−i) and

QMB (θi) ≡

∫Θ−i

qMB (i|θ)dFv−i(v−i) × Fw−i

(w−i). With membership fee e, tMi denotes only a

payment for purchase. The expected payment that member i makes to the seller for good k

is TMk (θi) ≡∫

Θ−itMk (i|θ)dFv−i

(v−i)× Fw−i(w−i) and denote TM(θi) ≡ TMA (θi) + TMB (θi).

Buyer i’s interim expected payoff conditional on his type if he is a member is

u(θi) ≡ viQMA (θi) + wiQ

MB (θi)− TM(θi)− e, (3)

and u(θi) = 0 if he is not. An M-mechanism is said to be incentive compatible if ∀ θi, θ′i ∈M(m),

viQMA (θi)−TMA (θi) ≥ viQ

MA (θ′i)−TMA (θ′i) and wiQ

MB (θi)−TMB (θi) ≥ wiQ

MB (θ′i)−TMB (θ′i), (4)

and

∀ θi ∈ Θi \M(m),∀ θ′i ∈M(m), 0 ≥ viQMA (θ′i) + wiQ

MB (θ′i)− TM(θ′i)− e. (5)

The first condition above is a member’s incentive compatibility such that he does not have

an incentive to misreport the other member’s type. His incentive not to “pretend” to be a

non-member is implied by the individual rationality condition below. The second condition is

a non-member’s incentive compatibility such that he does not have an incentive to pretend

9Alternatively, define a set of members such that IM (θ) ≡ {i ∈ I : θi ∈ M(m)}, and a set of “effective”

outcomes, XM (θ) ≡ {0} ∪ IM (θ) × {0} ∪ IM (θ). Then, a mechanism is said to be an M-mechanism if for

all i ∈ I, there exists a continuous and monotonic function m : Θi → R, identical to all i, such that for each

θ ∈ Θ, the sum of an M-mechanism’s probability allocations qM (x|θ) for the effective outcomes is 1, i.e.,∑x∈XM (θ) q

M (x|θ) = 1. The seller could assign a zero allocation to a member, but he always assigns it to a

non-member.

6

Page 9: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

to be a member; his incentive not to misreport the other non-member’s type is trivially

satisfied.10 In addition, it is said to be individually rational if

∀ θi ∈M(m), u(θi) ≥ 0. (6)

Note the separate incentive compatibility in (4) in order for it to represent an indirect

membership with separate purchase in which buyers bid for the two goods separately, for

example, two second-price auctions for members.

Only members pay the fee e and price tM for goods, with the zero allocation to a non-

member (2), so a non-member’s individual rationality condition can be ignored. Importantly,

a non-member’s incentive compatibility (5), i.e., no incentive to lie to be a member, can be

simplified to a condition below, with Lemma 1. The condition says that all types in the

member standard line must have zero payoff such that

∀θi ∈M(m), u(θi) = 0. (7)

Suppose an “effective” member set; that is, Θi \M(m) 6= ∅. The incentive compatibility

and individual rationality of an M-mechanism can be replaced by the member’s incentive

compatibility and the “boundary condition,” while the zero payoff above on the member

standard line implies the member’s individual rationality.

Lemma 1 Suppose Θi \ M(m) 6= ∅. Then, an M-mechanism (qM , tM ,m, e) is incentive

compatible and individually rational if and only if it satisfies (4) and (7).

Note that an M-mechanism’s mapping m(·) and its membership fee e can be chosen such

that the member set is the same as the entire type set, M(m) = Θi (e.g., m(θi) = a for

any constant a, and e = 0). Then, given the buyer’s separate participation, membership

becomes separate selling by Myerson (1981). The definition of an M-mechanism is general

to include the standard approach, but, in what follows, a membership refers to an effective

M-mechanism such that Θi \M(m) 6= ∅.Lemma 1, on the other hand, poses a challenge to the existence of a member set given

the consequence:

M(m) = {θi ∈ Θi : u(θi) ≥ 0}. (8)

10In an indirect mechanism, the seller can implement the latter condition by making a buyer with such

type optimally not become a member, not participating in either good’s sales.

7

Page 10: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

The allocation rule qM and the transfer rule tM may depend on a set of member types M(m),

which yields an interim payoff u(θi). This, combined with Lemma 1, in turn results in the

equality M(m) = {θi ∈ Θi : u(θi) ≥ 0}. Hence, the analysis, in nature, involves a fixed point

type argument: a member set generates a mechanism, which should yield the same set.

To analyze the mechanism for each diminesion, it is convenient to represent the member

standard line M(m) as the following two lines.

ve(wi) ≡ min{vi ∈ [v, v] : θi ∈M(m)}, we(vi) ≡ min{wi ∈ [w,w] : θi ∈M(m)}. (9)

Given a fixed dimension, either ve(wi) or we(vi) is the other dimension that is minimally

qualified to be a member, which can be “active,” greater than a minimum value, v or w,

or not, allowing all in the dimension to be qualified. It is the weak monotonicity that

demands two separate representations; otherwise, it will be well defined with an inverse

function. We can find corresponding supremums ve ≡ sup{vi ∈ [v, v] : we(vi) > w} and

we ≡ sup{wi ∈ [w,w] : ve(wi) > v}, satisfying we(ve) = w and ve(we) = v. With them, (7)

can be restated as ∀ vi ∈ [v, ve], u(vi, we(vi)) = 0 and ∀wi ∈ [w, we], u(ve(wi), wi) = 0.

4 Separability and independence of membership

We say that an M-mechanism allocates two goods separably and independently on M(m) if

an interim allocation for a good depends only on valuations for that good on M(m). In one

good’s allocation, valuations for the other good can essentially be treated as non-contractible

information, found in Yoo (2016).

Proposition 1 An incentive compatible and individually rational M-mechanism (qM , tM ,m, e)

allocates two goods separably and independently on M(m) such that ∀(vi, wi) 6= (vi, w′i) ∈

M(m), QMA (vi, wi) = QM

A (vi, w′i) for almost all vi and ∀(vi, wi) 6= (v′i, wi) ∈M(m), QM

B (vi, wi) =

QMB (v′i, wi) for almost all wi.

The separable and independent allocation on M(m) is not surprising; it is based on two

separably incentive compatibility conditions in (4). The main focus of this section is rather

on the separability and independence of the payment rule on M(m), which is not implied by

Proposition 1. The following example illustrates its issues.

Example 1 (two bidders, symmetric uniform distributions and simple M) Consider two

buyers I ≡ {1, 2}, a symmetric and uniform case such that FA = FB = U [0, 1]. Choose

8

Page 11: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

m(θi) = max{vi, wi} − 12, and adopt the second price auction mechanism for each good.

With the symmetry, just examine good A’s allocation. For buyer 1,

qA(v1, w1, v2, w2) =

{1 if max{v1, w1} > 1

2, v1 > v2,

0 otherwise,

and

tA(v1, w1, v2, w2) =

{v2 if max{v1, w1} > 1

2, v1 > v2,max{v2, w2} > 1

2,

0 otherwise.

Buyer 1’s interim payment for good A depends on where his type is: if v1 < 1/2, w1 > 1/2, it

is Pr(m(θ2) ≥ 0, v2 < v1)E[v2|m(θ2) ≥ 0, v2 < v1] =∫ v1

0

∫ 112v2dw2dv2 = 1

4v2

1, while if v1 > 1/2,

Pr(m(θ2) ≥ 0, v2 < v1)E[v2|m(θ2) ≥ 0, v2 < v1] =∫ 1

2

0

∫ 112v2dw2dv2 +

∫ v112

∫ 1

0v2dw2dv2 = 1

2v2

1 −116

. It is not difficult to notice that with membership, the second price auction mechanism

does not satisfy dominant incentive compatibility with a strictly positive membership fee

e > 0. Furthermore, the above shows that it does not satisfy Bayesian incentive compatibility

either: if v1 < 12, w1 > 1

2, the interim payment is 1

4v2

1: buyer 1 has an over-reporting

incentive.11

We modify the previous tA such that

tA(v1, w1, v2, w2) =

v2 if max{v1, w1} > 1

2, v1 > v2, v2 >

12,

2v2 if max{v1, w1} > 12, v1 > v2, v2 <

12, w2 >

12,

0 otherwise.

