+ All Categories
Home > Documents > Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

Date post: 03-Apr-2018
Category:
Upload: andresmaria
View: 220 times
Download: 0 times
Share this document with a friend

of 9

Transcript
  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    1/9

    Journa l o f Therma l Ana lys i s , Vol . 13 (1978) 553- -5 61

    Q U A NT I TAT I V E T H E R M O G R AV I M E T RY O F M U LT I C O M P O N E N TZEOLITE-BEARING ROCKS

    E. N. SHLYAPKINA

    A l l -U n i o n R e s e a r c h I n st i tu t e o f t h e G e o lo # y o f N o n - O r e U s e f u l M i n e r a l s, K a z a n , U S S R

    (Received February 17, 1977; in revised form October 22, 1977)

    A quantitative thermoanalytical determination of mixture compositions is extreme-ly difficult if there is a partial or full overlapping of the temperature ranges of thethermal transformations, and a proximity of the quantitative characteristics of theweight changes is also observed. A method of quantitative analysis of such a system isoffered, based on the calculation of differences in the regularity of rate variation of thethermal transformations of the separate mixture components. The principle of dis-tinguishing temperature intervals with maximum differentiation of thermal effects andmethods of calculation of the quantitative mixture composition is shown. Examplesof determination of the mineral compositions of zeolite-bearing rock are given.

    Quantitative thermogr avimetry o f natural and artificial mineral water-bearingmixtures can be based on the recording of weight change, generally connected withdehydration processes and dehydr oxylation of minerals when heated. However, anestimate of each component is extremely difficult if there is a partial or full over-lapping of the temperature ranges of the thermal transformations. A quantitativedetermination in this case becomes possible on the basis of calculating differencesin the regularity of rate variation of such thermal transformations. It is possible todistinguish tempera ture ranges with the utmo st differentiation o f thermal effectsand make a calculation of the contents of components via the thermogravimetriccurves.

    Apparatus and material

    The methods suggested for the thermogravimetri c determination of the mixturecomposition, the components of which are characterized by overlapping of thethermal transformations, can be seen in the appendix to the zeolite-bearing (clinop-tilolite) rocks. The mineralogical compo siti on of zeolitized tufts is mainly represent-ed by the zeolite, montmorillonite, quartz, and rarely by feldspar and relict vol-canic glass. It turned out that the pure samples of these latter three minerals whichwe had at our disposal were practically thermally gravimetrically-inert (they do notundergo weight change during heating). Thermogravimetry was carried out on anOD-102 Derivatograp h, using a Pt- Pt/Rh thermocoup le (heating o f I g of specimenup to 1000 ~ at a rate of 10~

    Thermal Anal. 13, 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    2/9

    554 S H L Y A P K I N A : T H E R M O G R A V I M E T R Y O F Z E O L I T E - B E A R I N G , R O C K SResu l t s and d i scuss ions

    T h e c l i n o p t il o l it e D T A c u r v e re c o r d s a c o n t i n u o u s w a t e r l o s s b y th e m i n e r a l int h e w i d e t e m p e r a t u r e r a n g e f r o m 4 0 t o 7 0 0 ~ [ I - 4 ] . T h e w e i g h t l o s s a m o u n t s t o1 3 . 2 % ( F i g . 1 ). M o n t m o r i l l o n i t e i s c h a r a c t e r i z ed b y a n i n t e n s e e n d o t h e r m i c e f f e c t( 3 5 - 1 7 0 ~ w h i c h is a s so c i a t e d w i t h t h e r e le a s e o f i n t e r la y e r w a t e r, a n d a l s o b y t w os m a ll e n d o t h e r m i c e ff ec ts ( 4 5 0 - 5 5 5 ~ a n d 6 1 0 - 6 9 5 ~ c o n d i t io n e d b y t h er m a l d is -s o c i a t io n o f O H - g r o u p s w i t h d i ff e re n t b i n d i n g e n e rg ie s f r o m t h e o c t a h e d r a l la y e r s[ 5 - 1 5 ]. H e r e , w a t e r i s a ls o r e l e a s e d a n d t h e t o t a l l o s s o f w e i g h t i s 1 5 . 2 % ( F i g . 2 ) .

    *C

    1 0 0 0 - -

    900wI 8 0 0

    I 70 0

    ~ T 6 0 0

    I 500

    y ,oo3O0

    c 200bJI O 0~

    ~ 2o4O

    ~

    8 0

    %20 __12.~2'J9 _ . . . . . . .

