+ All Categories
Home > Documents > Shredder and Incinerator Technology for Treatment of ...

Shredder and Incinerator Technology for Treatment of ...

Date post: 02-Mar-2022
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
124
Shredder and Incinerator Technology for Treatment of Commercial Transuranic Wastes K. H. Oma J. H. Westsik, Jr. W. A. Ross October 1985 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute
Transcript

Shredder and Incinerator Technology for Treatment of Commercial Transuranic Wastes

K. H. Oma J. H. Westsik, Jr. W. A. Ross

October 1985

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com- pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY operated by

BATTELLE for the

UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Pr~nted In the Un~ted States of America Available from

Nal~onal Technical Information Service Un~ted States Department of Commerce

5285 Port Royal Road Springfield, Virginia 22161

NTlS Price Codes Microfiche A01

Printed Copy Pr~ce

Pages Codes

SHREDDER AND INCINERATOR TECHNOLOGY FOR TREATMENT OF COMMERCIAL TRANSURANIC WASTES

K. H. Oma J. H. Westsik, J r . W. A. Ross

October 1985

Prepared f o r t h e U.S. Department o f Energy under Cont rac t DE-AC06-76RLO 1830

Paci f i c Northwest Laboratory Rich land, Washington 99352

SUMMARY AND CONCLIJSIONS

P a c i f i c Northwest Labora to ry (PNL) i s d e f i n i n g s t r a t e g i e s , e v a l u a t i n g

a1 t e r n a t i v e s , and deve lop ing techno1 ogy f o r t rea tment o f r a d i o a c t i v e wastes

generated by commercial nuc l ea r f a c i l i t i e s . Treatment s t r a t e g i e s f o r com-

me rc i a l t r a n s u r a n i c (TRU) wastes have been i d e n t i f i e d and eva lua ted by Ross

e t a l . (1985). Ross concluded t h a t ex tens i ve t rea tment of t h e TRU wastes i s

warranted f rom bo th cos t and waste form c h a r a c t e r i s t i c s cons ide ra t i ons . The

eva lua t i on recommended t h a t wastes c o n t a i n i n g combust ib le m a t e r i a l s be proc-

essed by shredding and i n c i n e r a t i o n and t h a t t h e r e s u l t i n g r e s i d u e be i nco rpo -

r a t e d i n t o a cement waste form. Th i s r e p o r t desc r ibes t h e s e l e c t i o n and

eval u a t i o n of process equipment t o accompl i s h t h e shredding and i n c i n e r a t i o n

o f commercial TRU wastes.

Defense s i t e s have been deve lop ing t rea tment technology f o r TRU wastes f o r

many years and much of t h a t technology can be used f o r some commerc ia l ly gener-

a ted wastes. The defense wastes a re mos t l y contact -handled (CH), however, and

r e s u l t f rom g l ovebox ope ra t i ons w i t h weapons-grade p l utonium. Opera t i on o f a

p o s t u l a t e d commercial r ep rocess ing p l a n t w i l l generate l a r g e q u a n t i t i e s o f TRU

wastes t h a t con ta i n s i g n i f i c a n t amounts of f i s s i o n products. Rad ia t i on l e v e l s

f rom commercial TRU wastes w i l l t h e r e f o r e be h igher than f o r defense wastes.

As such, shredding and i n c i n e r a t i o n equipment f o r t h e commercial a p p l i c a t i o n

w i l l be needed t o process bo th remote-handled (RH) and CH wastes. Technology

devel oped f o r defense waste t r ea tmen t must be eva l ua ted f o r appl i c a t i on t o

remote opera t ions r e q u i r e d f o r t h e RH commercial waste.

Our r ev i ew of c u r r e n t shredder and i n c i n e r a t o r t echno log ies i n d i c a t e d t h a t * t h e e l e c t r i c a l l y d r i ven , low-speed shredder process was p r e f e r r e d f o r TRU

waste p re t rea tment . The rev i ew a l s o i n d i c a t e d t h a t t h e e l e c t r i c a l l y heated

c o n t r o l l e d - a i r , gas-heated c o n t r o l l e d - a i r , and r o t a r y k i l n i n c i n e r a t o r s were

p r e f e r r e d over o the r i n c i n e r a t i o n processes f o r t h e commercial TRlJ a p p l i c a t i o n .

Rased on t h e rev iew of e x i s t i n g technology, an exper imenta l program was under-

taken t o demonstrate t h e p r e f e r r e d technology on s imu la ted commercial TRU

wastes. The o b j e c t i v e s of t h e t e s t s were t o : 1) c o n f i r m t h a t shredders and

i n c i n e r a t o r s can be used t o e f f e c t i v e l y process commerc ia l ly generated TRU

wastes, 2) e v a l u a t e t h e process equipment f o r a d a p t a b i l i t y t o remote r a d i o -

a c t i v e o p e r a t i o n , and 3) s e l e c t a r e f e r e n c e s h r e d d i n g and i n c i n e r a t i o n system

f o r f u r t h e r t e s t i n g and development.

S i m u l a t e d wastes r e p r e s e n t i n g genera l p rocess t r a s h , sample and a n a l y t i c a l

c e l l waste, wood-framed HEPA f i l t e r s and me ta l - framed HEPA f i l t e r s were used

f o r t h e t e s t program. Spec ia l waste mixes c o n s i d e r e d d i f f i c u l t f o r t h e i n c i n -

e r a t o r and shredder processes were a l s o f o r m u l a t e d and t e s t e d . Low-speed

sh redders manufac tured by t h r e e d i f f e r e n t companies were t e s t e d and compared i n

te rms o f waste t h r o u g h p u t , c u t t e r f o r c e , c u t t e r c o n f i g u r a t i o n and f ragment

s i z e . The shredded waste was then used as feed m a t e r i a l f o r t h e i n c i n e r a t i o n

t e s t s .

The e l e c t r i c a l l y hea ted c o n t r o l l e d - a i r , gas-heated c o n t r o l l e d - a i r and

r o t a r y k i l n i n c i n e r a t i o n processes were e v a l u a t e d and compared based on t e c h -

n i c a l m e r i t and system c o s t . The t e c h n i c a l m e r i t o f each p rocess was judged by

a f i v e member panel u s i n g t h e F i g u r e - o f - M e r i t (FOM) process s e l e c t i o n method-

o logy . Performance c r i t e r i a i n t h e areas o f i n c i n e r a t o r p r o d u c t , equipment,

and o p e r a t i o n s were e s t a b l i s h e d and used as a bases f o r t h e FOM compar ison.

The FOM numbers o b t a i n e d were viewed as a measure of t h e o v e r a l l p rocess e f f e c -

t i v e n e s s f o r t h e commerc ia l l y genera ted TRlJ waste a p p l i c a t i o n . C a p i t a l and

o p e r a t i n g c o s t s were e s t i m a t e d f o r t h e sh redd ing , i n c i n e r a t i n g , and o f f - g a s

t r e a t m e n t o p e r a t i o n s . C a p i t a l c o s t s were a l s o e s t i m a t e d f o r t h e p o r t i o n o f a

h o t c e l l f a c i l i t y t h a t would c o n t a i n t h e s e u n i t o p e r a t i o n s . C o s t - e f f e c t i v e n e s s

r a t i o s were c a l c u l a t e d u s i n g t h e cost/FOM r a t i o f o r each i n c i n e r a t i o n process.

These r a t i o s were t h e n used t o s e l e c t a r e f e r e n c e shredder and i n c i n e r a t o r

process f o r f u r t h e r development.

The p r i m a r y c o n c l u s i o n s d e r i v e d from t h i s s t u d y a r e l i s t e d be low:

Shredd ing and i n c i n e r a t i o n t e c h n o l o g y appears e f f e c t i v e f o r c o n v e r t -

i n g s i m u l a t e d commercial TRU wastes t o a noncombus t ib le form.

0 The gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r r e c e i v e d t h e h i g h e s t t e c h -

n i c a l r a n k i n g . On a s c a l e of 1 t o 10, t h e i n c i n e r a t o r had an FOM

number of 7.0. T h i s compares t o an FOM of 6.1 f o r t h e e l e c t r i c a l l y

h e a t e d c o n t r o l l e d - a i r i n c i n e r a t o r and an FOM o f 5.8 f o r t h e r o t a r y

k i l n i n c i n e r a t o r . The major advantages and disadvantages o f each

i n c i n e r a t o r , which came ou t o f t h e FOM eva lua t i on , a r e summarized

be1 ow.

Summary o f I n c i n e r a t o r Advantages and Disadvantages

I n c i n e r a t o r Major Advantages Major D i s a d v a ~ t a g e s

E l e c t r i c a l l y Heated Minimum of f -gas t rea tment Residue con ta i ns h i gh Cont ro l 1 ed-Ai r r e q u i r e d due t o low f l o w f r a c t i o n o f f i x e d carbon

and l o w ash ent ra inment Process r e q u i r e s h i gh

Low ash l r es i due l e v e l o f feed re ta inment i n t h e p r imary p re t rea tment chamber

Residue con ta i ns k l i n k e r s Long equipment l i f e of carbon -r i ch wood

Able t o process wide Remote maintenance i s range of feed m a t e r i a l s judged d i f f i c u l t

Gas-Heated Cont ro l 1 ed-Air

Rotary K i l n

High burnou t o f f i x e d (no major disadvantages carbon i s achieved i d e n t i f i e d )

Process has been we1 1 devel oped f o r TRU and LL waste a p p l i c a t i o n s

Able t o process wide e Low r e t e n t i o n of t r a c e range of feed m a t e r i a l s elements i n r e s i d u e

Minimal feed p re t rea tment High o f f - gas t rea tment i s r e q u i r e d requi rements due t o h i g h

f l o w r a t e and h i g h ash en t ra inment

Remote maintenance i s judged d i f f i c u l t

Shor te r r e f r a c t o r y l i f e a t t r i b u t e s t o increased maintenance and personnel exposure

The p r e s e n t w o r t h c o s t s o f t h e i n c i n e r a t i o n processes f o r a pos tu -

1 a t e d commercia l r e p r o c e s s i n g p l a n t were l o w e s t f o r t h e e l e c t r i c a l l y

h e a t e d and gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r s w i t h c o s t s o f

$16.3 M and $16.9 Y r e s p e c t i v e l y (1985 d o l l a r s ) . Due t o h i g h e r c a p i -

t a l and o p e r a t i n g c o s t s , t h e r o t a r y k i l n process had a p r e s e n t w o r t h

c o s t o f $20.8 V. These c o s t numbers a r e f o r compara t i ve purposes

o n l y and a r e n o t a d j u s t e d f o r f u t u r e i n f l a t i o n .