Then, regardless of where buyer 1’s type is, his interim payment is the same as 12v2

1. Such

“normalization” retains the second price auction’s Bayesian incentive compatibility, but there

is no answer as to why this normalization is necessary at this point, which is a consequence

of the next Theorem.

We start by defining type θi member’s payoff from good A, economizing the notations

QMA (vi) = QM

A (vi, wi) = QMA (vi, w

′i) for any wi 6= w′i from Proposition 1, as

uA(vi, wi) ≡ viQMA (vi)− TMA (vi, wi). (10)

Then, by the envelope theorem, the interim payment for good A can be rewritten as

TMA (vi, wi) = viQMA (vi)−

∫ vi

v

QMA (x)dx− uA(v, wi), (11)

11Specifically, given a true type v1 and a report v′1, buyer 1’s interim payoff from good A’s purchase is

v1v′1 − 1

4v′12, if v1 <

12 , w1 >

12 .

9

Page 12: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

where uA(v, wi) = ve(wi)QMA (ve(wi))−TMA (ve(wi), wi)−

∫ ve(wi)

vQMA (x)dx. If ve(wi) > v, type

(v, wi) is not a member, based on the monotonicity of m, so uA(v, wi) = 0, but if ve(wi) = v,

the same argument does not apply, which makes it impossible for us to eliminate uA(v, wi).

This difference in (11) can be shown explicitly such that

TMA (vi, wi) =

{viQ

MA (vi)−

∫ vivQMA (x)dx if wi < we,

viQMA (vi)−

∫ vivQMA (x)dx+ TMA (v, wi)− vQM

A (v) if wi ≥ we,(12)

where, from the definitions ve(wi) and we(vi) in (9), wi < we is equivalent to ve(wi) > v,

and, similarly, wi ≥ we is ve(wi) = v. An identical procedure applies to the interim payment

for good B, TMB .

In the single dimension of Myerson (1981), for a seller’s revenue maximization, the lowest

valuation must obtain the lowest payoff, identical to a buyer’s outside option. In particular, it

is convenient to pin down the lowest valuation’s payoff, before a mechanism characterizes an

optimal allocation. But, in a multi-dimension, with an M-mechanism, a type with the lowest

valuation in one dimension can have a high valuation in the other dimension; therefore, it

is not immediate whether the revenue maximization leads the lowest valuation to the lowest

payoff or not. To examine it further, consider (vi, wi) satisfying wi ≥ we and vi < ve, which

yields that type’s interim payoff (3), applying Proposition 1 and TMA , TMB , such that

u(vi, wi) =

∫ vi

v

QMA (x)dx−

[TMA (v, wi)− vQM

A (v)]

+

∫ wi

w

QMB (y)dy − e. (13)

If the buyer with (vi, wi) reports (vi, w′i), his payoff is∫ vi

v

QMA (x)dx−

[TMA (v, w′i)−vQM

A (v)]+wiQ

MB (w′i)−

[w′iQ

MB (w′i)−

∫ w′i

w

QMB (y)dy

]−e. (14)

Then for any two wi, w′i ≥ we, holding vi < ve fixed, a mechanism is incentive compatible if

and only if∫ wi

w

QMB (y)dy −

∫ w′i

w

QMB (y)dy ≥ wiQ

MB (w′i)− w′iQM

B (w′i) + TMA (v, wi)− TMA (v, w′i)

⇔∫ wi

w′i

QMB (y)dy ≥

∫ wi

w′i

QMB (w′i)dy +

[TMA (v, wi)− TMA (v, w′i)

]. (15)

Without the term TMA (v, wi)−TMA (v, w′i), a standard procedure of the single dimension yields

the incentive compatibility among wi, given vi. However, with the term, in a multi-dimension,

the monotonicity of QMB is not sufficient for the incentive compatibility; in particular, the

10

Page 13: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

monotonicity of QMB can fail in “compensating” for the difference, TMA (v, wi) − TMA (v, w′i),

so the incentive compatibility interferes with TMA (v, wi) 6= TMA (v, w′i); or it can succeed in

compensating.

To show that the incentive compatibility, in fact, implies TMA (v, wi) = TMA (v, w′i) for

wi 6= w′i, and thereby implies that the additional term TMA (v, wi) − vQMA (v) can be treated

as 0, even when wi ≥ we in (12), we must rely on an infinitesimal change of QMB , i.e., its

differentiability. Thus, we first characterize an optimal allocation rule before we pin down

the term TMA (v, wi), unlike the single dimension. From the interim payment of (12), the

expected revenue from buyer i regarding good A’s sale is given as∫M(m)

TMA (vi, wi)dFA(vi)× FB(wi) =

∫M(m)

[viQ

MA (vi)−

∫ vi

v

QMA (x)dx

]dFA(vi)× FB(wi)

(16)

+

∫M(m)

[TMA (v, wi)− vQM

A (v)]1{wi≥we}dFA(vi)× FB(wi).

Note that the second term does not depend on the allocation rule, so we focus on the first

term. First, by Fubini’s theorem, find the probability that vi is smaller than x, given the

member set M(m), denoted by HMA (x) ≡ Pr(vi ≤ x, θi ∈M(m)), such that

HMA (x) =

∫M(m):vi≤x

dFA(vi)× FB(wi) (17)

=

{ ∫ xv

[1− FB(we(vi))]dFA(vi) if x < ve,∫ vev

[1− FB(we(vi))]dFA(vi) + FA(x)− FA(ve) if x ≥ ve.

With HMA , a conditional distribution Pr(vi ≤ x | θi ∈M(m)) can be constructed as below.

Pr(vi ≤ x | θi ∈M(m)) =HMA (x)

Pr(θi ∈M(m)).

Note that each of HMA (x) and HM

B (y) is differentiable in the two intervals above, respec-

tively.12 Denote by hMA the derivative of HMA (x). Then, the first term of each buyer’s interim

payment from good A in (16) can be rewritten as∫M(m)

[viQ

MA (vi)−

∫ vivQMA (x)dx

]dFA(vi)×

FB(wi) =∫ vv

[viQ

MA (vi)−

∫ vivQMA (x)dx

]dHM

A (vi).

By defining the M-mechanism’s virtual valuation function as

ψMA (x) ≡ x− HMA (v)−HM

A (x)

hMA (x), (18)

12Note that we(vi) and ve(wi) might not be continuous, as in the case of example 1, but if either we(vi) or

ve(wi) is discontinuous, it is discontinuous only at the break point, either ve or we; that is, it is continuous,

and, in fact, differentiable in the interval, x < ve, and in the other interval, x ≥ ve, separably.

11

Page 14: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

a distribution HMk for good k’s valuations is said to be “regular,” if the modified virtual

valuation function in (18) is strictly increasing, as in the single-dimension case. With the

regularity, the first main result, following the lemma below, shows that the optimal mecha-

nism assigns good A to the buyer with the highest valuation for good A.