    1 4 0 _ _ [0 100 200 300 400 500 600 700 800 900 1000

    T i r n e ~ r a i n

    Fig. 1. TG, DT G and DT A curv e of clinoptilolite

    T h e c o i n c i d e n c e o f t h e te m p e r a t u r e r a n g e o f f u l l d e h y d r a t i o n , t h e o v e r l a p p in g o ft h e c o r r e s p o n d i n g t h e r m a l e f fe c t s w i t h i n i t , a n d a l s o t h e p r o x i m i t y o f t h e w e i g h tc h a n g e q u a n t i t a t iv e c h a r a c t e r is t ic s m a k e d i f fi c u lt a q u a n t i ta t i v e e s t i m a t e o f m i x t u r e ss u c h a s t h e s e b y t h e u s u a l m e a n s ( c o m p a r i s o n o f a r e a s o f t h e r m a l e f f e c ts , c a l c u l a -t i o n i n v o l v i n g v a l u e s o f t o t a l l o s s o f w e i g h t ) . T h e p o t e n t i a l it i e s o f t h e d e r i v a t o -g r a p h , w h i c h , b e s i d e s r e c o r d i n g t h e t h e r m o g r a v i m e t r i c c u r v e o f a g e n e r a l c h a n g e i nt h e m a s s m o f a s a m p l e a l s o r e c o r d s t h e r a te o f th i s p r o c e s sd m / d t ,a l l o w t h i s l a tt e rp a r a m e t e r t o b e u s e d t o d e t e r m i n e t h e c o m p o s i t i o n s o f s u c h m i x t u r es .

    J, Thermal Anal. 13, 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    3/9

    S H L Y A P K I N A : T H E R ~ M O G R A V I M E T R Y O F Z E O L I T E - B E A R I N G R O C K S 5 5 5

    If the system studied consists of two components only and is considered as amechanical mixture where interaction between the components does not matter,its composition may be determined simply via the equations:

    dmy dmxymx X+ - - Y= -- (1)dt dt dt

    X + Y = I

    o C .

    to

    Jt~T

    Il

    ctaJ

    e-

    0 100, 2 0 0 3 00 40 0 5 0 0 6 0 0 70 0 8 00 9 0 0 1 0 0 0

    T i m e , r a i n

    Fig. 2. TG, DTG and DTA curve of montmorillonite

    where: dmx/dman d drny/dt= derivatives of the change in mass m of the referencecomponents at time t;dmx~/dt= the same for the mixture (sample to be analyzed);X and Y = contents o f mixture compon ents in unit fractions.

    The determinatitm of mixture components is in principle possible at any temper-ature where there is a change of mass.

    J . T h e r m a l A n a l . 1 3 , 1 9 7 8

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    4/9

    5 56 S H L YA P K I N A : T H E R M O G R A V I M E T R Y O F Z E O L IT E -B E A R I N G R O C K S

    I n t h i s c a se th e s y s t e m c o n s i d e r e d c o n t a i n s t h e r m a l l y - i n e r t c o m p o n e n t s t o o .

    d m ~ 'd/~yT1 Tt

    X + - - Y = drnx-~Yd t d t d t

    d inS ' d T ' d inS ;

    T h e n , t h e e q u a t i o n s a r e :

    X + Y + Z = I

    w h e r e : X a n d Y = c o n t e n t s o f t h e rm a l l y - a c t iv e c o m p o n e n t s ;Z = t o t a l c o n t e n t o f t h e rm a l l y - i n er t c o m p o n e n t s ;T 1 a n d T ~ =

    ( 2 )

    t e m p e r a t u r e s w h i c h c o r r e s p o n d t o t h ed m / d t v a l u e s t o b e m e a s u r e d .

    3 0

    2010

    o r. 1 I l , ,1 . io a o o ~ o o s o o ~ 7 o o f 8 o o 9 ~ o lo -o o

    1 0 - - - - " ~ / Te m p e r a t u r e : ~

    N /03 04 0

    5O

    6 0

    7 0

    Fig. 3. Dependence of rate difference of clinoptilolite mass change and montmorilloniteupon tem perature.