The recommended process f r o m t h e t h r e e e v a l u a t e d f o r t h e commercial

TRU waste a p p l i c a t i o n i s t h e gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r

w i t h a s i n g l e s t a g e of s h r e d d i n g f o r f e e d p r e t r e a t m e n t . T h i s p rocess

had t h e b e s t c o s t - e f f e c t i v e n e s s r a t i o o f 1.0 ( n o r m a l i z e d ) . The e l e c -

t r i c a l l y h e a t e d c o n t r o l l e r - a i r i n c i n e r a t o r had a r a t i n g o f 1.2 and

t h e r o t a r y k i l n r a t e d a 1.5. It i s i m p o r t a n t t o n o t e t h a t a l l t h r e e

i n c i n e r a t i o n systems t e s t e d were e x c e l l e n t p i e c e s of equipment and

each has i t s advantages f o r d i f f e r e n t i n c i n e r a t i o n a p p l i c a t i o n s . The

s e l e c t i o n of t h e gas-heated c o n t r o l 1 e d - a i r p rocess o n l y app l i e s t o

t h e s p e c i f i c a p p l i c a t i o n t e s t e d and s h o u l d n o t be used t o i n f e r t h a t

t h e process i s s u p e r i o r f o r o t h e r a p p l i c a t i o o s .

Yos t o f t h e s i m u l a t e d wastes were e a s i l y processed by t h e low-speed

sh redders e v a l u a t e d here . The HEPA f i l t e r s proved d i f f i c u l t t o p r o c -

ess, however. Wood-framed HEPA f i l t e r s tended t o r i d e on t h e c u t t e r

wheels and spacers w i t h o u t b e i n g g r i p p e d and shredded. Methods f o r

f e e d i n g wood-framed HEPA f i l t e r s and o t h e r wood-boxed i t e m s t o t h e

shredder need t o be developed. The meta l - f ramed HEPA f i l t e r s and

o t h e r d i f f i c u l t t o sh red i t e m s caused t h e sh redders t o p e r i o d i c a l l y

reach t h e t o r q u e l i m i t and go i n t o an a u t o m a t i c r e v e r s a l c y c l e ; how-

eve r , t h e f i l t e r s were e v e n t u a l l y processed by t h e u n i t s . M e t a l -

f ramed f i l t e r s w i l l r e q u i r e a shredder des igned f o r h i g h c u t t e r t o o t h

f o r c e and/or l a r g e r shredded f ragment s i z e . Some o f t h e d u s t on

l o a d e d HEPA f i l t e r s was r e l e a s e d d u r i n g t h e s h r e d d i n g o p e r a t i o n .

Yethods f o r f i x i n g t h e d u s t on t h e HEPA f i l t e r s s h o u l d be e v a l u a t e d

and t e s t e d .

A l l t h r e e i n c i n e r a t o r s were i n e f f e c t i v e fo r o x i d i z i n g t h e aluminum

metal used as spacers i n HEPA f i l t e r s . Aluminum metal w i l l cause an

undes i r ab le h y d r o l y s i s r e a c t i o n i n t h e cemented waste form.

ACKNOWLEDGMENTS

The a u t h o r s w i s h t o thank H. C. Ru rkho lde r f o r h i s programmat ic gu idance

and rev iew . Several f e l l o w s c i e n t i s t s and t e c h n i c i a n s c o n t r i b u t e d t o t h e

r e s e a r c h e f f o r t . The 1 i s t be1 ow i n c l u d e s i n d i v i d u a l c o n t r i b u t o r s and t h e i r

a reas o f c o n t r i b u t i o n :

D. U. Rerger - FOM e v a l u a t i o n team member

H. J. C a r t m e l l - I n c i n e r a t o r r e s i d u e samp l ing

C. A. Church - S imu la ted TRU waste makeup

R. {I. E l o v i c h - I n c i n e r a t o r r e s i d u e samp l ing

F. T. Hara - Chemical a n a l y s i s

C. L. Matsuzak i - Chemical a n a l y s i s

I?. W. S t rornat t (HEDL) - Carbon a n a l y s i s

R. L. T r e a t - FOM e v a l u a t i o n team member.

We w i s h t o thank t h e f o l l o w i n g persons f r o m o f f s i t e who were i n s t r u m e n t a l

i n t h e s u c c e s s f u l t e s t i n g o f t h e shredder and i n c i n e r a t o r equipment.

W. bl. Coppel - Shredd ing Systems, I n c o r p o r a t e d

M i l s o n v i l l e , Oregon

D. W. Dedo - MAC C o r p o r a t i o n , Sa tu rn Shredder D i v i s i o n

Grand P r a i r i e , Texas

K. J. Johansen - S h i r c o I n f r a r e d Systems I n c o r p o r a t e d

Dal 1 as, Texas

S. R. M i t c h e l - Colorado School o f Mines Research I n s t i t u t e

Gnl den, Col o rado

M. S. Rodney - Shred Pax C o r p o r a t i o n

Wood Dale, I l l i n o i s

F. L. Van Swearingen - Qowman Gray School o f M e d i c i n e o f Wake F o r e s t

U n i v e r s i t y , Winston-Salem, N o r t h C a r o l i n a

The a u t h o r s a r e a l s o g r a t e f u l f o r N. M. Sherer and S. L. Hays who c o o r d i -

n a t e d e d i t i n g and p u b l i s h i n g o f t h i s r e p o r t . Thanks a l s o t o R. 0. G o t t s c h and

h e r s t a f f who per formed t h e word p rocess ing .

ACRONYMS

AGNS

BNFP

C FR

C H

CSMRI

ECP

E PA

GPT

HEDL

HEPA

HLW

INEL

L ANL

LLW

OR NL

PREPP

P VC

PW I

RFP

R H

SAC

SRL

SWIFT

TRlJ

WERF

WIPP

A1 1 i ed Gener a1 Nucl ear Ser v i ces

Barnwel l Nuclear Fuel Pl an t

Code o f Feder a1 Regul a t i ons

contact-hand1 ed

Col orado School o f Mines Research I n s t i t u t e

Environmental Con t ro l Products

Environmental P r o t e c t i o n Agency

general process t r a s h

Hanford Engineer ing Devel opment Labora to ry

h i g h e f f i c i e n c y p a r t i c u l a t e a i r

h i g h 1 eve l waste

Idaho Nat iona l Engineer ing Labora to ry

Los A1 amos Nat i onal Labora to ry

1 ow 1 eve l waste

Oak Ridge Nat iona l Laboratory

process exper imenta l p i 1 o t p l an t

p o l y v i n y l c h l o r i d e

p lu ton ium waste i n c i n e r a t o r

Rock F l a t s P l a n t

remote-hand1 ed

sampl e and a n a l y t i c a l c e l l waste

Savannah R i ve r Labora to ry

suspect waste i n c i n e r a t o r f a c i l i t y t e s t

t r a n s u r a n i c

waste exper imenta l r e d u c t i o n f a c i 1 i t y

Waste Is01 a t i o n P i1 o t P l a n t

CONTENTS

............................................................ INTRODUCTION

COMMERCIAL TRANSURANIC WASTE DEFINITION ................................. .................................... EVALUATION OF TREATMENT TECHNOLOGIES

SHREDDER TECHNOLOGY ................................................ INCINERATOR TECHNOLOGY ..............................................

................................... C o n t r o l l e d - A i r I n c i n e r a t o r s

R o t a r y - K i l n I n c i n e r a t o r s ...................................... Off-Gas Treatment Systems .....................................

.......................................................... SHREDDER TESTS

SHREDDER DESCRIPTIONS .............................................. ....................................................... TEST RESULTS

General Process Trash ......................................... Sample and A n a l y t i c a l C e l l Wastes ............................. Wood-Framed HEPA F i l t e r s ..................................... Metal-Framed HEPA F i l t e r s ..................................... Type 2 Wastes ................................................. Type 3 Wastes ................................................. Fragment S i z e A n a l y s i s ........................................

INCINERATOR TESTS ....................................................... ELECTRICALLY HEATED CONTROLLED-AIR INCINERATOR .....................

......................................... Equipment D e s c r i p t i o n

.............................................. Test D e s c r i p t i o n

.............................. GAS-HEATED CONTROLLED-AIR INCINERATOR

Equipment D e s c r i p t i o n .........................................