For each k ∈ {A,B}, the regularity of a modified cumulative distribution HMk is satisfied

for a large class of distributions of Fk

Lemma 2 For each k ∈ {A,B}, if Fk is convex, HMk is regular for any M(m). If FA is not

convex, then HMA is regular under the condition

∫ vx

[1−2FB(we(x))+FB(we(vi))

]fA(vi)dvi ≥ 0

for all x. Similarly, if FB is not convex, then HMB is regular under

∫ wy

[1 − 2FA(ve(y)) +

FA(ve(wi))]fB(wi)dwi ≥ 0 for all y.

The latter condition is weaker than the former, the convexity of the distribution.13 The

first main result shows that membership does not change the optimal relative rule in a

revenue-maximizing mechanism: the optimal mechanism allocates good A (B) to the member

with the highest valuation for that good, resulting in winning probabilities for good A and B,

GA(vi) ≡ FA(vi)N−1 and GB(vi) ≡ FB(wi)

N−1, respectively. The optimal allocation implies

more than the independence from Proposition 1; it says that good A’s allocation to buyer

i depends neither on buyer i’s valuation on the other good B, wi, nor on the other buyers’

valuations on the other good, w−i.

Theorem 1 Suppose HMk is regular for all k ∈ {A,B}. An incentive compatible and

individually rational M-mechanism’s revenue-maximizing optimal allocation for members

θi, θj ∈M(m) is

qMA (i|θ) =

{1 if vi > vj for all j ∈ I and j 6= i,

0 otherwise;

qMB (i|θ) =

{1 if wi > wj for all j ∈ I and j 6= i,

0 otherwise.

Moreover, the monotonicity of m(θi) implies that for any two member sets M 6= M ′,

QMA (vi) = QM ′

A (vi) = GA(vi) and QMB (wi) = QM ′

B (wi) = GB(wi).

13To see why, consider the term inside of the integral and rewrite it such that 1−FB(we(v))+FB(we(v))−FB(we(x))−

[FB(we(x))−FB(we(vi))

], and given the positive sign 1−FB(we(v)) ≥ 0, we need to examine the

remaining terms: (we(v)−we(x))FB(we(v))−FB(we(x))we(v)−we(x)

− (we(x)−we(vi))FB(we(x))−FB(we(vi))we(x)−we(vi)

. Since we(v)−we(x) ≥ we(x)− we(vi), if FB is convex, then we have a positive sign.

12

Page 15: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

The potentially complex existence problem of a member set, based on a fixed point

type argument, is resolved from the non-relevance of the member set, for each M 6= M ′,

QMA (vi) = QM ′

A (vi) = GA(vi) and QMB (wi) = QM ′

B (wi) = GB(wi). Now, we re-examine the

additional term TMA (v, wi) − vQMA (v) in (16). First, by Theorem 1, QM

A (v) = 0, and, in

addition, if the buyer with (vi, wi) reports (vi, w′i) from (14), the differentiability implies now

TMA (v, wi) = TMA (v, w′i) for any pair (vi, wi), (vi, w′i) ∈ M(m). And this constant payment

TMA (v, wi), not depending on wi, can be transferred to a part of membership fee, without

loss of generality. In this way, we solve the two problems with multidimensional analysis,

integrability and arbitrary rent – the payoff of each dimension’s lowest type in our model –

suggested by Rochet and Chone (1998).

Corollary 1 An incentive compatible and individually rational M-mechanism makes trans-

fers for two goods separably and independently on M(m) such that ∀(vi, wi) 6= (vi, w′i) ∈

M(m), TMA (vi, wi) = TMA (vi, w′i) for almost all vi and ∀(vi, wi) 6= (v′i, wi) ∈M(m), TMB (vi, wi) =

TMB (v′i, wi) for almost all wi.

To illustrate the role of the normalization further, in the following example, consider a more

general case, an arbitrary membership set.

Example 2 (two bidders, general distributions and arbitrary M) Consider two buy-

ers I ≡ {1, 2}, a general case with FA, FB. Adopt the second price auction mechanism

for the member allocation. Bidder 1’s expected payment for good A is Pr(ve(W2) < V2 <

v1)E[V2|ve(W2) < V2 < v1] =∫ v1v

∫ wwe(v2)

[v2fA(v2)fB(w2)] dw2dv2 =∫ v1vv2[1−FB(we(v2))]fA(v2)dv2.

Similarly, bidder 1’s expected payment for good B is Pr(we(V2) < W2 < w1)E[W2|we(V2) <

W2 < w1] =∫ w1

ww2[1−FA(ve(w2))]fB(w2)dw2. If bidder 1 with type (v1, w1) ∈M(m) reports

(v′1, w′1) ∈M(m), his payoff is

v1FA(v′1)+w1FB(w′1)−∫ v′1

v

v2[1−FB(we(v2))]fA(v2)dv2−∫ w′1

w

w2[1−FA(ve(w2))]fB(w2)dw2−e.

If bidder 1 reports the true valuation, v′1 = v1, the first order derivative with respect to good

A’s valuation yields v1fA(v′1)− v′1[1−FB(we(v′1))]fA(v′1) > 0 if we(v

′1) > w, as in Example 1.

This implies that the bidder has an incentive to over-report the valuation, greater than the

true value v1. For the second price to satisfy Theorem 1, its payment rule has to be modified

as t1 = 1[1−FB(we(v2))]

v2 if v2 < ve.

The Theorem and its corollary enable us to simplify the incentive compatibility (4) and

13

Page 16: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

the boundary condition (7) such that ∀ θi, (vi, w′i), (v′i, wi) ∈M(m)

viQMA (vi)− TMA (vi) ≥ viQ

MA (v′i)− TMA (v′i), (19)

wiQMB (wi)− TMB (wi) ≥ wiQ

MB (w′i)− TMB (w′i), (20)

and

viQMA (vi)− TMA (vi) + wiQ

MB (wi)− TMB (wi)− e = 0. (21)

With the optimal mechanism, the member criterion changes only when membership fee e

changes, so the member set can be rewritten in terms of the fee e such as M(e) ≡ {θi ∈ Θi :

viQMA (vi) − TMA (vi) + wiQ

MB (wi) − TMB (wi) ≥ e}, instead of the entire mapping m, M(m).

In essence, Theorem 1 reduces the problem of choosing a member set and a membership fee

of an M-mechanism into choosing a membership fee, considering the incentive compatibility

condition.

Corollary 2 An incentive compatible and individually rational M-mechanism’s optimal al-

location and payment rule yield the member criterion m(θi) and the member set M such that

m(θi) =∫ vivGA(x)dx+

∫ wi

wGB(y)dy − e, and

M(e) = {θi ∈ Θi :

∫ vi

v

GA(x)dx+

∫ wi

w

GB(y)dy ≥ e} (22)

We find the revenue-maximizing M-mechanism given the member set (22) for the com-

parison between membership and separate selling.

5 Dominance of membership

We provide conditions under which membership dominates separate selling of the two goods.

Theorem 1 and Corollary 1, with the member set (22) based on them, yield an M-mechanism’s

maximum revenue from a buyer given each membership fee e such that

RM(e) ≡∫M(e)

[TA(vi) + TB(wi) + e] dFA(vi)× FB(wi), (23)

where TA(vi) =∫ vivxdGA(x) and TB(wi) =

∫ wi

wydGB(y). On the other hand, the maximum

revenue from separate selling by Myerson (1981) is

RA(rA) +RB(rB), (24)

14

Page 17: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

vi

wi

0 12

12

1

1

√2e∗

√2e∗

Figure 2: Dominance in the uniform case

where RA(rA) ≡ rA(1 − FA(rA))GA(rA) +∫ vrA

[∫ virAxdGA(x)

]dFA(vi) and RB(rB) ≡ rB(1 −

FB(rB))GB(rB) +∫ wrB

[∫ wi

rBydGB(y)

]dFB(wi), with rA and rB optimal reserve prices, respec-

tively.