    S o l u t i o n o f t h e se e q u a t i o n s i s p o s s i b le i n t h e k n o w l e d g e o fd m / d t v a l u e s f o r a tl e a st t w o t e m p e r a t u r e s ( i f t h e se v a l u e s a r e s u f fi c ie n t t o o b t a i n i n h o m o g e n o u s e q u a -t i o n s ). S e l e c t i o n o f t h e s e t e m p e r a t u r e s i s m a d e o n t h e b a s i s o f c o n s i d e r i n g t h e d e -p e n d e n c e d ( m = - m . v ) / d t u n d e r t h e f o l l o w i n g c o n d i t i o n s : d i f fe r e n c e v a l u e s o f ra t e o fm a s s c h a n g e b y b o t h c o m p o n e n t s a r e s u ff ic i en t ly h i g h ( c u r v e d e f le c t io n f ro m t h ea x i s o f X ) a n d a s d i f f e r e n t a s p o s s i b le ( d e f l e c t i o n si gn ) . S u c h a d e p e n d e n c e f o r t h ec l i n o p t i l o l it e - m o n t m o r i ll o n i t e s y s te m p e r m i t s c h o i c e o f t h e f o l l o w i n g t e m p e r a t u r eva lues : 7"1 = 150 ~ T2 = 300 ~ (F ig. 3).

    E q u a t i o n s ( 1 ) a n d ( 2 ) m a y b e s o l v e d a l g e b r a ic a l l y, f o r w h i c h i t is n e c e s s a r y t ok n o w t h e n u m e r i c a l v a l u e sdmr~/dt , dmrmm/dt , dm~/dta n d dmrm~/dt.T h e d ia g r a m -m a t i c s o l u t io n , t h e u s e o f w h i c h is r a t i o n a l f o r t h e z e o l it e + t h e r m a l l y - i n e r t c o m -p o n e n t s s y st e m , is m a d e b y m e a n s o f c o n s t r u c t i n g a c a l i b r a t i o n c u r v e i n t he c o o r d i -n a t e s : c o m p o s i t i o nvs . dm/dt .

    J. Thermal Anal. 13, 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    5/9

    S H LYA P K I N A : T H E R M O G R AV I M E T RY O F Z E O L I T E - B E A R I N G R O C K S 557

    L e t us c o n s i d e r t h e c o u r s e o f t h e t h e r m o g r a v i m e t r i c c u r v e o n t h e e x a m p l e o fs a m p l e 6 4 0 ( T a b l e 1 ). I t s c u r v e s a r e gi v e n i n F i g . 4 . I n o r d e r t o c a l c u l a t e w e u s e t h eD T G c ur ve . We m e a s u red m r x ) / d ta n d d m r x ) / d tv a l u e s a s t h e d e f l e c t i o n s i n m i l l i m e -t er s o f t h e D T G c u r v e f r o m i t s b a s e li ne a t p o i n t s T 1 a n d T 2, w h i c h c o r r e s p o n d t ov a l ue s o f 1 5 0 ~ a n d 3 0 0 ~ ( a c c o r d i n g t o F i g . 3 ). T h e y a r e e q u a l t o 8 1 a n d 4 0r a m ,

    Temperature ~ ~0 100 200 300 400 500 600 700 800 900 1(900

    TG

    0 10 20 30 40 50 60 70 80 90 100Time 9 rnin

    Fig . 4 . T G , DT G and D T A curve o f c linop t ilo li te t uff s ample N 640 (N oemberyan , A rme-nia) wi th indica t ion of co mpo nents to be m easured

    r e s p e c ti v e ly. I n t h e s a m e w a y w e m e a s u r e t h e v a l u e sd m r x l / d t--- 1 0 4 m m a n d

    dmr~2/d t= 5 7 m m ( c l i n o p t i l o l i t e ) a n dd m r / / d t= 2 0 0 m m a n dd m f ~ / d t= 6 m m( m o n t m o r i l l o n i te ) o n t he r ef er en c e m o n t m o r i l l o n i te ( Ta g a n k a , K a z a k h R e p u b li c ,U S S R ) a n d o n t he r e fe re n ce c l in o p ti lo l it e ( D z e g vi , R e p u b l i c o f G e o r g i a , U S S R )t h e r m a l c u r v e s .