.............................................. T e s t D e s c r i p t i o n

............................................ ROTARY KILN INCINERATOR

......................................... Equipment D e s c r i p t i o n

.............................................. T e s t D e s c r i p t i o n

....................................................... TEST RESULTS

....................................... Residue C h a r a c t e r i s t i c s

....................................... Off-Gas C h a r a c t e r i s t i c s

........................................ Trace Element Behav io r

..................................... COMPARISON OF INCINERATOR PROCESSES

INCINERATOR ECONOMICS .............................................. ........................................... FIGURE-OF-MERIT ANALYSIS

COST EFFECTIVENESS ANALYSIS ........................................ ....................................................... DEVELOPMENT NEEUS

REFERENCES ..............................................................

FIGURES

1 Process and Equipment Flow Diagram f o r t h e Noncombustible Waste Forms Opt ion ...................................e.............

...................... 2 Simulated SAC Waste Ready f o r Shredding Tests

......... 3 Cu t t e r Wheel Con f igu ra t ion o f a Typ i ca l Low-Speed Shredder

................. 4 LANL Gas-Heated Cont ro l 1 ed-Ai r I n c i n e r a t i o n System C

...... 5 SRL-PWI E l e c t r i c a l l y - H e a t e d C o n t r o l l e d - A i r I n c i n e r a t o r System

6 INEL-PREPP Rotary K i l n I n c i n e r a t i o n System ......................... ................................. 7 Model 1600 E l e c t r i c D r i v e Shredder

................................ 8 Model AZ-80 E l e c t r i c D r i v e Shredder

............................... 9 Model 36-22 Hyd rau l i c D r i v e Shredder

10 Larger Metal and Wood Pieces o f SAC Waste A f t e r Shredding by Test U n i t 1 ...........................................

11 Wood-Framed HEPA F i l t e r s Processed by Sing1 e Stage Shredding and Dual Stage Shredding ...........................................

12 E l e c t r i c a l l y Heated Cont ro l 1 ed-Ai r Test I n c i n e r a t o r Schematic ..........................................................

................ 13 E l e c t r i c a l l y Heated Cont ro l1 ed-Ai r Test I n c i n e r a t o r

1.4 Gas-Heated C o n t r o l l e d - A i r Test I n c i n e r a t o r Schematic ............... 15 Gas-Heated Con t ro l l ed -A i r Test I n c i n e r a t o r .........................

............................. 16 Ro ta r y -K i l n Test I n c i n e r a t o r Schematic

17 Ro ta r y -K i l n Test I n c i n e r a t o r .......................................

TABLES

............... D e s c r i p t i o n o f t h e Noncombustible Waste Forms Opt ion

Annual Un t rea ted Q u a n t i t y o f Wastes P ro j ec ted From a ..................................... 1500 MTU/yr Reprocessing P l a n t

........................................ Average Waste Composit ions

................................... Si mu1 a ted TRU Waste Composit ions

............................................ I n c i n e r a t o r Feed Makeup

Est imated Rad ionuc l ide Content o f Commercial TRU Wastes ............ ............... Advantages and Disadvantages o f High-Speed Shredders

Advantages and Disadvantages o f H y d r a u l i c and E l e c t r i c ................... Dr i ves f o r Low-Speed Shredders ,.. ............... i

Summary o f U . S . DOE Rad ioac t i ve Waste I n c i n e r a t o r Treatment Systems ..................................................

...................................... Shredder Test U n i t Comparison

.................................... Shredder Performance Comparison

Shredded Waste S ize Ana l ys i s ....................................... I n c i n e r a t o r Opera t ing Data Summary ................................. I n c i n e r a t o r Weight and Volume Reduct ions ...........................

............................... Chemical Ana l ys i s of I n c i n e r a t o r Ash

.................... Residual Carbon Ana l ys i s o f I n c i n e r a t o r Product

........................... I n c i n e r a t o r Test Off-Gas C h a r a c t e r i s t i c s

D i s t r i b u t i o n o f Trace Elements i n t h e I n c i n e r a t o r Product and Off-Gas P a r t i c u l a t e .................................... I n c i n e r a t i o n System Equipment Requirements Used f o r Cost Es t imate ..................................................

............................ Cap i t a l Costs f o r I n c i n e r a t o r Processes

Annual Labor Requirements and Opera t ing Cost Es t imate f o r I n c i n e r a t i o n Processes .........................................

x v i

22 F i gure-of-Meri t Model f o r I n c i n e r a t o r Process Comparison . . . . . . . . . . . 7 1

23 Figure-of-Meri t Resu l t s f o r I n d i v i d u a l Panel Members . . . . . . . . . . . . . . . 73

INTRODUCTION

INTRODUCTION

Commercial t r a n s u r a n i c (TRU) wastes a re be ing s t u d i e d f o r p rocess ing p r i o r

t o d isposa l i n a deep geo log i c r e p o s i t o r y . Shredding and i n c i n e r a t i o n f o l l o w e d

by cementat ion o f t h e ash and r e s i d u e has been i d e n t i f i e d as t h e most e f f e c -

t i v e s t r a t e g y f o r t h e t rea tment o f combust ib le TRU wastes generated d u r i n g t h e

reprocess ing o f commercial spent f u e l (Ross e t a1 . 1985). Th is t rea tment

s t r a t e g y was se lec ted from s i x t rea tment op t i ons r ang ing f rom "no t r ea tmen t " t o

"process t o noncombust ih le waste forms." Table 1 shows t h e recommended t r e a t -

ment processes f o r expected waste types and F igu re 1 shows a schematic o f t h e

recommended t rea tment s t r a tegy . The shreddi n g l i n c i n e r a t i on/cementat i on method

produces a noncombust ib le cemented waste form. I n c i n e r a t o r ash has been e f f e c -

t i v e l y produced and i nco rpo ra ted i n t o cemented waste forms d u r i n g LLW s t u d i e s

(T rea t e t a l . 1983, Westsik 1984). Y e t a l l i c wastes i n c l u d i n g f u e l h u l l s and

f a i 1 ed equipment would be consol i dated by me1 t i n g (Montgomery 1983). Cost sav-

i n g s f o r these t rea tments r e s u l t f rom t h e volume r e d u c t i o n achieved and t h e

r e s u l t i n g lower t r a n s p o r t a t i o n and d isposa l costs. The Nuclear Waste Treatment

Program a t t h e P a c i f i c Northwest Laboratory has t h e r e s p o n s i b i l i t y f o r

deve lop ing these processes f o r t h e U.S. Department o f Energy (DOE). I f reproc -

ess i ng of commercial spent fue l becomes a r e a l i t y , t h e waste t rea tment tech-

no log ies w i l l be ready f o r use.

TABLE 1. D e s c r i p t i o n of t h e Noncombustible Waste Forms Opt ion (Ross e t a1 . 1985).

Waste Type Treatment

Hardware and H u l l s S ize reduce as r e q u i r e d and me1 t i n remote-handled batches i n meta l m e l t e r .

F a i 1 ed Equipment S ize reduce as r e q u i r e d and m e l t i n e i t h e r c o n t a c t - handled o r remote-handled batches i n meta l m e l t e r .

F i 1 t e r s Shred i n e i t h e r contact -handled o r remote-handled shredder and i n c i n e r a t e . I n c o r p o r a t e ash, media, concen t ra ted scrub s o l u t i o n and metal s i n t o cement waste form using remote-hand1 ed in-drum mixer.

F l u o r i n a t o r Sol i d s Mix w i t h s u f f i c i e n t cement i n in-drum mixer t o form LLW.

GPT and SAC Wastes T r e a t noncombust ib les as f a i l e d equipment when segrega- t i o n i s poss ib le . Shred and i n c i n e r a t e a l l combust ib les. I n c o r p o r a t e ash and scrubber s o l u t i o n i n t o cement waste form.

FIGURE 1. Process and Equipment Flow Diagram f o r t h e Noncombustible Waste Forms Opt ion (Qoss e t a l . 1985)

General Process Trash (GPT), Sample and A n a l y t i c a l C e l l Waste (SAC), and

HEPA f i l t e r s a re TRU wastes t h a t c o n t a i n combust ib le m a t e r i a l . These wastes

To RH Surge Storage as Required

cans's' of RH nulls and Hardware RH Lid Removal, Sort Falled Equipment by Size and Type Filters

a re p resen t i n bo th con tac t -hand led (CH) and remote-handled (RH) forms. As a

r e s u l t , much of t h e equipment r e q u i r e d i n t h e t rea tment t h e TRU wastes must be

designed t o opera te remote ly . The TRU waste s t r a t e g y document (Ross e t a l .

1985) recommends t h a t these wastes be s i z e reduced i n a CH and RH shredder and

t h a t t h e waste be i n c i n e r a t e d i n a RH i n c i n e r a t o r .

Commercial shredders and U.S. DOE-developed i n c i n e r a t o r s were rev iewed and

eva lua ted w i t h r espec t t o t h e i r a b i l i t y t o process commerc ia l ly generated TRU

RH Lid Sealtng. Inspect. Assay, Certify

and Labeling

RH or CH Batches

of Metals RH Batch Melter 4

Fluorinator Solids

wastes. Based on our rev iew, s imu la ted TRU wastes were processed th rough can-

d i d a t e shredders and i n c i n e r a t o r s t o determine t h e process a p p l i c a b i l i t y f o r

-%+

Slze Reduced Metals

GPT-SAC Waste

e f f e c t i v e l y t r e a t i n g t h e waste. Th is r e p o r t con ta i ns t h e r e s u l t s o f t h e

i n i t i a l rev iew, as w e l l as a d e s c r i p t i o n o f t h e shredder and i n c i n e r a t o r t e s t s .