In general, finding a closed form solution for the M-mechanism’s revenue maximization,

its revenue maximizing fee e, is intractable. Yet, a simple environment can enable us to do

so. For example, revisit example 2 with a symmetric and uniform case such as F = FA =

FB = U [0, 1].

Example 3 (two bidders, symmetric uniform distributions) With the symmetry, we

suppress the subscripts k in Fk and HMk . From (22), the member set is given as M(e) ={

(vi, wi) ∈ [0, 1]2 : 12v2i + 1

2w2i − e ≥ 0

}, so the expected revenue from a buyer is RM(e) =∫

M(e)[TA(vi) + TB(wi) + e]dF (vi) × F (wi) =

∫ 1

02ψ(x)xhM(x)dx + eHM(1), where Theorem

1 shows Q(x) = x. Then, RM(e) =∫ 1

0(4x2 − 2x)dx + e −

∫ √2e

0(x2 + e)

√2e− x2dx =∫ 1

0(4x2 − 2x)dx + e −

(3π4

)e2. The optimal membership fee e∗ = 2

3π, and the maximum

expected revenue from a buyer is∫ 1

0(4x2 − 2x)dx+ 1

3π. With the optimal fee, as describe in

figure 2, we find that 12<√

2e∗ and(

12

)2+(

12

)2> 2e∗, where 1

2is the optimal reserve price

for separate selling. Separate selling for two goods yields RA(r∗)+RB(r∗) = 2∫ 1

1/2(2z2−z)dz.

Compare them to show the dominance of membership such that RM(e∗)−[RA(r∗)+RB(r∗)] =∫ 1

0(4x2 − 2x)dx + 1

3π−∫ 1

1/2(4z2 − 2z)dz =

∫ 1/2

0(4x2 − 2x)dx + 1

3π= − 1

12+ 1

3π> 0. The

membership yield a higher revenue.

The approach in Example 3 is not applicable to general cases, including non-uniform

distributions. Instead, we connect membership with separate selling of the two goods, by

15

Page 18: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

vi

wi

0 ve rA

rB

1

1

m(θi) = 0

I

III

II

Figure 3: Connection between two mechanisms

choosing membership fee such that one of the member standard line’s intercept from (22) is

the same as an optimal reserve price. Now, suppose, WLOG,∫ rAvGA(x)dx ≥

∫ rBwGB(y)dy,

as found from figure 3, and choose membership fee e = e(rB) such that the member line’s

vertical intercept is the same as good B’s optimal reserve price;14

e(rB) ≡∫ rB

v

GB(x)dx. (25)

Separate selling yields the maximum revenue from good A such that

RA(rA) = rA(1− FA(rA))GA(rA) +

∫ v

rA

[∫ vi

rA

xdGA(x)

]dFA(vi). (26)

The ex-ante expected payment for good A from a buyer considers the buyer’s valuations

greater than the reserve price rA. Then, the buyer pays rA, if all other buyers’ valuations are

smaller than rA, and the buyer pays the second highest valuation conditional on his valuation

being the highest otherwise. The first term in the formula above refers to the former and

the second term to the latter.

From membership’s maximum revenue given the fee e(rB), RM(e(rB)) in (23), member-

ship yields good A’s payment from a buyer such that∫M(e(rB))

[TA(vi)] dFA(vi)× FB(wi) (27)

=

∫ rA

v

∫ v

we(vi)

[∫ vi

v

xdGA(x)

]dFB(wi)dFA(vi) +

∫ v

rA

[∫ vi

v

xdGA(x)

]dFA(vi).

14Note that, unlike the uniform example in figure 2, a general member line in figure 3 here and figure 4

below does not necessarily have a circle shape: it can be any decreasing function.

16

Page 19: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

The first term is to accumulate good A’s valuations of buyer types who become a member

even when their valuations for good A are lower than separate selling’s reserve price rA, and

the second term is to accumulate good A’s valuations of member types whose valuations for

good A are greater than that. Note that with a membership, a bidder’s interim payment

comes with no reserve price, i.e.,∫ vivxdGA(x), unlike with separate selling.15 Hence, expand-

ing the participating type set being positive, the seller cannot prevent buyers from bidding

low in the absence of a reserve price. The tradeoff becomes apparent from comparison with

separate selling’s revenue.

The difference in good A’s payment between membership (27) and separate selling (26)

is

∆RA(rA) ≡∫ rA

v

(1− FB(we(vi))

) [∫ vi

v

xdGA(x)

]dFA(vi) + (1− FA(rA))

∫ rA

v

xdGA(x)

(28)

− (1− FA(rA))rAGA(rA),

where the above (27) can be rewritten as∫ rAv

(1 − FB(we(vi))

) [∫ vivxdGA(x)

]dFA(vi) +∫ v

rA

[∫ virAxdGA(x)

]dFA(vi) +

∫ vrA

[∫ rAvxdGA(x)

]dFA(vi). The first two terms represent rev-

enue gain from a buyer’s payment for good A with membership, and the last term is revenue

loss from no reserve price aggregation that could otherwise come with separate selling. In

return for the additional revenue source, the low bids affect the seller negatively compared

with the reserve price from separate selling. This difference can be succinctly expressed as∫ rA

v

(1− FB(we(vi))

) [∫ vi

v

xdGA(x)

]dFA(vi)︸ ︷︷ ︸

Gain from Membership–good A

− (1− FA(rA))

∫ rA

v

GA(x)dx︸ ︷︷ ︸Loss from Membership–good A

, (29)

where∫ rAvGA(x)dx = rAGA(rA)−

∫ rAvxdGA(x). This will be a key formula for the compar-

ison between membership and separate selling.

5.1 Symmetric case

We study the case in which, given the reserve prices from separate selling, rA and rB,∫ rAvGA(x)dx =

∫ rBwGB(y)dy for all N , as illustrated in figure 4. Clearly, a symmetric

15The formula for good A’s payment that membership yields is the same, regardless of whether the

member standard line’s horizontal intercept is the same as the optimal reserve price for good A or not, that

is,∫ rAv

GA(x)dx =∫ rBw

GB(y)dy or∫ rAv

GA(x)dx >∫ rBw

GB(y)dy; in other words, ve < rA or ve = rA.

17

Page 20: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

vi

wi

0 rA

rB

1

1

m(θi) = 0

Figure 4: Connection in the symmetric case

distribution, FA = FB, implies this case, but it can hold without such symmetry. From(1− FB(we(vi))

)≥(1− FB(rB)

)for vi ∈ [v, rA], the key formula (29) satisfies inequality:

∆RA(rA) ≥∫ rA

v

(1− FB(rB)

) [∫ vi

v

xdGA(x)

]dFA(vi)− (1− FA(rA))

∫ rA

v

GA(x)dx. (30)

We only utilize the area I + II + II in figure 3 since the remaining area above the member

standard line can be tiny given some parameter values; it is impossible to reach a definite

answer, contingent on that area.

The above equation (30) can be rewritten as∫ rA

v

GA(x)dx[(

1− FB(rB))DA(N) + FA(rA)FB(rB)− 1

], (31)

by the integration by parts,∫ rAv

[∫ vivxdGA(x)

]dFA(vi) = FA(rA)

[rAGA(rA)−

∫ rAvGA(x)dx

]−∫ rA

vvigA(vi)FA(vi)dvi, and, in addition, by defining a term such that

DA(N) ≡rAFA(rA)GA(rA)−

∫ rAvvigA(vi)FA(vi)dvi∫ rA

vGA(vi)dvi

. (32)

The following limit result provides a critical step to establish membership’s dominance in

Theorem 2.