    L e t u s in t r o d u c e t h e d a t a i n t o E q . ( 2 ) :

    1 0 4 X + 2 00 Y = 81

    5 7 X + 6 Y = 4 0

    w h e r e X a n d Y = c o n c e n t r a t i o n s o f c li n o p ti lo l it e a n d m o n t m o r i l lo n i t e , r e s pe c -t iv e ly. B y s o l v i n g t h e e q u a t i o n , w e o b t a i n : X = 0 . 7 0 ; Y = 0 . 0 4 . S o , t h e c li n o p t i lo l i t e

    J. Thermal Anal. 13, 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    6/9

    5 58 SHLYAPKIN A: TI-IERMOGRAVIMETRY OF ZEOLITE-BEARING ROCKS

    Ta b l e 1

    R e s u l t s o f d e t e r m i n a t i o n o f c o m p o s i t i o n s o f c l i no p t i lo l it e t u ft s f ro m N o e m b e r y a nd e p o s i t

    Composition, weight %

    Sample X-ray method I) TG method LSM defined

    c l m m z m m z

    6 0 0 a6O 86 0 96 1 36 1 46 2 2

    6 2 66 2 76 316 336 3 464 O6 4 56 4 66 4 86 51

    8 2 92 3

    79

    1 06

    1371 5

    084

    2 62 52 72 1

    1 55 0301 81 02 7

    614 34 830342 31 53 21 52 9

    c ! m m

    77 02 5 4 56 2 1 26 8 86 0 1 44 8 1 3

    1 7 1 04 2 2 02 6 1 639 184 1 1 57 0 44 7 2 13 3 2 23 6 2 54 1 2 6

    z c l

    2 3 8 32 6 3 32 6 5 62 4 7 42 6 7 839 71

    7 3 2 23 8 4 85 8 3 44 3 6 64 4 5 52 6 7 33 2 6 04 5 4 039 5533 48

    52 11 7

    811

    6

    1 21 01 5

    493

    2 52 52 72 3

    cl- - - - c l i n o p t i l o l i t e , m m = m o n t m o r i l t o n i t e , z = s u m o f t h e r m a l l y - i n e r t p h a s e s .

    154 32 81 91 42 7

    6 64 I5 233372 41 8362 130

    Ta b l e 2

    R e s u l t s o f d e t e r m i n a t i o n o f c o m p o s i t i o n s o f s a m p l e s o f T r a n s c a r p a t h i a n c l in o p t il o li te tu f ts

    Sample

    Composition weight

    1 0 / 211 / 24 8516 7

    All-UnionResearch

    Institute of theGeology of

    Non-Ore

    UsefulMinerals,Kazan

    X-ray method

    Institute ofGeological

    Science of theUkraine Soviet

    Socialist

    RepublicAcademy ofScience, Kiev

    CentralComplex

    Laboratory ofKiev GeologyTrust, Kiev

    DTG methodLeast squares

    method(LSM)

    c l z c l I z

    8 02 69 47979

    e l z

    7 6 2 45 3 4 7

    2 074

    62 12 1

    cl z

    6 6 3 41 7 8 38 2 1 86 3 3 761 39

    c l z

    8 0 2 01 5 8 59 0 1 06 0 4 07 0 3 0

    el- - - - c l i n o p t i l o l i t e , z -- -- - s u m o f t h e r m a l l y - i n e r t p h a s e s .

    7 2 I 2 82 0 I 8 08 7 1 1 470 i 3070 I 31

    F

    J . T h e r m a l A n a l . 1 3 , 1 9 7 8

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    7/9

    SHLYAPKINA: THERMOGRAVIME TRY OF ZEOLITE-BEARING ROCKS 559

    c o n t e n t i s 7 0 % a n d t h a t o f m o n t m o r i l l o n i t e is 4 % . T h e r e s i d ua l 2 6 % is th e c o n t e n to f t h e t h e r m a l l y g r a v i m e t r i c a l l y - i n e r t c o m p o n e n t .

