+ All Categories
Home > Documents > Short term variability of the ozone and other species simulated using LYRA data

Short term variability of the ozone and other species simulated using LYRA data

Date post: 02-Jan-2016
Category:
Upload: selma-gibson
View: 11 times
Download: 0 times
Share this document with a friend
Description:
Short term variability of the ozone and other species simulated using LYRA data Tatiana Egorova * , Eugene Rozanov *,** , Werner Schmutz * Ingolf Dammash *** * PMOD/WRC, Davos, Switzerland ** ETHZ, Zurich, Switzerland * * * ROB, Brussels, Belgium. Project idea. - PowerPoint PPT Presentation
Popular Tags:
24
Short term variability of the ozone and other species simulated using LYRA data Tatiana Egorova * , Eugene Rozanov *,** , Werner Schmutz * Ingolf Dammash *** * PMOD/WRC, Davos, Switzerland ** ETHZ, Zurich, Switzerland *** ROB, Brussels, Belgium
Transcript

Short term variability of the ozone and other

species simulated using LYRA data

Tatiana Egorova*, Eugene Rozanov*,**, Werner Schmutz*

Ingolf Dammash***

* PMOD/WRC, Davos, Switzerland

** ETHZ, Zurich, Switzerland

*** ROB, Brussels, Belgium

LYRA on PROBA2(ROB & PMOD/WRC)

PREMOS on PICARD(PMOD/WRC)

LYRA on PROBA2(ROB & PMOD/WRC)

PREMOS on PICARD(PMOD/WRC)

Chemistry ionosphereclimate model

(CICM)extension of CCM SOCOL(Egorova, JASTP, 2010)

Chemistry ionosphereclimate model

(CICM)extension of CCM SOCOL(Egorova, JASTP, 2010)

On-line LYRA and PREMOS

datafor space-weather

community

On-line LYRA and PREMOS

datafor space-weather

community

Project idea

Evaluate the response of the middle atmosphere to the short term solar UV irradiance variability

Evaluate the response of the middle atmosphere to the short term solar UV irradiance variability

Goals• Find out how well we understand

the solar influence on the middle atmosphere;

• Learn how to manage near-real-time operation;

• Space Weather Service is secondary goal but may become interesting if successful !

• Preparatrion to the model extention to upper atmosphere

Nowcasting of neutral and ion composition in the mesosphere based

on solar irradiance measurements

Hourly/Daily Data fromobservations by

LYRA, PREMOS, SORCE

Hourly/Daily Data fromobservations by

LYRA, PREMOS, SORCE

Radiation spectrumreconstruction

120-680 nm

Radiation spectrumreconstruction

120-680 nm

Nowcast of anomalies of neutraland charged species

with CICM SOCOLi

Nowcast of anomalies of neutraland charged species

with CICM SOCOLi

Nowcast results available on web

every 6 hours

Nowcast results available on web

every 6 hoursOutput validation

to improve the model and experimental set-up

Output validation to improve the model and

experimental set-up

Ozone and hydroxyl response to the solar variability

January 2004 case study

Hydroxyl and ozone in the mesosphere simulated with CCM SOCOL. These components are sensitive to variable solar irradiance becauseH2O + hv (121.5 nm) => OH + H OH goes up O3 + OH => O2 + HO2 O3 decreases

Experimental setup (intended)

10-member model ensemble runfor the next 6 hours

10-member model ensemble runfor the next 6 hours

Spectral solar irradiance on model spectral grid

for the next 6 hours

Spectral solar irradiance on model spectral grid

for the next 6 hours

Initial fields for 10 ensemble

members

Initial fields for 10 ensemble

members

Hourly model outputfor the next 6 hours

Hourly model outputfor the next 6 hours

Initialization fieldsfor the next periodInitialization fieldsfor the next period

Output data

Mixing ratio of the neutral species and electrons, negative and positive ions density

for the 6 hour period after the last LYRA measurement

and their statistical properties

Mixing ratio of the neutral species and electrons, negative and positive ions density

for the 6 hour period after the last LYRA measurement

and their statistical properties

Charged components:Charged components:

OO+,+, O O22++, O, O44

++, N, N++, NO, NO++, N, N22++, H, H22OO22

++, H, H33OO++,O,O22++∙N∙N22, O, O22

++∙H∙H22O, HO, H33OO++∙OH, NO∙OH, NO++∙H∙H22O, NOO, NO++∙(H∙(H22O)O)22, NO, NO++∙(H∙(H22O)O)33, NO, NO++∙CO∙CO22, ,

NONO++∙N∙N22, NO, NO++∙H∙H22O∙COO∙CO22, NO, NO++∙H∙H22O∙NO∙N22, NO, NO++∙(H∙(H22O)O)22∙CO∙CO22, NO, NO++∙(H∙(H22O)O)22∙N∙N22, H, H++∙(H∙(H22O)O)22, H, H++∙(H∙(H22O)O)33, H, H++∙(H∙(H22O)O)44, H, H++∙(H∙(H22O)O)55, ,

HH++∙(H∙(H22O)O)66, H, H++∙(H∙(H22O)O)77, H, H33OO++∙CO∙CO22, H, H33OO++∙N∙N22, H, H++∙(H∙(H22O)O)22∙CO∙CO22, H, H++∙(H∙(H22O)O)22∙N∙N22

e¯,O¯, Oe¯,O¯, O22¯, O¯, O33¯, O¯, O44¯, OH¯, CO¯, OH¯, CO33¯, CO¯, CO44¯, NO¯, NO22¯, NO¯, NO33¯, HCO¯, HCO33¯, ClO¯, Cl¯, CH¯, ClO¯, Cl¯, CH33¯,O¯,O22¯∙H¯∙H22O, NOO, NO33¯∙H¯∙H22O, COO, CO33¯∙H¯∙H22OO

Neutral components:Neutral components:

OO33 , O , O** , O , O , O , O22

**, NO, HO, NO, HO22, ClO, NO, ClO, NO

22 , OH, NO , OH, NO33, N, N

22OO55, HNO, HNO33,HONO,HONO

33, ClONO, ClONO22, Cl, N, N, Cl, N, N**, H, H

22OO22, H, HOCl, Cl, H, HOCl, Cl22, Cl, Cl

22OO22, HCl , , HCl ,

Br, CHBr, CH22O, BrO, HBr, HOBr, BrNOO, BrO, HBr, HOBr, BrNO

33, BrCl, CH, BrCl, CH33, CH, CH

33OO22, CH, CH33O, HCO, CHO, HCO, CH

33OO22H, HH, H22O, CFC-11, CFC-12, NO, CFC-11, CFC-12, N

22O, CHO, CH44, CO, H, CO, H

22, CBrF, CBrF33

Charged components:Charged components:

OO+,+, O O22++, O, O44

++, N, N++, NO, NO++, N, N22++, H, H22OO22

++, H, H33OO++,O,O22++∙N∙N22, O, O22

++∙H∙H22O, HO, H33OO++∙OH, NO∙OH, NO++∙H∙H22O, NOO, NO++∙(H∙(H22O)O)22, NO, NO++∙(H∙(H22O)O)33, NO, NO++∙CO∙CO22, ,

NONO++∙N∙N22, NO, NO++∙H∙H22O∙COO∙CO22, NO, NO++∙H∙H22O∙NO∙N22, NO, NO++∙(H∙(H22O)O)22∙CO∙CO22, NO, NO++∙(H∙(H22O)O)22∙N∙N22, H, H++∙(H∙(H22O)O)22, H, H++∙(H∙(H22O)O)33, H, H++∙(H∙(H22O)O)44, H, H++∙(H∙(H22O)O)55, ,

