+ All Categories
Home > Documents > Shortcourse+on+symmetry+and+ crystallography+ Part1 ...

Shortcourse+on+symmetry+and+ crystallography+ Part1 ...

Date post: 03-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
33
Shortcourse on symmetry and crystallography Part 1: Point symmetry Michael Engel Ann Arbor, June 2011
Transcript

Short-­‐course  on  symmetry  and  crystallography  

 Part  1:  

Point  symmetry  

Michael  Engel  Ann  Arbor,  June  2011  

Euclidean  move  

Defini&on  1:  An  Euclidean  move              is  a  linear  transformaBon  that  leaves  space  invariant:      Here  x  is  a  vector,  A  an  3x3  orthogonal  Matrix  and  b  a  3-­‐vector.  

Ques&on:  Euclidean  moves  form  a  ?-­‐dimensional  space.  

T = {A, b}

x �→ T (x) = Ax + b

Defini&on  2:  The  product  of  two  transformaBons  and            is:  (Note:  T1  is  applied  first!)    

Product  of  Euclidean  moves  

T1 = {A1, b1}T2 = {A2, b2} T2 ◦ T1 = {A2A1, A2b1 + b2}

Observa&ons:  

1.  The  inverse  is:  (Check:              )  

2.  Every  transformaBon  of  finite  order  n  (i.e.  T  n  =  1)  leaves  at  least  one  point  invariant.  

T −1 = {A−1,−A−1b}T ◦ T −1 = T −1 ◦ T = 1

Defini&on  3:  The  order  of  a  transformaBon  T  is  the  smallest  integer  n  such  that  One  can  also  say  this  transformaBon  is  n-­‐fold.  

T n(x) = T ◦ T ◦ T ◦ · · · ◦ T (x) = x

Group  

h(p://en.wikipedia.org/wiki/Group_(mathema<cs)  

Formal  definiBon  of  symmetry  group  

Defini&on  4:  •  A  symmetry  of  an  object  in  space  (cluster,  Bling,  laVce,  …)  

is  an  Euclidean  move  that  leaves  the  object  indisBnguishable.  

•  A  symmetry  group  is  a  group  of  symmetries.  

Defini&on  5:  The  order  of  a  group  is  equal  to  the  number  of  elements:   |G| = |{g ∈ G}|

Normal  form:  

Types  of  symmetries  

Classifica&on:  1)    b  =  0      or      b  ≠  0?  2)    Angle  α.  3)    Eigenvalues  of  A.  

Basic  types:  IdenBty  =  1,  

(i)  ReflecBon,  (ii)  RotaBon,  (iii)  TranslaBon    

Composite  types:  (iv)  Glide  reflecBon,  (v)  RotoreflecBon  (Inversion),  

(iv)  Helical  symmetry  

A =

±1 0 00 cos(α) − sin(α)0 sin(α) cos(α)

x �→ T (x) = Ax + b

ReflecBon/mirror  symmetry  (S2  =  1)  

Ambigramm  (segerman.org)  

Kyoto,  June  2008  

(n-­‐fold)  RotaBonal  symmetry  (Sn  =  1)  

Ambigramm  (segerman.org),  n  =  2  

Flag,  n  =  3  

Mandala,  n  =  6  

TranslaBonal  symmetry  (n  >  1:  Sn  ≠  1)  

Giant’s  causeway,  Northern  Ireland  

SEM  image  of  the  wing  of  a  Papilio  bucerfly  

Composite  Symmetries  

TranslaBon  +  ReflecBon  =  Glide  reflecBon  

RotaBon  +  ReflecBon  =  RotoreflecBon  (Inversion)  

TranslaBon  +  RotaBon  =  Helical  symmetry  

Here:  

•  The  group  G  is  a  set  of  Euclidean  moves.  

•  The  set  X  is  the  three-­‐dimensional  space.  

•  An  Euclidean  move  acts  on  3D  space  as  an  affine  transformaBon.  

Group  acBon  

•  The  orbit  consists  of  all  points  that  are  equivalent  under  symmetry.  

•  The  stabilizer  consists  of  all  symmetries  that  leave  a  point  invariant.  

Point  symmetries  

Defini&on  6:    A  point  symmetry  is  a  symmetry  which  leaves  a  point  x0  invariant:    

Observa&ons:  

•  TranslaBons  cannot  be  point  symmetries.  

•  Symmetries  with  finite  order  are  point  symmetries.  

•  Symmetries  with  infinite  order  cannot  be  point  symmetries.  (Note:  Some  sources  consider  spherical  and  cylindrical  symmetry  point  symmetries.)  

T (x0) = x0

Point  group  

Observa&on:  

1.  A  point  group  is  a  finite  subgroup  of  O(3),  the  space  of  three  dimensional  orthogonal  matrices.  Note:    

2.  If  two  symmetries  have  no  common  invariant  point,  then  they  generate  a  group  of  infinite  order.  (Exercise)  

Defini&on  7:  A  point  group  is  a  group  of  point  symmetries,  which  leave  a  common  point  x0  invariant.  