    B y t h e D T G m e t h o d m e n t i o n e d a b o v e , a q u a n t it a t iv e a n a ly s is w a s m a d e o f

    n a t u r a l s p e c i m e n s o f z e o l it i ze d t u ft s f r o m A r m e n i a , A z e r b a i ja n , T u r k m e n i s t a n a n dt h e T r a n s c a r p a t h i a n s ( in a ll 52 s a m p le s ). I n T a b l e 1 t h e t h e r m o g r a v i m e t r i c d a t a o ft h e c l i n o p ti lo l i te t uf ts o f t he T r a n s c a r p a t h i a n s a r e c o m p a r e d w i t h t h e r es u lt s o fX - r a y s t u d ie s m a d e b y d i ff e r en t o rg a n i z a t i o n s . T h e c o m p a r i s o n o f t h e r e su l ts o f t h ea n a ly s is b y D T G a n d X - r a y m e t h o d s b y m e a n s o f S t u d e n t 's r a t io ( t c r i te r io n ) sh o w st h e p r e s e n c e o f a d i v e rg e n c e : t = 5 . 4 0 a t t 0 . 0 s(l 5 ) = 2 . 1 3 ; a m o r e p r e c i s e d e t e r m i -n a t i o n o f t h e v a l ue s o f th e c o n c e n t r a ti o n s o f th e m i x tu r e c o m p o n e n t s b y t h e l ea s ts q ua r e s m e t h o d ( L S M ) p e rm i t s t he c o n v e r g e n c e t o b e i m p r o v e d ( Ta b l e 2 ).

    T h is m e t h o d o f q u a n t i ta t i v e d e t e r m i n a t io n d e s c ri b ed a b o v e m a y a l so b e e x t e n d e dt o s y st e m s w i t h a l a rg e n u m b e r o f t h e r m a l l y g r a v i m e t r ic a l l y - a c t iv e c o m p o n e n t s .

    I f t h e s y s t em c o n t a i n s X + Y + V + . . . + N t h e r m a l l y - a c t i v e c o m p o n e n t s , t h e nt h e e q u a t i o n s a r e a s f o l l o w s :

    T1 TIdmTx dm T1 dm ~ ' dm ~ N- dmxy v" " " n

    d t X + ~ d t Y + d t V + . . . + d t d t

    drnT~ dmT2 dm~2 dmT~ r2 nrnxyv . . .~ d t - - X + d t - Y + d t v + ' ' " + ~tt N - d i

    d mT x" X d m ~ ' , y dm T ' dmV, ~ r,,m x y v 9 .+ + ~ . V + . . . + - N = "n

    d t d t d t d t d tX + Y + V + . . . + N + Z = 1

    w h e r e Z = s u m o f a ll t h e r m a l l y - i n e r t c o m p o n e n t s . H e n c e , a s m a n y e q u a t i o n s a r er e q u i re d a s t h e re a r e u n k n o w n t h e r m a l l y - a c t i v e c o m p o n e n t s , a n d o n e n o r m a l i z i n ge q u a t i o n i s a d d e d . T h e g e n e r a l n u m b e r o f e q u a t i o n s i s e q u a l t o N + 1 . I n t h i s c a s e ,t h e k no w l e d g e o f d m ~ y ~ . . ., , /dt v a l u e s a t N p o i n t s i s n e c e s s a r y.

    C o n c l u s i o n

    T h e s u p p o s i ti o n s i n v o l v e d i n t h e m e t h o d o f c a l c u l a t i o n d e s c r i b e d a b o v e a r e t ru e

    u n d e r c o n d i t i o n s o f c o n s t a n c y o f w e i g h t a n d r a t e o f h e a t i n g o f r e f e re n c e sa m p l e sa n d s a m p l e s t o b e t e st e d . I n t h e c a s e o f d i f f e r e n t s p e c i m e n s , c o n v e r s i o n c o e f f i c ie n t sf o r d m / d t v a l u e s a r e i n t r o d u c e d . T h e d e t e r m i n a t i o n i s n o t h a m p e r e d b y a n y t h e r -m a l l y - a c t iv e c o m p o n e n t w h i c h p o s se s se s c o n s t a n c y o f m a s s a t t h e s e l e c te d t e m p e r a -t u r e v a l ue s , b e c a u s e th e s a m p l e i s t a k e n i n t o a c c o u n t i n t h e s u m o f t h e t h e rm a l l y -i n e r t c o m p o n e n t s . I f t h e r e a ri se s a n e e d f o r a q u i c k d e t e r m i n a t i o n , a n i m p o r t a n ta d v a n t a g e l ie s i n t h e po s s i bi li ty o f p e r f o r m i n g t h e h e a t i n g o f s a m p l e s u p t o r e la -t iv e ly l o w t e m p e r a t u r e s ( 3 5 0 - 4 0 0 ~ A s a r es ul t, th e a c c u r a c y o fd m / d t d e t e r m i n a -t i o n is i n c r e a se d d u e to t h e b e t t e r r e p r o d u c i b i l i ty o f t h e r e c o r d i n g a p p a r a t u s i n t h er a n g e o f m o d e r a t e t e m p e r a t u re s .