Fluorlnator Sollds

Cellulose, Plastlc. CH or RH Batches 1 CH Rubber. Filters. of Combustibles Large Metal Items and F~lters

RH Size RH Batch RH In-Can RH Reduction A Inonerator * Cementation

A Off-Gas

I n c i n e r a t o r systems a r e compared u s i n g system economics and a F i gu re -o f -Me r i t

and Labeling Storage as Required

4

CH 2 p

Canda' of CH

Faded Equipment CH Lld Removal, Sort Filters by Slze and Type GPT

CH Lid Sealing. To CH Surge Inspect. Assay, Certify

CH Size Off-Gas Reduction Scrubber

S~ze Reduced Scrubber Metals Solution

Y Scrubber

Solution

Scrubber Solution

e v a l u a t i o n o f p r o d u c t , equipment, and o p e r a t i o n c o n s i d e r a t i o n s . Based on t h i s

compar ison, a r e f e r e n c e process i s s e l e c t e d and development needs and recom-

mendat ions a r e i d e n t i f i e d .

COMMERCIAL TRANSURANIC WASTE DEFINITION

COMMERCIAL TRANSURANIC WASTE DEFINITION

Q u a n t i t i e s and composi t ions o f TRU wastes f rom a commercial rep rocess ing

p l a n t have been es t imated by Oarr (1983) f o r t h e Rarnwel l Nuclear Fuels P l a n t

(BNFP) and a re used i n t h i s r e p o r t as t h e bas i s f o r e v a l u a t i o n o f waste proc-

ess i ng equipment. Inc luded i n t h e wastes a re spent f u e l h u l l s and fue l

assembly hardware, general process t r a s h (GPT), used HEPA f i l t e r s , f a i l e d

equipment , sarnpl e and a n a l y t i c a l c e l l wastes (SAC), and f l u o r i n a t o r so l i ds .

O f these, t h e GPT, SAC, and HEPA f i l t e r s would r e q u i r e t rea tment v i a shredding

and/or i n c i n e r a t i o n . F a i l e d equipment may a1 so r e q u i r e s i z e r e d u c t i o n v i a

shredding.

Table 2 1 i s t s t h e annual volumes and weights o f GPT, SAC, f i l t e r , and

f a i l e d equipment wastes a n t i c i p a t e d t o be generated a t a 1500 MTU/yr commercial

r ep rocess ing p l a n t (Ross e t a l . 1985). Approx imate ly 75 wt% o f t h e waste i s

c o n t a c t handled and t h e remainder r e q u i r e s remote h a n d l i n g ( r a d i a t i o n dose

>ZOO mR/hr a t t h e su r f ace of t h e waste con ta i ne r ) . The waste con ta i ne rs a r e

expected t o be r e c y c l e d and w i l l n o t be shredded w i t h t h e waste.

TABLE 2. Annual Un t rea ted Q a t i t y o f Wastes P ro j ec ted From a 1500 MTU/yr Reprocessing P lan t Yay

Con ta ine r Net W t , Net Yo1 , P a c k a g ~ d Capac i t y , Number o f

Waste Type CHIRH k g m Vo1 , m L ( g a l ) C o n t a i n e r s

F i l t e r s CH 16,380 117.6 347.9 208 ( 5 5 ) 50 303 ( 8 0 ) 1,114

GPT & SAC C H 11,340 104 112.3 208 (55 ) 540 Waste

RH 7,080 70.3 125.2 208 ( 5 5 ) 198 2,270 (6130) 37

F a i 1 ed C H 17,600 19.8 23.6 208 (55 ) 7 0 Equipment 2,270 (600) 4

( a ) Based on B a r n w e l l Nuc lea r Fuel P l a n t (Ross e t a l . 1985).

Table 3 shows t h e es t imated composi t ions f o r t h e TRU waste streams con-

s i de red here. The GPT and SAC wastes con ta i n bo th combus t ib le and noncom-

b u s t i b l e f r a c t i o n s , which would be segregated a t t h e p o i n t o f o r i g i n o n l y f o r

t h e GPT. The HEPA f i l t e r s have e i t h e r wooden or m e t a l l i c frames, o rgan i c

adhesives and gasket m a t e r i a l s , noncombust ib le f i l t e r media, and a1 urninurn

spacers. F a i l e d equipment c o n s i s t s p r i m a r i l y o f s t a i n l e s s s t e e l and may be

shredded p r i o r t o volume r e d u c t i o n i n a metal me l te r .

Nonrad ioac t i ve , s imu la ted TRU wastes were prepared f o r p rocess ing by t h e

shredders and i n c i n e r a t o r s eva lua ted i n t h i s study. Table 4 l i s t s t h e nominal

composi t ion of t h ? f i v e s imu la ted wastes as fo rmu la ted f o r t h e shredder t e s t s .

An example o f t h e SAC waste which was prepared i s shown i n F i g u r e 2. Type 2

TARLE 3. Average Waste Composit ions

Waste Type Reference C o n s t i t u e n t

F i 1 t e r s U.S. DOE (1979) Meta l

Glass media

GPT and SAC Darr (1983) Combust ib le P l a s t i c and r u b b e r ( b ) C l o t h and wood Paper

Composit ion, W t %

5 2 8

40 - 100

Meta l 18 Glass 2 -

100

U.S. DOE Combusti b l e PaperIRags PVC Neoprene Po lye thy lene La tex Wood

Noncombustible ( n o da ta g iven)

(a) Combust ib le g lues and adhesives may c o n s t i t u t e up t o one t h i r d o f t h e we igh t of t h e f i l t e r s .

( b ) PVC i s 30 wt% o f t h e p l a s t i c and rubber (AGNS 1978, p. E-2). ( c ) Meta ls i n c l u d e s t a i n l e s s s t e e l , carbon s t e e l , copper, and aluminum

i n t h e fo rm of v a r i o u s s t r u c t u r a l shapes, p ipe , t o o l s , w i r e rope, p l a t e , e tc .

TABLE 4. S imulated TRU Waste Composi t ions

Waste Component

~ o m b u s t i b l e s : ( ~ ) Paper Rags Wood Neoprene L a t e x Po lyu re thane P o l y e t h y l e n e P VC

SUBTOTAL

Waste Composit ion, wt% HEP

GPT SAC Type 2 Type 3

Noncombusti b l e s : ( c ) Carbon s t e e l - 32.1 - 33.6 38.2 S t a i n l e s s s t e e l - 11.8 54.0 10.0 17.0 Glass

SUBTOTAL

Composite: E l e c t r i c motors - - - 7.3 20.0 I n s u l a t e d w i r e - - - 2.9 9.9

SUBTOTAL 0 0 0 10.2 29.9

TOTAL 100.0 100.0 100.0 100.0 100.0

( a ) Composit ion shown i s f o r 0.61 x 0.61 x 0.30-111 meta l - f ramed HEPA f i l t e r s . Wood-framed HEPA f i l t e r s were a1 so used; however, t h e i r compos i t i ons were n o t determined.

(b ) Paper added as magazines, computer paper, books, and sheetgoods. Rags i n c l uded c l o t h i n g and canvas. Neoprene added as sheets, 1 eaded g loves and r e g u l a r gloves. L a t e x added as gloves. P o l y e t h y l e n e added as sheet, bags, t u b i n g , and b o t t l e s . PVC added as 3- and 4 - inch p ipe.

( c ) Meta ls added as cab le , 1 t o 5 i n c h p ipe , and 114- and 112- inch bar and p l a t e . Glass added as m isce l laneous labware and l a r g e b l o c k s o f v i t r i - f i e d s o i l .

waste i s cons idered a d i f f i c u l t waste f o r an i n c i n e r a t o r t o process because i t

con ta i ns a 1 arge f r a c t i o n o f noncombusti b les , PVC, and some con~posi t e m a t e r i a l s

t y p i c a l o f f a i l e d equipment. The Type 3 waste i s cons idered a d i f f i c u l t waste

f o r a shredder t o process because i t con ta i ns a h i gh l o a d i n g o f meta ls and

e l e c t r i c motors. The f i v e waste types were shredded separa te ly . Type 1 waste

was prepared from a m i x t u r e o f shredded GPT, SAC, and HEPA f i l t e r wastes as

shown i n Table 5. Th is waste has a low noncombust ib le f r a c t i o n (-33%) and i s

expected t o be an average TRU feed m a t e r i a l t o t h e i n c i n e r a t o r . The same

Type 1 waste composi t ion was used i n a l l i n c i n e r a t o r t e s t s and a d i f f e r e n t

Type 2 composi t ion (Table 5) was t r i e d a t each o f t h e i n c i n e r a t o r f a c i l i t i e s .

FIGURE 2. Simulated SAC Waste Ready f o r Shredding Tests

TABLE 5. I n c i n e r a t o r Feed Makeup

Waste Const i tuent

GPT

SAC

Wood HEPA

Metal HEPA

Type 2 Trace ~ i x t u r e ( ~ )

Make up Compo - Type 1 Type 2A

2 5 - 2 3 - 4 3 20

9 80 - -

0.58 -

s i t i o n , wt%

Type 28 Type 2C

4 - a -

50 3 5

30 15

8 5 0 - -

( a ) Composition o f t r a c e mixture given i n Table 6.