Lemma 3 For each k ∈ {A,B}, limN→∞Dk(N) ≥ 1.

A similar procedure can be applied to good B to obtain∫ rB

w

GB(y)dy[(

1− FA(rA))DB(N) + FA(rA)FB(rB)− 1

]. (33)

18

Page 21: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Additionally, the seller obtains membership fees as a part of the revenue, at least [1 −FA(rA)FB(rB)]e(rB).

The total of the three revenue sources, with the limit result from Lemma 3, shows that

with the symmetric case, for a sufficiently large number of buyers, the revenue from mem-

bership is greater than that from separate selling.

Theorem 2 Suppose HMk is regular for all k ∈ {A,B} and the symmetric case. There exists

N such that for all N ≥ N , membership dominates separate selling.

With a sufficiently large number of buyers, the positive effects of the additional revenue

source from membership dominate the negative effects of the low bids without a reserve price.

Note that RM(e) − [RA(rA) + RB(rB)] is the revenue difference from a single buyer, so the

total difference the seller obtains from the comparison is N ×{RM(e)− [RA(rA) +RB(rB)]}.

5.2 General case

Even if∫ rAvGA(x)dx >

∫ rBwGB(y)dy, as in figure 4, the same procedure from the symmetric

case applies until the last step. Then, with eN(rB) =∫ rBwGB(y)dy,∫ rA

v

GA(x)dx[(

1− FB(rB))DA(N) + FA(rA)FB(rB)− 1

](34)

+ eN(rB)[(

1− FA(rA))DB(N) + FA(rA)FB(rB)− 1

]+ [1− FA(ve)FB(rB)]eN(rB).

However, by Lemma 3, for a sufficiently large N , a negative value for(1−FB(rB)

)DA(N) +

FA(rA)FB(rB) − 1, coupled with the inequality∫ rAvGA(x)dx >

∫ rBwGB(y)dy, makes it im-

possible for us to proceed further to show the dominance.16 Suppose for all N ≥ N , the

following condition is satisfied:∫ rAvGA(x)dx∫ rB

wGB(y)dy

≤ FA(ve)FB(rB)− 1

FA(rA)FB(rB)− 1. (35)

It can be shown that for a sufficiently large N ,∫ rAvGA(x)dx and

∫ rBwGB(y)dy are suffi-

ciently close, so the above condition (35) is satisfied.

16That is, for a sufficiently large N , the following reversed inequality impedes the next step:∫ rA

v

GA(x)dx[(

1− FB(rB))DA(N) + FA(rA)FB(rB)− 1

]< eN (rB)

[(1− FB(rB)

)DA(N) + FA(rA)FB(rB)− 1

].

19

Page 22: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Theorem 3 Suppose HMk is regular for all k ∈ {A,B}. There exists N such that for all

N ≥ N , membership dominates separate selling.

The assumption (35) may require a stronger condition on the number of buyers, so N

from the asymmetric case can be different from N from the symmetric case earlier.

6 Dominance of separate selling

For a membership fee e, we show separate selling’s dominance by choosing a reserve price

for good A and a reserve price for good B such that each reserve price is the same as the

corresponding good’s intercept from e: r′A = ve and r′B = we. That is, the freedom to

choose two variables separately enables us to examine the general distribution case with two

difference intercepts without having additional conditions, unlike membership’s dominance.

We incorporate level of first-order stochastic dominance by parameterizing any given

distribution FA(vi) or FB(wi) with n ∈ N such as FA(vi)n and FB(wi)

n. Then, the key

formula in (29) for good A is modified with the stochastic dominance as below.∫ r′A

v

(1− FB(we(vi))

n) [∫ vi

v

xdGA(x)

]dFA(vi)

n − (1− FA(r′A)n)

∫ r′A

v

GA(x)dx, (36)

where the winning probabilities in Theorem 1 can be rewritten as GA(x) = FA(x)n(N−1) and

GB(y) = FB(y)n(N−1). From(1 − FB(we(vi))

)≤ 1 for vi ∈ [v, rA], the key formula (29)

satisfies inequality:

∆RA(rA) ≤∫ r′A

v

[∫ vi

v

xdGA(x)

]dFA(vi)

n − (1− FA(r′A)n)

∫ r′A

v

GA(x)dx. (37)

Then, as shown in the proof of the following theorem, we examine only two terms of the

right hand side such that

r′AGA(r′A)FA(r′A)n − (1− FA(r′A)n)

∫ r′A

v

GA(x)dx, (38)

and, similarly, for goodB, we only need to consider r′BGB(r′B)FB(r′B)n−(1−FB(r′B)n)∫ r′BwGB(y)dy.

The theorem below shows that for a sufficiently large n, the revenue from separate selling

is greater than that from membership.

Theorem 4 There exists n such that for all n ≥ n, separate selling dominates membership.

If the valuation distributions become sufficiently stochastic dominant, the negative effects

of the low bids without a reserve price outweigh the positive effects of the additional revenue

source from membership.

20

Page 23: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

7 Concluding remarks

This paper introduces a membership mechanism. The optimal allocation requires the mono-

tonicity of a modified virtual valuation distribution reflecting a member set, which results

in a normalization of the optimal payment rule.

We identify two main contrasting factors governing membership’s dominance over sep-

arate selling. One is the number of bidders and the other is the degree of the stochastic

dominance of the valuation distributions.

No attempt has been made to explicitly configure a collection of the two factors, number

of bidders and the stochastic dominance, that make the seller indifferent. It is also of

theoretical interest to examine conditions under which the current results can still hold,

even without the buyer’s separate participation. A buyer or a procurement version of this

seller model is the next task as a companion to this paper.

Appendix: Proofs

Proof of Lemma 1. We establish, under (4), the equivalent relationship between (5) &

(6) and (7). Show (⇒). Suppose (7) is not satisfied: there exists θi = (vi, wi) ∈M(m) such

that u(θi) > 0. Consider a ε-ball about θi, Bε(θi) ≡ {x ∈ R2+ : ||x − θi|| < ε} for ε > 0.

First, given Θi \M(m) 6= ∅, there exists θ′i = (v′i, w′i) sufficiently close to θi and θ′i < θi.

Formally, there exists a sufficiently small ε > 0 such that Bε(θi) ∩ {x ∈ R2+ : x < θi} 6= ∅.

Suppose, on the contrary, Bε(θi) ∩ {x ∈ R2+ : x < θi} = ∅, implying θi = (0, 0), which,

together with the monotonicity of m, leads to M(m) = Θi, contradicting Θi \M(m) 6= ∅.Then, choose θ′i = (v′i, w

′i) ∈ Bε(θi) ∩ {x ∈ R2

+ : x < θi}. Since θ′i is not a member type,

u(v′i, w′i) = 0 < u(vi, wi), which is equivalently rewritten as

u(v′i, w′i) < viQ

MA (vi, wi) + wiQ

MB (vi, wi)− TM(vi, wi)− e

< v′iQMA (vi, wi) + w′iQ

MB (vi, wi)− TM(vi, wi)− e,

where the last inequality holds for a sufficiently small ε > 0, violating the incentive compat-

ibility (5). Now, show (⇐). Given that (7) and the monotonicity of m imply (6), it remains

to show (5). Suppose (5) is not satisfied: there exists (vi, wi) ∈ Θi \M(m) such that

0 < viQMA (v′i, w

′i) + wiQ

MB (v′i, w

′i)− TM(v′i, w

′i)− e for some (v′i, w

′i) ∈M(m).