    10 J . Thermal Anal . 13 , 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    8/9

    5 6 0 S I r l LYA P K I N A :H E R M O G R AV I M E T RY O F Z E O L IT E -B E A R I N G R O C K S

    T h e m e t h o d d e s c r i b e d a b o v e h a s s h o w n a g o o d c o i n c i d e n c e w i th th e X - r a y t e std a t a . F o r i n s t a n c e , w h e n 1 1 s p e c i m e n s o f z e o li t e - b e a r i n g t u ft s w h i c h c o n t a i n az e o l it e p h a s e a s t h e t h e r m a l l y - a c t i v e c o m p o n e n t a r e a n a l y z e d , t h e c o r r e l a t i o n r a t io

    b e t w e e n t h e X - r a y a n d t h e r m a l d a t a a m o u n t s t o 0 .9 3. W h e n 2 l s p e c i m e n s o f z e o l it e -b e a r i n g t u ft s, w h i c h c o n t a i n z e o li te a n d m o n t m o r i l l o n i t e a s th e i r th e r m a l l y - a c t i v ep h a s e s a r e a n a l y z e d , t h e c o r r e l a t i o n r a t i o i f t h e z e o l i te c o n t e n t i s d e t e r m i n e d i s0 . 8 8 ; t h e c o r r e l a t i o n r a t i o i f t h e m o n t m o r i l l o n i t e c o n t e n t i s d e t e r m i n e d i s 0 . 6 4( Ta b l e 3 ) .

    Ta b l e 3

    C om par i son o f re su l ts o f X- ra y and t he rmo grav ime t r i c ana ly se s

    Numberof samplesanalyzed

    1121

    C orrelation ratio on:

    zeolite montmorillonite

    0.930.88 0 .64

    R e f e r e n c e s

    I . B . M A S O N a n d L . B .SAND,A m. M ine ra log is t , 45 (1960) 341 .2 . F . A . MUM PTON, A m. M ine ra log i st , 45 (1960) 359 .

    3 . A . A L m T ~ r ,M inera l . P e t rogr. A cta , 13 (1967) 119.4. G . V . TSZT SlSl-lWLI,SH. D. SABELASHVlLI,Z . I . K O R I DZ E , E . K . K VA N TA L IA N I n d T. G .ANDRONIKASHVILI,P r o c e e d in g s o f A c a d e m y o f t he S c i en c ie s o f t h e U S S R , I n o rg a n i c M a t e -rials, 9 (1973) 1394).

    5 . R . C . MACKENZIEand B . M . BISHUI , C lay M ine ra l s B u l l. , 3 (1958) 276 .6 .1 . D . Zc H os , C lay mine ra l s and t he i r pa l eogeograph ica l mean ing , Pub l . "S c i ence" ,

    M o s c o w, 1 96 6 .7 . B. S . C r lO SH , In dia n J . P hys . , 43 (1969) 147 .8 . S . SmMODA and T. SuDo , P roceed ings o f t he In t e rna t i ona l C lay C onfe rence , I s r ae l Un ive r-

    s i t ies P ress , Je rusa lem, 1969, 1 .9 . T. K r I . M UKSlNOV , F. CH . TAI )GIEVand M . S . ZAKIROV, nves t i ga t i on and U t i l i z a ti on o f

    C l a y s a n d C l a y M i n er a ls , P r o c e e d i ng s o f s im p o s i u m S c i e nc e , A l m a - A t a , 1 9 70 .1 0 . M . V. ] ~ IR IS H , A . A . D V O R E C H E N S K AY Aand N . F. PSHENICHNAYA, Inves t i ga t ion and

    Ut i l i z a t i on o f C lays and C lay M ine ra l s , P roceed ings o f s impos ium, A lma -A ta , 1970 .11 . T. K AT O, N endo K agak u , 11 (1971) 165 .12 . S . SHIMODA,N e n d o K a g a k u , 1! (1971) 174.13 . P. F . CHANTRET, A . DESPRAIRIESand P. DOUILLET, B ul l. G rou pe F ranc . A rgi les , 23 (1971)14 . J . M ASA R and M . GREG OR, S i l i ka t J . , I 1 (1972) 73 .15 . I . P. FORTUNA and V. A . NASTA S, Uk ra ine C hem. J . , 38 (1972) 286 .