P r i o r t o t h e i n c i n e r a t i o n t e s t s , n o n r a d i o a c t i v e t r a c e r s (Ce, Cs, Mo and

S r ) were added t o t h e shredded Type 1 wastes t o p r o v i d e i n f o r m a t i o n on t h e

v o l a t i 1 i t y behav io r o f r a d i onuc l i d e s d u r i n g i n c i n e r a t i o n t e s t s . Tab1 e 6 shows

t h e w e i g h t f r a c t i o n f o r s i g n i f i c a n t e lements t h a t c o u l d be p r e s e n t i n t h e TRU

wastes f r o m a commercial r e p r o c e s s i n g f a c i l i t y . These c o n c e n t r a t i o n s a r e t o o

l o w t o be d e t e c t a b l e u s i n g reasonab le chemical a n a l y s i s techn iques ; t h e r e f o r e

t h e t r a c e r s were added i n t h e l a r g e r c o n c e n t r a t i o n s shown i n t h e l a s t column of

Tab le 6.

TABLE 6. E s t i m a t e d R a d i o n u c l i d e Content of Commercial TRU Wastes

GPTISAC, g / kg Waste F i l t e r s , g / kg Waste U.S. DOE U.S. DOE Type 1 T race , (a )

R a d i o n u c l i d e D a r r (1983 ) (1979 ) D a r r (1983 ) (1979 ) , g / k g Waste

C s 7 x l o q 4 1 x 9 l o - 2 9 1 0 ~ ~ 0.32

Mo 6 x 2 x 7 l o - ? 1 l o 4 0.23

S r 2 l o - 4 4 l o - 6 2 l o - 2 3 l ov4 0.39

Z r 6 x 2 x 8 x lo- ' 1 x -- Rare E a r t h s 1 x 5 x 1.7 4 1 0 ' ~ 0.54 as Ce

A c t i n i d e s + U 18 3 . 5 ~ l o - 2 35 1.4 --

Waste Genera- t i o n Rate 12 kg/MTU 196 kg/MTHM 13 kg/MTU 22 kg/MTHM

( a ) The t r a c e r s were added as an aqueous s l u r r y o f S r (N03 )2 , Moo3, CsN03, and a r a r e e a r t h n i t r a t e m i x t u r e c o n s i s t i n g p r i m a r i l y o f cer ium.

EVALUATION OF TREATMENT TECHNOLOGIES

EVALUATION OF TREATMENT TECHNOLOGIES

A l i t e r a t u r e search and s i t e v i s i t s were conducted t o i d e n t i f y c u r r e n t

genera t ion shredder and i n c i n e r a t o r techno log ies . I n c i n e r a t i o n concepts have

been eva lua ted e x t e n s i v e l y a t DOE s i t e s s i nce t h e e a r l y t o mid 1970s. On t h e

o ther hand, shredding i s j u s t beg inn ing t o see a p p l i c a t i o n a t DOE s i t e s as an

i n c i n e r a t o r feed p re t rea tment technology. I n t h i s sec t i on , shredders and

i n c i n e r a t o r s a re rev iewed and eva lua ted w i t h r espec t t o t h e i r a p p l i c a b i l i t y t o

commerc ia l ly generated TRU wastes. The t e s t i n g program descr ibed i n subsequent

sec t i ons was based on t h i s p r e l i m i n a r y e v a l u a t i o n and sc reen ing o f t rea tment

techno1 og i es .

SHREDDER TECHNOLOGY

The recommended t r ea tmen t s t r a t e g y (Ross e t a l . 1985) c a l l s f o r shredding

of GPT, SAC, and HEPA f i l t e r s as p re t rea tment f o r t h e i n c i n e r a t i o n step.

Shredding reduces t h e s i ze , i nc reases t h e su r f ace area, and improves honio-

gene i t y of t h e i n c i n e r a t o r feed m a t e r i a l r e s u l t i n g i n a s u i t a b l e feed s tock

f o r t h e i n c i n e r a t o r . By shredding t h e wastes, some i n c i n e r a t o r s a re a b l e t o

process a h igher f r a c t i o n of noncombustibles. Th is i s necessary when i t

becomes d i f f i c u l t t o separate combust ib les f rom noncombustibles, which i s t h e

case w i t h HEPA f i l t e r s . I n a d d i t i o n t o i n c i n e r a t o r feed pret reatment , t h e

metal shredder w i l l be used t o s i z e reduce some CH f a i l e d equipment f o r t h e

batch metal me1 t e r process.

Shredder technology can be d i v i d e d i n t o low-speed and high-speed ca te -

gor ies . High-speed shredders such as hammer m i 11 s, g r i nde rs , and f l a i l m i 11 s

(I have been eva lua ted by Darnel 1 and A1 d r i c h (1983) of EGRG Idaho f o r i n c i n e r a t o r

feed p re t rea tment . These u n i t s a c t t o p u l v e r i z e t h e waste t o a s i z e f a r

sma l le r than i s r e q u i r e d fo r i n c i n e r a t o r feed. Whi le t h i s i s an advantage f o r

some a p p l i c a t i o n s , i t i s no t a p a r t i c u l a r advantage f o r TRIJ waste. The advan-

tages and disadvantages of h igh-speed shredders a re l i s t e d i n Table 7. Because

t h e one advantage, sma l l e r p a r t i c l e s i ze , i s n o t a s i g n i f i c a n t b e n e f i t f o r t h e

TRU waste a p p l i c a t i o n , h igh-speed shredders were e l i m i n a t e d f rom f u r t h e r con-

s i d e r a t i o n f o r commerc ia l ly generated TRU wastes. Th i s was a l s o t h e conc lus ion d reached by Darnel 1 and A1 d r i c h concern ing INEL TRU wastes.

TABLE 7. Advantages and Disadvantages o f High-Speed Shredders

Advantages Disadvantages

a Waste i s reduced t o a much Equipment r e q u i r e s e x t e n s i v e maintenance. s m a l l e r s i z e t h a n p o s s i b l e w i t h low-speed shredders. a Yore r e s p i r a b l e f i n e s a r e generated than

w i t h 1 ow-speed shredding.

Power requ i rements a r e c o n s i d e r a b l y h i g h e r than f o r low-speed shredder o f e q u i v a l e n t capac i t y .

a Repor ted ly a r e s u s c e p t i b l e t o dus t exp l osions.

a High c a p i t a l cos t .

Occupy l a r g e r volume than low-speed shredder w i t h eqrli v a l e n t capac i t y .

Al though t h e low-speed shredder i s a r e l a t i v e newcomer t o t h e market,

severa l government l a b o r a t o r i e s ( i n c l u d i n g INEL and SRL) have s e l e c t e d them f o r

p r e t r e a t i n g i n c i n e r a t o r feed (Darnel 1 and A1 d r i c h 1983, Char1 eswor th and

P31cCampbell 1985). Shredding i s ach ieved by two c o u n t e r - r o t a t i n g s h a f t s w i t h

c u t t e r wheels and spacers (see F igu re 3). One s h a f t t y p i c a l l y r o t a t e s f a s t e r

than t h e o the r , which improves t h e shredding e f f i c i e n c y , p ro longs t h e c u t t e r

wheel l i f e by d i s t r i b u t i n g t h e wear, and improves t h e tendency of t h e c u t t e r s

t o s e l f c lean. The c u t t e r wheels con ta i n one o r more t e e t h ( o f t e n r e f e r r e d t o

as hooks o r kn i ves ) t h a t in termesh w i t h t h e c u t t e r wheels on t h e ad jacen t s h a f t

(as shown i n F i g u r e 3). Waste i s drawn down th rough t h e wheels and i s t o r n

apar t . A comb i s used on t h e n o n c u t t i n g s i d e of t h e c u t t e r s h a f t s t o p reven t

waste f rom f a l l i n g th rough t h e vo ids between t h e c u t t e r wheels. Low-speed

shredders a re designed t o a u t o m a t i c a l l y r eve rse t h e c u t t e r s h a f t ' s normal

r o t a t i o n when an unshreddable o b s t r u c t i o n i s encountered, then r e v e r s e again

and resume shredding. The shredded p a r t i c l e s i z e can be reduced by adding more

t e e t h t o each c u t t e r wheel, by r educ ing t h e wheel w id th , or by p e r i o d i c a l l y

r e v e r s i n g and then resuming c u t t e r r o t a t i o n .

Manufacturers o f 1 ow-speed shredders use e i t h e r an e l e c t r i c o r hydrau l i c

d r i v e motor t o t u r n t h e c u t t e r sha f ts . Da rne l l and A l d r i c h (1983) determined

FIGURE 3. Cu t t e r Wheel Conf igura t ion o f a Typ ica l Low-Speed Shredder

t h a t t h e e l e c t r i c t ype of d r i v e system was supe r i o r f o r r a d i o a c t i v e waste

app l i ca t i ons . Advantages and disadvantages f o r each t y p e o f d r i v e a r e l i s t e d

i n Table 8. Consider ing these advantages and disadvantages, e l e c t r i c a l l y

powered shredders a re p r e f e r r e d f o r TRU waste app l i ca t i ons . Higher maintenance

assoc ia ted w i t h e l e c t r i c d r i v e motor r e v e r s a l s can be obv ia ted by reduc ing t h e • amperage l i m i t a t which r e v e r s a l s occur o r by o v e r s i z i n g t h e u n i t so t h a t

r e v e r s a l s w i l l n o t occur d u r i n g normal shredding opera t ions .

Slow-speed shredding technology i s developed t o t he p o i n t t h a t a p p l i c a t i o n

t o TRU wastes would be r e l a t i v e l y s t r a i g h t forward. System capac i t y and p ro -

duc t p a r t i c l e s i z e should be v e r i f i e d w i t h s imu la ted wastes. A1 so, considera-

t i o n should be g iven t o remote i n s t a l l a t i o n , remote feeding o f wastes, and

removal o f nonshreddabl e i tems.