21

Page 24: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

But then, for any (v′′i , w′′i ) ∈M(m) such that (v′′i , w

′′i ) > (vi, wi),

u(v′′i , w′′i ) = 0 < viQ

MA (v′i, w

′i) + wiQ

MB (v′i, w

′i)− TM(v′i, w

′i)− e

≤ v′′iQMA (v′i, w

′i) + w′′iQ

MB (v′i, w

′i)− TM(v′i, w

′i)− e,

which contradicts the incentive compatibility among members (4), even for eitherQMA (v′i, w

′i) =

0 or QMB (v′i, w

′i) = 0.

Proof of Proposition 1. We show that for any incentive compatible mechanism on

M(m), the allocation and payment for one good does not depend on the report of the other

good’s value. First, examine good A’s incentive compatibility from (4):

viQMA (θi)− TMA (θi) ≥ viQ

MA (v′i, w

′i)− TMA (v′i, w

′i). (39)

This is equivalent to ∀ (vi, wi) 6= (v′i, w′i) ∈M(m),

viQMA (θi)− TMA (θi) ≥ viQ

MA (v′i, wi)− TMA (v′i, wi), (40)

viQMA (θi)− TMA (θi) = viQ

MA (vi, w

′i)− TMA (vi, w

′i). (41)

If we fix vi or fix wi, it is immediate that the incentive compatibility in (39) implies the

incentive compatibility with (40)-(41). On the other hand, by combining (40) with (41), the

latter implies the former. In particular, (41) shows that for any mechanism inducing each

buyer to report wi truthfully for a fixed vi, the buyer should have an identical payoff.

From the incentive compatibility (40)-(41), for good A, a direct mechanism is incentive

compatible on M(m) if and only if QMA is increasing in vi; ∀ (vi, wi) ∈M(m),

TMA (vi, wi) (42)

= viQMA (vi, wi) +

(TMA (ve(wi), wi)− ve(wi)QM

A (ve(wi), wi))−∫ vi

ve(wi)

QMA (x,wi)dx;

and ∀ (vi, wi), (vi, w′i) ∈M(m),

viQMA (vi, wi)− TMA (vi, wi) = viQ

MA (vi, w

′i)− TMA (vi, w

′i).

The same procedure applies to goodB’s incentive compatibility. Now, consider (vi, wi), (vi, w′i) ∈

M(m) with wi 6= w′i. Define D(vi) such that

D(vi) ≡ ve(wi)QMA (ve(wi), wi)− TMA (ve(wi), wi)−

∫ vi

ve(wi)

QMA (y, wi)dy

[ve(w

′i)Q

MA (ve(w

′i), w

′i)− TMA (ve(w

′i), w

′i)−

∫ vi

ve(w′i)

QMA (y, w′i)dy

].

22

Page 25: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Then, from (41) and (42), D(vi) = 0 for all vi. By the mean value theorem and the funda-

mental theorem of calculus, D′(vi) = 0 for almost all vi.

Proof of Lemma 2. Taking the derivative of the virtual valuation yields

ψMA′(x) = 1 +

[hMA (x)]2 + hMA′(x)[HM

A (v)−HMA (x)]

[hMA (x)]2

where

hMA (x) =

{[1− FB(we(x))]fA(x) if x ≤ ve,

fA(x) if x > ve,

and

hMA′(x) =

{−fB(we(x))w′e(x)fA(x) + [1− FB(we(x))]f ′A(x) if x ≤ ve,

f ′A(x) if x > ve.

Since w′e(x) ≤ 0, if FA is convex, then HA(x) is regular. Suppose FA(x) is not convex.

Examine the two ranges in (17) separately. First, if x > ve, the modified virtual valuation

distribution becomes the standard virtual valuation distribution: ψMA (x) = x− 1−FA(x)fA(x)

. Now,

consider x ≤ vk. For x ≤ vk, the numerator of ψMA′(x) is

2[hMA (x)]2 + hMA′(x)[HM

A (v)−HMA (x)]

= 2{

[1− FB(we(x))]fA(x)}2

−{fB(we(x))w′e(x)fA(x)− [1− FB(we(x))]f ′A(x)

}[HM

A (v)−HMA (x)]

= 2{

[1− FB(we(x))]fA(x)}2

− fB(we(x))w′e(x)fA(x)[HMA (v)−HM

A (x)]

+ [1− FB(we(x))]f ′A(x)[HMA (v)−HM

A (x)].

By the monotone hazard rate, we have f ′A(x) ≥ − fA(x)2

1−FA(x), so the above can be rewritten as

2{

[1− FB(we(x))]fA(x)}2

− fB(we(x))w′e(x)fA(x)[HMA (v)−HM

A (x)]

+ [1− FB(we(x))]f ′A(x)[HMA (v)−HM

A (x)]

≥ 2{

[1− FB(we(x))]fA(x)}2

− fB(we(x))w′e(x)fA(x)[HMA (v)−HM

A (x)]

− [1− FB(we(x))]fA(x)2

1− FA(x)[HM

A (v)−HMA (x)].

From w′e(x) ≤ 0, we only need to consider the first and the third terms, and by combining

the two terms, we have{[1− FB(we(x))]fA(x)

}2{

2− HMA (v)−HM

A (x)

[1− FA(x)][1− FB(we(x))]

},

23

Page 26: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

where

HMA (v)−HM

A (x) =

∫ ve

x

[1− FB(we(vi))

]fA(vi)dvi + 1− FA(ve)

= 1− FA(x)−∫ ve

x

FB(we(vi))fA(vi)dvi.

The numerator of{

2− HMA (v)−HM

A (x)

[1−FA(x)][1−FB(we(x))]

}is

2[1− FA(x)][1− FB(we(x))]−[HMA (v)−HM

A (x)]

= [1− FA(x)][1− 2FB(we(x))] +

∫ ve

x

FB(we(vi))fA(vi)dvi

= [1− FA(x)][1− 2FB(we(x))] +

∫ v

x

FB(we(vi))fA(vi)dvi,

where the last equality follows from the fact that FB(we(vi)) = 0 for all vi > ve. Then,

[1− FA(x)][1− 2FB(we(x))] +

∫ v

x

FB(we(vi))fA(vi)dvi

=

∫ v

x

[1− 2FB(we(x))

]fA(vi)dvi +

∫ v

x

FB(we(vi))fA(vi)dvi

=

∫ v

x

[1− 2FB(we(x)) + FB(we(vi))

]fA(vi)dvi.

Hence, if∫ vx

[1− 2FB(we(x)) + FB(we(vi))

]fA(vi)dvi ≥ 0, HM

A (x) is regular.

Proof of Theorem 1. From Proposition 1, for any θi ∈M(m),

QMA (vi) = QM

A (θi) ≡∫

Θ−i

qMA (i|θ)dFv−i(v−i)× Fw−i

(w−i),

so the expected revenue from a buyer for good A is∫M(m)

[viQ

MA (vi)−

∫ vi

v

QMA (x)dx

]dFv−i

(v−i)× Fw−i(w−i)

=

∫ v

v

[viQ

MA (vi)−

∫ vi

v

QMA (x)dx

]dHA(vi)

=

∫ v

v

QMA (vi)ψ

MA (vi)hA(vi)dvi

=

∫ v

v

QMA (vi)[1− FB(we(vi))]ψ

MA (vi)fA(vi)dvi

=

∫Θi

QMA (vi)[1− FB(we(vi))]ψ

MA (vi)dFv−i

(v−i)× Fw−i(w−i),

24

Page 27: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

where the second equality follows from the typical step of a single dimension. Now,∑i∈I

[∫ v

v

QMA (vi)ψ

MA (vi)hA(vi)dvi

]=∑i∈I

[∫Θi

QMA (vi)[1− FB(we(vi))]ψ

MA (vi)dFv−i

(v−i)× Fw−i(w−i)

]=∑i∈I

[∫Θ

qMA (i|θ)[1− FB(we(vi))]ψMA (vi)dFv(v)× Fw(w)

],

where Fv(v) ≡ ×j∈IFA(vj) and, similarly, Fw(w) ≡ ×j∈IFB(wj). A critical difference be-

tween this and Myerson (1981) is that we have a term [1 − FB(we(vi)], in addition to the

modified virtual valuation function ψMA (vi). If the distribution HMA is regular, then the virtual

valuation is strictly increasing, and, furthermore, the additional term [1−FB(we(vi)] is also

increasing, given that we(vi) is decreasing. Hence, we can obtain a similar characterization

for the optimal allocation as in the single dimension.