HH++∙(H∙(H22O)O)66, H, H++∙(H∙(H22O)O)77, H, H33OO++∙CO∙CO22, H, H33OO++∙N∙N22, H, H++∙(H∙(H22O)O)22∙CO∙CO22, H, H++∙(H∙(H22O)O)22∙N∙N22

e¯,O¯, Oe¯,O¯, O22¯, O¯, O33¯, O¯, O44¯, OH¯, CO¯, OH¯, CO33¯, CO¯, CO44¯, NO¯, NO22¯, NO¯, NO33¯, HCO¯, HCO33¯, ClO¯, Cl¯, CH¯, ClO¯, Cl¯, CH33¯,O¯,O22¯∙H¯∙H22O, NOO, NO33¯∙H¯∙H22O, COO, CO33¯∙H¯∙H22OO

Neutral components:Neutral components:

OO33 , O , O** , O , O , O , O22

**, NO, HO, NO, HO22, ClO, NO, ClO, NO

22 , OH, NO , OH, NO33, N, N

22OO55, HNO, HNO33,HONO,HONO

33, ClONO, ClONO22, Cl, N, N, Cl, N, N**, H, H

22OO22, H, HOCl, Cl, H, HOCl, Cl22, Cl, Cl

22OO22, HCl , , HCl ,

Br, CHBr, CH22O, BrO, HBr, HOBr, BrNOO, BrO, HBr, HOBr, BrNO

33, BrCl, CH, BrCl, CH33, CH, CH

33OO22, CH, CH33O, HCO, CHO, HCO, CH

33OO22H, HH, H22O, CFC-11, CFC-12, NO, CFC-11, CFC-12, N

22O, CHO, CH44, CO, H, CO, H

22, CBrF, CBrF33

4D:latitude, longitude, altitude, time

4D:latitude, longitude, altitude, time

Data form LYRA half calibrated (provided by Ingolf Dammash)

Gap filled LYRA data

Lyra R=0.75

Sorce/Solstice, 2008 R=0.58

Gap filled LYRA data

Solar spectrum reconstructionWe have reconstructed solar UV irradiance for 120-680 nm required by the model from LYRA data applying linear regression analysis. We use the following formula for the reconstruction:

Fi= A + B Pi

F is solar spectral UV irradiance; is wavelength; i is day number; A and B correlation coefficients calculated SOLSTICE/SORCE and SIM/SORCE for 2008; P is solar irradiance from LYRA (Channel 2).

See Egorova et al. (ACP, 2008) for details and accuracy estimation

Problems for Hartley-Higgins bands

Experimental set-upComposite 1: 121-220 nm SOLSTICE/SORCE 220-700 nm SIM/SORCE

Composite 2: 121-280 nm SOLSTICE/SORCE 280-700 nm SIM/SORCE

Simulation with 1D model: O3 at 80km

H2O + hv (121.5 nm) => OH + H O3 + OH => O2 + HO2

O3 and OH in antiphase

Simulation with 1D model: OH at 80km

H2O + hv (121.5 nm) => OH + H O3 + OH => O2 + HO2

O3 and OH in antiphase

Simulation with 1D model: electrons at 80km

NO + hv => NO++ e-

O3 and electrons in phase

Data sampling (daily vis. hourly)

Blue- dailyRed – hourly

Simulation with 1D model: O3 at 60km

O2+ hv => O + O O2 + O + M => O3 O3+ hv => O(1D) + O2

O(1D) + H2O => OH + OH

O3 and OH in phase

Simulation with 1D model: OH at 60km

O2+ hv => O + O O2 + O + M => O3 O3+ hv => O(1D) + O2

O(1D) + H2O => OH + OH

O3 and OH in phase

Vertical O3 profile: difference between two composites

Electron density in the tropics

km

Tropical mean time evolution (10-11.2003) of the electron concentration (cmTropical mean time evolution (10-11.2003) of the electron concentration (cm -3-3). ).

Solar UV

SPE

GCR

1.Ozone, hydroxyl, electron and ion densities show some response to the solar irradiance variability

2.Lyra data can be used for nowasting! If available in RT mode

3.Some problems with data and model remain ...

Conclusions


Recommended