TABLE 8. Advantages and Disadvantages o f H y d r a u l i c and E l e c t r i c D r i ves f o r Low-Speed Shredders

F ina l D r i ve Motor lvantages Disadvantages

tau1 i c Hydrau l ic motors have b e t t e r shock 1 oading p r o t e c t i o n i n t h e event o f encounter ing an unshreddabl e i tem.

Reversals are fas ter (-3 sec)

The power u n i t can be separa- t e d a subs tan t i a l d is tance f rom t h e shredder.

O i l s p i l l s and leaks are common w i t h h y d r a u l i c un i t s .

Power u n i t s a re bu l ky and requ i re considerable space.

A more educated maintenance fo rce i s required.

Hydrau l ic hoses between shred- der subsystems i s undesira- b le , p a r t i c u l a r l y i n remote appl i c a t i ons

Up t o one t h i r d more horse- power i s requ i red due t o energy losses t o t h e hyd rau l i c d r ive .

The presence o f hydraul 1 c o i l may add a f i r e hazard t o a remotely operated system (a1 though nonflammable o i l s are avai 1 abl e l .

E l e c t r i c Power u n i t s a re much smal ler Reversal t imes a re slower and r e q u i r e l e s s horsepower. (-10 sec). U n i t must pause

upon con tac t i ng a nonshred- Less maintenance i s requ i red dable i t em t o permi t t h e

due t o t h e absence of motor t o come t o a complete h y d r a u l i c pumps and motors. stop before revers ing.

Small t o medium s ized e l ec- Reversals prov ide more wear t r i c shredders are t y p i c a l l y and tea r on an e l e c t r i c motor l e s s expensive than equiv- than on hyd rau l i c motors. a l e n t hyd rau l i c un i t s .

INCINERATOR TECHNOLOGY

The U.S. Department o f Energy (DOE) has sponsored research, development,

and demonstrat ion of r a d i o a c t i v e waste i n c i n e r a t i o n (Perk ins 1976, Bord iun and

Taboas 1980, Z i e g l e r 1982). The pub l i shed work f rom these s t u d i e s p rov ides an a

e x c e l l e n t da ta base f o r comparing and sc reen ing i n c i n e r a t o r systems f o r use

w i t h TRU combus t ib le wastes f rom commercial reprocess ing and f u e l f a b r i c a t i o n .

Table 9 p resen ts a summary of U.S. DOE r a d i o a c t i v e waste i n c i n e r a t o r s . The

i n c i n e r a t o r t r ea tmen t systems i n c l u d e a c i d d i ges t i on , c o n t r o l l e d a i r , cyc lone,

f l u i d i z e d bed, r o t a r y k i l n , s ing1 e hear th , and s l agging p y r o l y s i s .

TABLE 9. Summary o f U.S. DOE R a d i o a c t i v e Waste I n c i n e r a t o r Treatment Systems

I n c i n e r a t o r DOE Feed Type S i t e Capacity In tended Appl i c a t i o n Status

Acid HEDL 10 kg/h Pu recovery from TRU Di gest i on cBmbusti b l es.

Contro l 1 ed LANL 45 kg/h Volume reduc t ion o f TRU A i r combustibles (LL & Haz.

s o l i d and l i q u i d wastes a1 so tested, 1 icensed f o r PCB).

C o n t r o l l e d SRL- SWIFT(^) 180 k g l h Vol. reduc t ion of sus- Ai r pec t LL wastes, (1 mR/h

surface.

40 g a l l h Purex so lven t

C o n t r o l l e d SRL-PWI(~) 10 k g l h Vol. r e d u c t i o n oe so l i d Ai r alpha waste, (10 nCi1g.

C o n t r o l l e d INEL-WERF(C) 180 k g l h Vol. r e d u c t i o n of a l l Ai r INEL LLW, (10 nCi1g.

Cycl one Mound 35 k g l h Vol. reduc t ion of d r y ( f o r one TRU waste. Mod i f ied f o r s t a t i o n ) 1 j q u i d feed.

ii

F l u i d i zed RFP 82 kg lh Pu recovery from TRU Bed combustibles.

Rotary RFP 40 k g l h Vol. r e d u c t i o n and Pu Ki 1 n recovery f o r s o l i d and

l i q u i d TRU waste o f l ow t o h igh a c t i v i t y .

Rotary INEL-PREPP(~) 230 kg/h Permit c e r t i f i c a t i o n o f K i l n r e t r i e v a b l e TRU waste

f o r WIPP (h igh l o a d i n g o f noncombusti b l es present).

S ing le RFP 55 k g l h Vol. reduc t ion o f so l i d Hearth and l i q u i d t r a c e a c t i v i t y

TRU.

Slagging INEL 100 k g l h Permit c e r t i f i c a t i o n o f P y r o l y s i s b u r i e d and s to red TRU

waste a t INEL f o r WIPP d isposal .

(a) SWIFT - Suspect Waste I n c i n e r a t o r F a c i l i t y Test. ( b ) PWI - Plutonium Waste I n c i n e r a t o r . ( c ) WERF - Waste Experimental Reduction F a c i l i t y . (d ) PREPP - Process Experimental P i l o t Plant.

Decommissioned

Test ing w i t h new1 y generated TRU.

FY-85 h o t operat ion.

FY-85 c o l d t e s t i n g .

F u l l y operable by mid FY-85.

Used f o r LLW i n c i n - e ra t ion .

Operat ional on actual waste.

Decommi s s i oned

Product ion u n i t i n s t a l l a t i o n i n progress (FY-86 c o l d t e s t i n g ) .

Decommissioned

Canceled

Of t h e s e i n c i n e r a t o r s , t h e a c i d d i g e s t i o n , cyc lone , f l u i d i z e d bed, s i n g l e

h e a r t h , and s l a g g i n g p y r o l y s i s systems were e l i m i n a t e d f rom f u r t h e r cons ide ra -

t i o n w i t h o u t a d d i t i o n a l t e s t i n g and e v a l u a t i o n . The bases f o r el i r n i n a t i o n a r e

as f o l l o w s :

A c i d O i g e s t i n n - The presence of noncomhust ib les , as wou ld he t h e

case w i t h compos i tes such as shredded HEPA f i l t e r s , g r e a t l y

c o m p l i c a t e s o p e r a t i o n . The r e c o v e r y o f Pu f r o q t h e wastes, a l t h o u g h

a ma jo r advantage o f t h i s system, i s n o t a p p l i c a b l e t o commercial TRU

wastes. rVoncombustible s o l i d s accumula te i n t h e d i g e s t i o n chamber

and must be removed p e r i o d i c a l l y . C l a s s i f i c a t i o n t o s e p a r a t e t h e

noncombus t ih les p r i o r t o p r o c e s s i n g i s n o t p r o b a b l e s i n c e HEPA f i l t e r

adhes ives a r e a f f i x e d t o t h e f rames and t o t h e media. Also, t h e a c i d

r e c o v e r y sys tem u t i l i z e s a c e n t r i f u g e , wh ich i s a h i g h main tenance

i tem. Th is , w i t h t h e c o n c e n t r a t e d s u l f u r i c and n i t r i c a c i d s , wou ld

make remote o p e r a t i o n d i f f i c u l t . The process has been o p e r a t e d on a

p i l o t s c a l e ; however, no p r o d u c t i o n - s c a l e t e s t i n g has been per formed.

The R&D and e n g i n e e r i n g s t u d y r e q u i r e m e n t s r e q u i r e d t o adap t t h e a c i d

d i g e s t i o n t e c h n o l o g y a r e c o n s i d e r e d above average compared t o t h e

o t h e r processes.

Cyclone I n c i n e r a t i o n - T h i s u n i t was des igned as a s i m p l e and r e l i a -

b l e b a t c h i n c i n e r a t o r f o r volume r e d u c t i o n of CY TRU wastes ( K l i n g l e r

1981). The b e n e f i t s d i sappear when t h e u n i t i s c o n s i d e r e d f o r RH

wastes such as HEPA f i l t e r s . High i n l e t a i r f l o w s r e q u i r e d t o c r e a t e

t h e c y c l o n e a c t i o n r e s u l t s i n h i g h ash c a r r y o v e r t o t h e o f f - g a s

system. The c o m p l e x i t y of t h e secondary waste t r e a t m e n t processes i 5

i n c r e a s e d due t o t h e ash c a r r y o v e r . The ash i s removed f r o m s c r u b

1 i q u i d by a v e r t i c a l l e a f f i l t e r . Remote o p e r a t i o n and main tenance

o f t h e l e a f f i l t e r and a drum c h a n g e o ~ l t system would be d i f f i c u l t .

m F l u i d Bed - The presence of noncomhus t ib les i n c r e a s e s t h e c o m p l e x i t y

o f t h e f l u i d bed i n c i n e r a t o r o p e r a t i o n . Noncombust ib le s o l i d s , such

as m e t a l s , and g l a s s , accumula te i n t h e bed media and must he r o u -

t i n e l y removed. T h i s i n c r e a s e s t h e c o m p l e x i t y o f t h e secondary waste

t r e a t m e n t processes and makes remote o p e r a t i o n d i f f i c u l t . For t h i s

reason, t h e f l u i d bed i s n o t w e l l s u i t e d f o r t h e a p p l i c a t i o n and can

be e l i r n ina ted as an i n i t i a l p r o c e s s i n g o p t i o n .