Proof of Lemma 3. Consider the numerator of (32). By incorporating GA(x) =

FA(x)N−1 and gA(x) = (N − 1)FA(x)N−2fA(x), it can be rewritten as

rAFA(rA)GA(rA)−∫ rA

v

vigA(vi)FA(vi)dvi

= rAFA(rA)N − rAN − 1

NFA(rA)N +

∫ rA

v

N − 1

NFA(vi)

Ndvi

=rAFA(rA)N

N+N − 1

N

∫ rA

v

FA(vi)Ndvi,

where, by the integration by parts,∫ rAvvigA(vi)FA(vi)dvi = rA

N − 1

NFA(rA)N−

∫ rAv

N − 1

NFA(vi)

Ndvi.

Hence,

rAFA(rA)GA(rA)−∫ rAvvigA(vi)FA(vi)dvi∫ rA

vGA(vi)dvi

(43)

=rAFA(rA)N + (N − 1)

∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

=rAFA(rA)N +N

∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

−∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

=rA∫ rAv

[NFA(vi)N−1fA(vi)]dvi +N

∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

−∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

=

∫ rAv

[rAFA(vi)N−1fA(vi)]dvi +

∫ rAvFA(vi)

Ndvi∫ rAvFA(vi)N−1dvi

−∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

.

25

Page 28: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

First, the second term of the formula above satisfies that for all n ≥ 2,

FA(vi)N < FA(vi)

N−1 <N

N − 1FA(vi)

N−1

so for all N ≥ 2,∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

<1

N − 1⇔ −

∫ rAvFA(vi)

Ndvi

N∫ rAvFA(vi)N−1dvi

> − 1

N − 1. (44)

Now, the first term can be rewritten as∫ rAv

[rAFA(vi)N−1fA(vi)]dvi +

∫ rAvFA(vi)

Ndvi∫ rAvFA(vi)N−1dvi

=

∫ rAvFA(vi)

N−1[rAfA(vi) + FA(vi)]dvi∫ rAvFA(vi)N−1dvi

,

where∫ rAvFA(vi)

N−1[rAfA(vi) + FA(vi)]dvi∫ rAvFA(vi)N−1dvi

>

∫ rAvFA(vi)

N−1[vifA(vi) + FA(vi)]dvi∫ rAvFA(vi)N−1dvi

=

∫ rAvFA(vi)

N−1[vifA(vi)− 1 + FA(vi) + 1]dvi∫ rAvFA(vi)N−1dvi

=

∫ rAvFA(vi)

N−1fA(vi)

[vi −

1− FA(vi)

fA(vi)

]dvi∫ rA

vFA(vi)N−1dvi

+ 1.

Note that, by the integration by parts,∫ rA

v

FA(vi)N−1fA(vi)

[vi −

1− FA(vi)

fA(vi)

]dvi

=1

NFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]∣∣∣∣rAv

−∫ rA

v

1

NFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]′dvi

= −∫ rA

v

1

NFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]′dvi.

Hence, the first term satisfies the following inequality such that

∫ rAvFA(vi)

N−1[rAfA(vi) + FA(vi)]dvi∫ rAvFA(vi)N−1dvi

> −

∫ rAvFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]′dvi

N∫ rAvFA(vi)N−1dvi

+ 1.

For any N ≥ 2,[vi −

1− FA(vi)

fA(vi)

]′FA(vi)

N <N

N − 1

[vi −

1− FA(vi)

fA(vi)

]′FA(vi)

N ≤ N

N − 1BFA(rA)FA(vi)

N−1

26

Page 29: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

where for any vi ∈ [v, rA],

[vi −

1− FA(vi)

fA(vi)

]′≤ B for some B, which yields

∫ rAvFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]′dvi

N∫ rAvFA(vi)N−1dvi

<BFA(rA)

N − 1⇔ −

∫ rAvFA(vi)

N

[vi −

1− FA(vi)

fA(vi)

]′dvi

N∫ rAvFA(vi)N−1dvi

> −BFA(rA)

N − 1.

Thus, for all N ≥ 2, the inequality of the first term becomes∫ rAvFA(vi)

N−1[rAfA(vi) + FA(vi)]dvi∫ rAvFA(vi)N−1dvi

> 1− BFA(rA)

N − 1. (45)

By combining the first term (45) and the second term (44), for all N ≥ 2, the ratio (43)

satisfies the inequality

rAFA(rA)GA(rA)−∫ rAvvigA(vi)FA(vi)dvi∫ rA

vGA(vi)dvi

> 1− BFA(rA)

N − 1− 1

N − 1.

In the limit, we have

limN→∞

rAFA(rA)GA(rA)−∫ rAvvigA(vi)FA(vi)dvi∫ rA

vGA(vi)dvi

≥ 1− limN→∞

BFA(rA)

N − 1− lim

N→∞

1

N − 1= 1.

This completes the proof.

Proof of Theorem 2. Similarly, for good B, we have∫ rB

w

GB(y)dy[(

1− FA(rA))DB(N) + FA(rA)FB(rB)− 1

],

where

DB(N) ≡[rBGB(rB)FB(rB)−

∫ rBwwigB(wi)FB(wi)dwi∫ rB

wGB(y)dy

.

Now, we have at least the following membership fee [1−FA(rA)FB(rB)]e(rB), where e(rB) ≡∫ rBvGB(x)dx from (25). Over the sequence, this value e can change, so it is denoted by

eN(rB). Hence,∫ rA

v

GA(x)dx[(

1− FB(rB))DA(N) + FA(rA)FB(rB)− 1

]+

∫ rB

w

GB(y)dy[(

1− FA(rA))DB(N) + FA(rA)FB(rB)− 1

]+ [1− FA(rA)FB(rB)]eN(rB)

= eN(rB)[(

1− FB(rB))DA(N) +

(1− FA(rA)

)DB(N) + FA(rA)FB(rB)− 1

]27

Page 30: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

where we examine the limit of the part inside of the term

limN→∞

[(1−FB(rB)

)DA(N)+

(1−FA(rA)

)DB(N)+FA(rA)FB(rB)−1] ≥

(1−FA(rA)

)(1−FB(rB)

)> 0,

which establishes the theorem.

Proof of Theorem 3. We first show that as N →∞, |GA(x)−GB(x)| → 0 for all x.

By the mean value theorem, there exists k < 1 such that

|GA(x)−GB(x)| = |FA(x)N−1 − FB(x)N−1| = |FA(x)− FB(x)|(N − 1)kN−2.