    J. Thermal Anal. 13, 1978

  • 7/28/2019 Shlyapkina 1978 Quantitative Thermogravimetry of Multicomponent Zeolite-bearing Rocks

    9/9

    SHLYAPKINA: THERMOGRAVIMETRY OF ZEOLITE-BEARING ROCKS 561

    RI2SUMI~ -- La ddte rmi nati on qua nti tati ve de la c omp osi tio n d' un mdl ange est tr~s difficile parles mdthodes ther moa naly tiqu es si les intervalles de temp6rat ure od s'effectuent les transfo r-mations se chevauchent part iel lement ou totalement et si les variat ions pond6rales sontproches les unes des autres. Pour effectuer l 'analyse quantitative d'un tel syst~me, on pr6senteici une mdthode qui repose sur le calcul des modifications de la vitesse de transformation descom posa nts individuels du m6lange. On d6crit le principe suivan t lequel on effectue la distinc-tion des intervalles de tempdrature avec une diff6renciation maximale des effets thermiquesainsi que les mdthodes permettant de calculer la composition du m61ange. Le dosage desconstituants prdsents dans des roches h zdolites est donn6 comme exemple.

    ZUSAMMENFASSUNG - - Eine quanti tat ive thermoanal ytische Beschreibung der Zus amm en-setzung eines Gemisches ist ~usserst schwer, wenn die Temperaturbereich e der t hermisc henZers etzun gen teilweise oder vollst/~ndig fiberlappen und auch die quantita tiven C harakt erist ikader Gewichts/ inderungen nahe bei einander l iegen. Eine Method e der quanti tat iven Analyseeines solchen Systems wird gezeigt, die auf der Ber echnu ng der U nters chied e der Regelm/issig-

    ke~t der Geschwindigkeits/ inderung bei der therm ischen Ums etzu ng der einzelnen Komp one n-ten des Gemisches beruht. Da s Prinzip der Untersc heidung von Tem peraturbereic hen untermaximal er Differenzierung der thermisc hen Effekte, sowie die M ethode zur Ber echnung derquanti tat iven Zu sam men setz ung des Gemisches werden beschrieben. Beispiele zur Bestim-m u n g der Zusammensetzung der Mineralstoffe in zeolithaltigem Gestein werden gegeben.

    Pe3~oMe - - ]:(O.rIHqCCTBeHHOe TepMoaHaJinTrtqecKoe onpe~iene~aue cocxaBa CMCCI, ~IBJIIteTC~Iqpe3BbI~ia~no xpy~nb/M, CCnH I~po~rcxojmT uacTrvmoe nn n no nn oe nepeKpI, Bann e TeMnepaxyp-HOlt 06JlacTrt TCpMtlqecKl'lX npeBpatlIeHrtfi, a TaK~Ke ecJ~I Ha6~I~/IaeTc~t 6JI/A3OCTb KOJIHqeCTBeH-HblX xapaKTep~aCTUK H3MeFIeH!41t Beca. lrlpe/1J~o~KeH MeTO/I KOJIHqeCTBeHHOFO aHa~n 3a TaKo~CHCTeMbl, OCHOBaHHbl~ Ha BbJqHC.rlel-lHl,I pa3JH4tE4~ B 3aKOHOMepHOCT~tX II3MeHeHltfl CKOpOCTI,TepMVlqeCKOFO npeBpat tt eHna OT/Ie.rlbHblX KOMFIOHeHTOB CMeCH. lqol~a3aHb[ OCHOBHble xapa xep -ab le xeMne paTypm ,ie 14HXepBaJlb~ C MaKClIMyMOM ~lnqb~aepeHLtriai~rlH TepMa~fecKrlX aqbqbeKxOB HMeTO~lbI BblqHCJXeHNI/ KO.rlHqeCTBeHHOFO COCTaBa CMeCH. ]]pejlcTaBneHbI rlprlMepbI onpe/leJieHH~MHHeDaJlbHOFO CocTaBa Ileo3H,lla npripoJIHOrO nponcxo>KAeHnn.

    10" J. Thermal Anal. 13, 1978


Recommended