S i n g l e Hear th - These i n c i n e r a t o r s a r e t y p i c a l l y l a r g e u n i t s used f o r

b u r n i n g sewage s l udge. A1 though t h e y a r e common con imerc ia l l y , no

s i n g l e h e a r t h u n i t has been demonst ra ted on a p r o d u c t i o n s c a l e w i t h

r a d i o a c t i v e wastes. The RRD and e n g i n e e r i n g s t u d y r e q u i r e m e n t s

necessary f o r development o f t h i s i n c i n e r a t o r p laces t h e s i n g l e

hea r t h i n c i n e r a t o r a t a d isadvantage t o t h e o ther U.S. DOE u n i t s . A

r a b b l e arm on a r o t a t i n g s h a f t i s used f o r m i x i ng t h e wastes d u r i n g

t h e h igh- temperature corr~bustion c y c l e and f o r removal o f t h e ash

d u r i n g t h e ash d ischarge cyc le . Th i s makes t h e u n i t more d i f f i c u l t

t o remote ly ma in ta i n than o the r u n i t s such as t h e c o n t r o l l e d a i r o r

r o t a r y k i l n i n c i n e r a t o r s .

S lagg ing P y r o l y s i s - Th i s u n i t i s designed t o produce a c a s t s l a g

waste product r a t h e r than ash. I n order t o produce a mol ten s lag,

c e r t a i n p o r t i o n s o f t h e i n c i n e r a t o r must be designed t o opera te a t

1500°C as opposed t o t h e 1000° t o 1200°C temperatures o f more con-

ven t i ona l i n c i n e r a t o r s . Th i s i n t r oduces a d d i t i o n a l comp lex i t i e s t o

t h e design, inc reases t h e system cost , and would l i k e l y reduce t h e

r e 1 i a b i l i t y of a remote ly operated system. The s l agg ing p y r o l y s i s

process was no t g iven se r i ous cons ide ra t i on i n t h e TRU S t ra tegy Study

(Ross e t a1 . 1985) because of p rev ious unreso l ved problems (Ta i t

1983).

The c o n t r o l l e d - a i r and r o t a r y - k i l n i n c i n e r a t o r s a re be ing developed f o r

bo th TRU and LLW a p p l i c a t i o n s and deserve f u r t h e r cons ide ra t i on f o r commercial

TRU waste a p p l i c a t i o n s . A s tudy a t INEL (Hedahl 1982a) concluded t h a t t h e

c o n t r o l l e d - a i r and r o t a r y - k i l n i n c i n e r a t o r s were p r e f e r r e d f o r i n c i n e r a t i o n o f

INEL combust ib le TRU waste. Proof of p r i n c i p a l t e s t s were then conducted t o

determine which i n c i n e r a t o r was bes t s u i t e d f o r p rocess ing t h e INEL wastes.

I n c i n e r a t o r feed f o r t h e t e s t s con ta ined between 40 and 90% noncombust ib les

(based on p r o j e c t e d INEL waste composi t ions) . For t h i s appl i c a t i o n , t h e r o t a r y

k i l n was se lec ted f o r f u r t h e r development. A d d i t i o n a l eng inee r i ng t e s t s and

eva lua t i ons were then conducted on t h e r o t a r y k i l n and i t s o f f - gas system

be fo re t h e process des ign was compl e ted (Pa t t eng i 11 e t a1 . 1982, Hedahl 1982b).

The feed composi t ion and c h a r a c t e r i s t i c s of commerc ia l ly generated TRU

wastes and t h e remote o p e r a t i n g requi rements a re s i g n i f i c a n t l y d i f f e r e n t f rom

t h a t of INEL waste a p p l i c a t i o n . The a n t i c i p a t e d noncombust ib le we igh t f r a c t i o n

of t h e commercial TRU waste i s 34%, soniewhat lower than t h e INEL noncombust ib le

f r a c t i o n . The INEL wastes t h a t were t e s t e d con ta ined up t o 90% noncombusti-

b l es , were a l l c o n t a c t handled, and were n o t p r e t r e a t e d by sh redd ing p r i o r t o

t h e i n c i n e r a t o r p r o o f - o f - p r i n c i p l e t e s t s . These d i f f e r e n c e s would have an

impact on t h e ash and r e s i d u e c h a r a c t e r i s t i c s and cou ld impact f i n a l s e l e c t i o n

o f a r e fe rence process f o r commercial TRlJ wastes. T e s t i n g o f bo th t h e

c o n t r o l l e d - a i r and r o t a r y - k i l n i n c i n e r a t o r s has been conducted f o r t h e commer-

c i a l waste appl i c a t i o n . A more d e t a i l e d d e s c r i p t i o n o f these i n c i n e r a t o r s and

a d i scuss ion of severa l off-gas t rea tment op t i ons a re l i s t e d i n t h e f o l l o w i n g

sec t ions .

C o n t r o l l e d - A i r I n c i n e r a t o r s

C o n t r o l l e d - a i r systems use two chambers t o ach ieve complete combustion.

Wastes a re charged t o t h e f i r s t chamber where t hey a r e burned a t near s t o i c h i o -

m e t r i c cond i t i ons . Th i s r e s u l t s i n a low t u r b u l e n t combustion environment

which min imizes en t ra inment of f l y ash. Products o f p a r t i a l o x i d a t i o n and

vo l a t i l i z a t i o n f l ow i n t o t h e second chamber where excess a i r and supplemental

h e a t i n g a re added t o ach ieve complete combustion.

Four c o n t r o l l e d - a i r i n c i n e r a t i o n systems a re e i t h e r operab le o r soon t o be

a t U.S. DOE s i t e s ( r e f e r t o Table 9) . The u n i t a t LANL i s gas heated and has

operated f o r t h e l o n g e s t t ime , w i t h development beg inn ing i n 1973 and t e s t i n g

beg inn ing i n 1978 (Neuls e t a l . 1982). Two o ther g a s - f i r e d u n i t s , one a t '5RL

(SWIFT) and t h e o the r a t INEL (WERF) a re of ve ry s i m i l a r design, o n l y w i t h

l a r g e r capac i t y . The SRL-PWI i n c i n e r a t o r i s e l e c t r i c a l l y heated and dev ia tes

more f rom t h e s tandard des ign i n o rder t o accommodate h i g h a lpha wastes

(Char1 esworth and McCampbell 1985). The two b a s i c t ypes o f c o n t r o l 1 e d - a i r

i n c i n e r a t o r s a re desc r i bed i n more d e t a i l below.

1. Gas Heated - Wastes a r e t y p i c a l l y charged a t r e g u l a r i n t e r v a l s t o

t h e p r imary i n c i n e r a t i o n chamber us i ng a ram feeder or a t o p load-

i n g chute. F i g u r e 4 shows a f l ow diagram of t h e LANL gas-heated

c o n t r o l l e d - a i r i n c i n e r a t o r which uses a ram feeder. A systew o f

g u i l l o t i n e doors a re used t o h e l p ma in ta i n an a i r ba lance on t h e u n i t

d u r i n g feeding. The I N E L c o n t r o l l e d - a i r i n c i n e r a t i o n i s of a s i m i l a r

design t o t h a t a t LANL bu t uses a t o p l o a d i n g chu te f o r i n t r o d u c i n g

waste. U n d e r f i r e a i r i s i n t r oduced from beneath t h e h e a r t h i n t h e

F I G U R E 4. LANL Gas-Yeated Controlled-Air Incineration System

Condenser and

Off Gas Mist Elim~nator

1 I Gas - Burner

- A B

Gas Stack Reheater

S I Ib HEPA

Burner c-- Secondary Air Q 0 R

U Variable E Throat E N Venturi R

Gravity

Filters

Ash f Dropout

r Scrub-Solution Recycling System

pr imary chamber t o ma in ta i n a s l i g h t l y r i c h e r than s t o i c h i o m e t r i c oxygen

l e v e l and t o burn ou t any f i x e d carbon i n t h e ash. Combusti on

temperatures i n t h e p r imary chamber range f rom 800 t o 1000°C. A nominal

temperature o f l l O O ° C i s ma in ta ined i n t h e secondary chamber w i t h 200 t o

300% excess a i r . Supplemental h e a t i n g t o bo th t h e p r imary and secondary

combustion chambers i s supp l i ed by d i e s e l o r n a t u r a l gas burners. Once

t h e wastes a re charged i n t o t h e u n i t , t h e burners opera te on demand,

supplement ing t h e waste heat con ten t t o m a i n t a i n t h e d e s i r e d

temperatures. Ash i s removed a t t h e end o f each i n c i n e r a t i o n r u n by an

i n t e r n a l ash d ischarge ram. The ram moves a long t h e i n c i n e r a t o r f l o o r

pushing t h e ash t o a g r a v i t y dropout p o r t . Ash removal systems a re

ava i 1 ah1 e whi ch pe rm i t cont inuous ash removal o p e r a t i on as opposed t o

ba tch ash removal opera t ion .

E l e c t r i c a l l y Heated - F i g u r e 5 shows a f l o w diagram o f t h e SRL-PWI

c o n t r o l l e d - a i r i n c i n e r a t i o n system. Wastes a re a c c u r a t e l y metered t o

t h e p r imary chamber o f t h e e l e c t r i c a l l y heated i n c i n e r a t o r th rough

two stages of low-speed shredders and a waste compactor pump. For

t h i s a p p l i c a t i o n , t h e compactor pump i s coupled w i t h a v a r i a b l e speed

d r i v e and serves as a feed mete r ing device. The p r imary chamber has

a woven w i r e mesh conveyor b e l t which s l o w l y moves waste m a t e r i a l

th rough t h e i n c i n e r a t o r t o a g r a v i t y ash dropout p o i n t . Residence

t i m e i s c o n t r o l l e d by t h e b e l t speed. Combustion a i r i s i n t r oduced

a t t h e ash d ischarge end of t h e i n c i n e r a t o r and t r a v e l s counter cu r -

r e n t t o t h e waste d i r e c t i o n . O f f gases e x i t near t h e feed p o r t and

pass t o t h e secondary chamber where excess a i r i s added t o complete

t h e combustion process. Hea t ing i n bo th chambers i s p rov i ded by

e l e c t r i c g l owbars.