Classifica&on  strategy:  Determine  finite  subgroups  of  SO(3).  Then  extend  them  into  O(3).  

O(3) = {A ∈ 3×3 : ATA = 1}

SO(3) = {A ∈ 3×3 : ATA = 1,det(A) = 1}

Comparing  groups  

Defini&on  8:  Two  subgroups  H1  and  H2  of  a  group  G  are  conjugated,  if  there  exists  a            ,  such  that:    (Exercise:  Show  that  conjugated  subgroups  are  isomorphic.)  

g ∈ GH2 = g

−1H1g

Example:  G  =  O(3).  Two  point  groups  are  conjugated,  if  there  is  a  change  of  basis  that  maps  them  into  each  other.  

ClassificaBon  of  2D  point  groups  (up  to  conjugacy)  

Normal  form  of  an  orthogonal  Matrix  in  O(2):  

A = ±�

cos(α) − sin(α)sin(α) cos(α)

Cyclic  groups:  C1,  C2,  C3,…  where  Cn  consists  of  all  rotaBons  about  a  fixed  point  by  mulBples  of  360/n.    Dihedral  groups:  D1,  D2,  D3,  D4,...  where  Dn  (of  order  2n)  consists  of  the  rotaBons  in  Cn  together  with  reflecBons  in  n  axes  that  pass  through  the  fixed  point.  

Proper  point  groups  in  3D  (subgroups  of  SO(3))  

•  Cyclic  groups:  Cn  with  order  n  •  Dihedral  groups:  Dn  with  order  2n  •  Tetrahedral  group  T  with  order  12.  Octahedral  group  O  with  

order  24.  Icosahedral  group  I  with  order  60.  

Platonic  solids  in  4D:                        Higher  dimensions:  Only  simplex,  hypercube,  cross-­‐polytope.  

Role  of  dimension  

Sands,  page  25.  

ClassificaBon  of  3D  point  groups  –  Part  I  

h(p://en.wikipedia.org/wiki/Point_groups_in_three_dimensions  

Exercise  1  

Exercise  2  

Exercise  3  

Exercise  4  

Point  symmetry?  

ClassificaBon  of  3D  point  groups  –  Part  II  

The  7  remaining  point  groups:  •  T  (332)  of  order  12  -­‐  chiral  tetrahedral  symmetry.  

RotaBon  group  for  a  regular  tetrahedron.  •  Td  (*332)  of  order  24  –  full  tetrahedral  symmetry.  

Full  symmetry  group  of  a  regular  tetrahedron.  •  Th  (3*2)  of  order  24  –  pyritohedral  symmetry.    

Symmetry  of  a  volleyball.  •  O  (432)  of  order  24  –  chiral  octahedral  symmetry.  

RotaBon  group  for  a  regular  octahedron/cube.  •  Oh  (*432)  of  order  48  -­‐  full  octahedral  symmetry.  

Full  symmetry  group  of  a  regular  octahedron/cube.  •  I  (532)  of  order  60  –  chiral  icosahedral  symmetry.  

RotaBon  group  for  a  regular  dodecahedron/icosahedron.  •  Ih  (*532)  of  order  120  -­‐  full  icosahedral  symmetry.  

Full  symmetry  group  of  a  regular  dodecahedron/icosahedron.  

Archimedean  solids  –  Part  1  

DeterminaBon  of  the  point  group  of  an  object  in  space  1.  Object  linear:  C∞v  or  D∞h.  2.  High  symmetry,  non-­‐axial:  T,  Th,  Td,  O,  Oh,  I,  Ih.  3.  No  rotaBon  axis:  C1,  Ci,  Cs.  4.  Determine  the  symmetry  element  with  highest  order  

and  use  the  following  table:  

Group  Order  

n  

2n  

2n  

2n  

4n  

4n  

n  

orthogonal  rotaBons  

verBcal  mirror  

horizontal  mirror  

verBcal  mirror  

horizontal  mirror  

Example:  Carolyn’s  packings  of  small  spheres  on  a  big  sphere  

1.  Six  trimers  of  spheres  arrange  on  the  verBces  of  an  octahedron  into  two  different  orientaBons.  

2.  What  are  the  point  groups?  Ignore  the  numerical  inaccuracy  (fluctuaBons  in  the  orientaBon).  

Exam  quesBons,  part  1  

•  What  is  a  symmetry?  •  How  does  a  symmetry  act  on  Euclidean  space?  •  What  types  of  symmetries  are  there?  •  What  is  a  point  symmetry  and  a  point  symmetry  group?  •  What  does  it  mean  to  classify  point  groups?  •  What  points  groups  are  there  in  2D  and  3D?  •  How  can  you  idenBfy  the  point  group  of  an  object?  


Recommended