Furthermore, ∣∣∣∣∫ rA

v

GA(x)dx−∫ rB

w

GB(y)dy

∣∣∣∣≤∣∣∣∣∫ rA

v

GA(x)dx−∫ rB

v

GA(x)dx

∣∣∣∣+

∣∣∣∣∫ rB

v

GA(x)dx−∫ rB

v

GB(x)dx

∣∣∣∣= |rA − rB|GA(rC) +

∣∣∣∣∫ rB

v

GA(x)dx−∫ rB

v

GB(x)dx

∣∣∣∣If the condition (35) is satisfied, then (34) is∫ rA

v

GA(x)dx[(

1− FB(rB))DA(N) + FA(rA)FB(rB)− 1

]+ eN(rB)

[(1− FA(rA)

)DB(N) + FA(rA)FB(rB)− 1

]+ [1− FA(ve)FB(rB)]eN(rB)

≥∫ rA

v

GA(x)dx(1− FB(rB)

)DA(N) + eN(rB)

[(1− FA(rA)

)DB(N) + FA(rA)FB(rB)− 1

]≥ eN(rB)

(1− FB(rB)

)DA(N) + eN(rB)

[(1− FA(rA)

)DB(N) + FA(rA)FB(rB)− 1

],

where the last inequality follows from∫ rAvGA(x)dx >

∫ rBwGB(y)dy = eN(rB).

Proof of Theorem 4. Fix N , and consider only good A. By the integration by parts,∫ rA

v

[∫ vi

v

xdGA(x)

]dFA(vi) =

[∫ vi

v

xdGA(x)

]FA(vi)

∣∣∣∣rAv

−∫ rA

v

vigA(vi)FA(vi)dvi

=

[∫ rA

v

xdGA(x)

]FA(rA)−

∫ rA

v

vigA(vi)FA(vi)dvi

= FA(rA)

[rAGA(rA)−

∫ rA

v

GA(x)dx

]−∫ rA

v

vigA(vi)FA(vi)dvi.

Hence, from (38), the following inequality is satisfied.∫ r′A

v

[∫ vi

v

xdGA(x)

]dFA(vi)

n − (1− FA(r′A)n)

∫ r′A

v

GA(x)dx

< r′AFA(r′A)nGA(rA)− (1− FA(r′A)n)

∫ r′A

v

GA(x)dx

28

Page 31: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Similarly, for good B. In addition, for each n and a membership fee eN(n),

eN(n) =

∫ r′A

v

GA(x)dx =

∫ r′A

v

GA(x)dx.

Then, the total difference yields∫ r′A

v

[∫ vi

v

xdGA(x)

]dFA(vi)

n − (1− FA(r′A)n)

∫ r′A

v

GA(x)dx

+

∫ r′B

w

[∫ wi

w

xdGB(x)

]dFB(wi)

n − (1− FB(r′B)n)

∫ r′B

w

GB(y)dy + eN(n)

< r′AFA(r′A)nGA(rA)− (1− FA(r′A)n)

∫ r′A

v

GA(x)dx

+ r′BFB(r′B)nGB(rB)− (1− FB(r′B)n)

∫ r′B

w

GB(y)dy + eN(n)

= r′AFA(r′A)nN − (1− FA(r′A)n)

∫ r′A

v

FA(x)n(N−1)dx

+ r′BFB(r′B)nN − (1− FB(r′B)n)

∫ r′B

w

FB(y)n(N−1)dy + eN(n)

The above equation can be rewritten as

eN(n)

r′AFA(r′A)nN∫ r′AvFA(x)n(N−1)dx

+r′BFB(r′B)nN∫ r′B

wFB(y)n(N−1)dy

+ FA(r′A)n + FB(r′B)n − 1

(46)

Consider the first term in the bracket.

r′AFA(r′A)nN∫ r′AvFA(x)n(N−1)dx

=r′AFA(r′A)n(N−1)∫ r′AvFA(x)n(N−1)dx

FA(r′A)n =r′AFA(r′A)n(N−1)

n∫ r′AvFA(x)n(N−1)dx

nFA(r′A)n.

Note that ∫ r′A

v

x[n(N − 1)FA(x)n(N−1)−1f(x)

]dx,

which can be rewritten as, using the integration by parts,∫ r′A

v

x[n(N − 1)FA(x)n(N−1)−1f(x)

]dx = r′AFA(r′A)n(N−1) −

∫ r′A

v

FA(r′A)n(N−1)dx

29

Page 32: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Then, (46) can be reformulated as

r′AFA(r′A)n(N−1)

n∫ r′AvFA(x)n(N−1)dx

nFA(r′A)n

=

∫ r′Avx[n(N − 1)FA(x)n(N−1)−1fA(x)

]dx+

∫ r′AvFA(x)n(N−1)dx

n∫ r′AvFA(x)n(N−1)dx

nFA(r′A)n

=

(N − 1)∫ r′Avx[FA(x)n(N−1)−1fA(x)

]dx∫ r′A

vFA(x)n(N−1)dx

+1

n

nFA(r′A)n,

where we find that there exists an upper bound BA > 0 such that for all x ∈ [v, v], x fA(x)FA(x)

≤BA, which implies

xfA(x)

FA(x)FA(x)n(N−1) ≤ BAFA(x)n(N−1) for all x ∈ [v, v]

⇒∫ r′A

v

xfA(x)

FA(x)FA(x)n(N−1)dx ≤ BA

∫ r′A

v

FA(x)n(N−1)dx,

so limn→∞BA

∫ r′AvFA(x)n(N−1)dx = 0.

References

Armstrong, M. (1996), Multiproduct Nonlinear Pricing, Econometrica, 64, 51-75.

Benoit, J.P. and Krishna, V. (2001), Multiple-Object Auctions with Budget Constrained Bidders,

Review of Economic Studies, 68, 155-179.

Carroll, G. (2017), Robustness and Separation in Multidimensional Screening, Econometrica, 85,

453-488.

Che, Y.K. and Gale, I. (1998), Standard Auctions with Financially Constrained Bidders, Review

of Economic Studies, 65, 1-21.

Che, Y.K. and Gale, I. (2000), The Optimal Mechanism for Selling to a Budget-Constrained Buyer,

Journal of Economic Theory, 92, 198-233.

Hart, S. and Nisan, N. (2017), Approximate Revenue Maximization with Multiple Items, Journal

of Economic Theory, 172, 313-347.

30

Page 33: Seung Han Yoo - 고려대학교 경제학과econ.korea.ac.kr/~ri/WorkingPapers/w1804.pdf · Membership Mechanism Seung Han Yooy November 2018 Abstract This paper studies an environment

Hart, S. and Reny, P.J. (2015), Maximal Revenue With Multiple Goods: Nonmonotonicity and

Other Observations, Theoretical Economics, 10, 893-922.

Manelli, A.M. and Vincent, D.R. (2006), Bundling as an Optimal Selling Mechanism for a Multiple-

Good Monopolist, Journal of Economic Theory, 127, 1-35.

Manelli, A.M. and Vincent, D.R. (2007), Multidimensional Mechanism Design: Revenue Maximiza-

tion and the Multiple-Good Monopoly, Journal of Economic Theory, 137, 153-185.

McAfee, R.P., McMillan, J. and Whinston, M.D. (1989), Multiproduct Monopoly, Commodity

Bundling, and Correlation of Values, Quarterly Journal of Economics, 104, 371-383.

Mussa, M. and Rosen, S. (1978), Monopoly and Product Quality, Journal of Economic Theory, 18,

301–317.

Myerson, R. (1981), Optimal Auction Design, Mathematics of Operations Research, 6, 58-73.

Pai, M. and Vohra, R. (2014), Optimal Auctions with Financially Constrained Buyers, Journal of

Economic Theory, 150, 383-425.

Rochet, J.-C. and Chone, P. (1998), Ironing, Sweeping, and Multidimensional Screening, Econo-

metrica, 66, 783-826.

Thanassoulis, J. (2004), Haggling Over Substitutes, Journal of Economic Theory, 117, 217-245.

Wang, R. (1993), Auctions versus Posted-Price Selling, American Economic Review, 83, 838-851.

Yoo, S.H. (2016), Mechanism Design with Non-Contractible Information, a working paper.

31


Recommended