R o t a r y - K i l n I n c i n e r a t o r s

The r o t a r y k i l n has been t e s t e d a t INEL an s imu la ted TRU wastes

( P a t t e n g i l l 1982). It i s e s p e c i a l l y e f f i c i e n t f o r i n c i n e r a t i n g d i f f i c u l t t o

burn wastes because t h e k i l n r o t a t i o n c o n s t a n t l y exposes new sur faces o f waste

m a t e r i a l t o t h e o x i d i z i n g atmosphere. K i l n i n c i n e r a t i o n systems u s u a l l y oper-

a t e a t 800 t o 10003C and i n c l u d e a secondary combustion chamber t o improve t h e

Waste Feed

Stack Coarse

Shredder

1 , Secondary Air Coollng

Air Dl lut~on

Meter~ng Pump S~ntered

1 Metal F~lters F~lters

Flne Electrlc. Glowbar

Shredder Heaters

I Woven W ~ r e Belt .LTL 0 Combust~on A I ~

0 w f

Pr~ni,~rv I' Drlv? and Chdrnber Grdv~ty

P~nch Rollers Ash Dropout

FIGURE 5. SRL-PW I E l e c t r i c a l l y -Hea ted C o n t r o l 1 ed-Ai r I n c i n e r a t o r System

o v e r a l l o x i d a t i o n e f f i c i e n c y , where in tempera tu res r u n about 1250°C. Other

i n h e r e n t des ign f e a t u r e s i n c l ude c o n t i n u o u s ash removal and c o n t r o l 1 a b l e

r e s i d e n c e t i m e (by a d j u s t i n g r o t a t i o n r a t e and/or i n c l i n a t i o n ) .

The IUEL-PREPP f a c i l i t y i n c l u d e s a r o t a r y - k i l n i n c i n e r a t o r as t h e p r i m a r y

means o f volume r e d u c t i o n . A f l o w d iagram o f t h e INEL-PREPP system i s shown i n

F i g u r e 6. The r o t a r y k i l n was chosen over a c o n t r o l l e d - a i r i n c i n e r a t o r because

t h e range of expec ted waste c h a r a c t e r i s t i c s r e q u i r e d a system w i t h p r o c e s s i n g

f l e x i b i l i t y (Hedahl 1982a). A1 so, t h e k i l n ' s h i g h e f f i c i e n c y i n o x i d i z i n g

w a r t e s y i e l d s an ash t h a t i s e a s i l y w e t t a b l e f o r g r o u t i n g , wh ich i s an i n t e g r a l

p a r t o f t h e PREPP process.

W h i l e k i l n r o t a t i o n improves combust ion e f f i c i e n c y , i t a l s o c r e a t e s opera-

t i o n a l and main tenance problems. The sea l between t h e r o t 3 t i n g k i l n and t h e

s t a t i o n a r y ends i s c r i t i c a l f o r conta inment o f r a d i o n u c l i d e s and i s r t i f f i c u l t

t o maintain. Rocky F l a t s p o i n t s t o s e 3 l i n g t r o u b l e s as b e i n g one f a c t o r i~

t h e i r d e c i s i o n t o decommission t h e i r r o t a r y k i l ~ . INEL has des igned a t r i p l e

FIGURE 6. INEL-PREPP Rota ry K i l n I n c i n e r a t i o n System

wilst1: Ft:t:fl

HEPA Secondary F~lters

Shreddt:r Ch;~~nl)er

t Pref~lters

t Gas

Reheater

Pressur17ed Seals I f I

I Scrub Solut~on Recovery System

Grav~ty Ash D r o p ~ u t

Burner Wave Plate

Separator ' Mesh Pad

M ~ s t El~rn~nator

-

p r e s s u r i z e d sea l f o r t h e PREPP f a c i l i t y . W i t h t h e sea l p r e s s u r i z e d and t h e

k i l n o p e r a t i n g a t a s l i g h t l y n e g a t i v e atmosphere, a p o s i t i v e f l o w o f gases f r o m

t h e sea l i n t o t h e i n c i n e r a t o r w i l l be m a i n t a i n e d b u t f i n e s o l i d s may s t i l l

m i g r a t e i n t o t h e sea l c a u s i n g a b r a s i v e wear and e v e n t u a l sea l f a i l u r e . The

t u m b l i n g a c t i o n o f wastes a c c e l e r a t e s r e f r a c t o r y wear l e a d i n g t o a d i f f i c u l t

and c o s t l y rep lacement p r o j e c t ; t h e r e i s no c u r r e n t method t o r e h r i c k a k i l n

remote l y .

A l l r o t a t i n g e lements o f t h e r o t a r y k i l n r e q u i r e f r e q u e n t maintenance

making i t one of t h e more m a i n t e n a n c e - i n t e n s i v e i n c i n e r a t o r o p t i o n s . The PREPP

d e s i g n has p r o v i d e d f o r d r i v e main tenance by e x t e n d i n g t h e k i l n d r i v e s h a f t

t h r o u g h t h e w a l l , p l a c i n g t h e d r i v e motor and gear hox o u t s i d e t h e r a d i o a c t i v e

area. Mowever, t h e r o t a t i n g s e a l s w i l l r e q u i r e c o n t a c t maintenance f o r a d j u s t -

meqt and r e p a i r , and t h e t i r e s , t r u n n i o n , and b u l l gear r e q u i r e remote

l u b r i c a t i o n .

Feed t o t h e k i l n may be e i t h e r c o n t i n u o u s o r semi -cont inuous. Uhatever

t h e f e e d i n g methods, i t i s e s s e n t i a l t o i n t r o d u c e t h e f e e d f a r i n t o t h e k i l n t o

p r e v e n t s o l i d s f r o m f a l l i n g back i n t o t h e sea l . The INEL-PREPP k i l n u t i l i z e s a

v i b r a t o r y s l i p conveyor and a s h u t t l e c a r system t o t r a n s f e r shredded waste

i n t o t h e k i l n .

R o t a r y k i l n i n c i n e r a t o r s a r e n o r m a l l y f i r e d c o n c u r r e n t w i t h t h e f e e d

s t ream and t h e f i r i n g r a t e c o n t r o l l e d by t h e t e m p e r a t u r e o f t h e d i s c h a r g e

gases. Long waste r e t e n t i o n t i m e i n t h e k i l n t e n d s t o smooth o u t f l u c t ~ ~ a t i n n s

i n h e a t l o a d i n g from changes i n feed r a t e o r h e a t c o n t e n t . S ince t h e r e s i d e n c e

t i m e f o r gases i s o n l y a few seconds, v e r y r a p i d and s t a b l e c o n t r o l can be

q a i n t a i n e d .

Off-Gas Treatment Systems

Bo th wet and d r y o f f - g a s t r e a t m e n t systems can he used w i t h t h e c o n t r o l l e d -

a i r i n c i n e r a t o r s o r t h e r o t a r y k i l n . F o l l o w i n g a r e genera l d e s c r i p t i o n s o f

t r e a t m e n t systems used i n c u r r e n t i n c i n e r a t o r des igns.

The c o n t r o l l e d - a i r i n c i n e r a t o r a t LANL has a wet o f f -gas system c o n s i s t i n g

of a quench column, v e n t u r i sc rubber , packed column absorber , and HEPA f i l t e r s

(see F i g u r e 4). Roth c o n t r o l l e d - a i r i n c i n e r a t o r u n i t s a t SRL and t h e one a t

INEL a re equipped w i t h d r y of f -gas systems. O f f gases f rom t h e SRL-PWI

i n c i n e r a t o r a r e coo led by a i r d i l u t i o n p r i o r t o s in te red-meta l and HEPA f i l t r a -

t i o n (see F i g u r e 5). The s i n t e r e d metal f i l t e r s a re o f a blow-back t ype and

con ta i n a c o a t i n g o f 1 ime t o n e u t r a l i z e HC1 and SO2 i n t h e o f f gas. r l i l u t i o n

a i r i s added t o f u r t h e r cool t h e o f f gases p r i o r t o f i n a l HEPA f i l t r a t i o n . The

SRL-SWIFT o f f -gas system resembles t h a t o f t h e SRL-PWI u n i t except c o o l i n g i s

done by bo th a spray quench and a i r d i l u t i o n . These d r y systems were se lec ted

t o reduce secondary waste t rea tment d i f f i c u l t i e s and reduce HC1 c o r r o s i o n prob-

lems assoc ia ted w i t h bu rn i ng C1-conta in ing wastes such as PVC. O f f gases f rom

t h e INEL-WERF c o n t r o l 1 ed -a i r i n c i n e r a t o r a re coo led f i r s t by a i r d i l u t i on, then

by pass ing th rough an a i r - t o - a i r heat exchanger, and f i n a l l y by a second a i r

d i l c l t i o n . Gases a re then passed th rough one of two p a r a l l e l hag horlses and

f i n a l HEPA f i l t e r s . U n l i k e t h e LANL and SRL i n c i n e r a t o r s , t h e INEL-WERF u n i t

i s n o t designed t o process PVC wastes. Water and c h l o r i d e , which a re p resen t

as combustion p roduc ts , tend t o condense ou t as HC1 a t coo l p o i n t s i n t h e o f f -

gas system, caus ing c o r r o s i o n (Waters and Volodzko 1983). Another f a c t o r i n

n o t i n c i n e r a t i n g PVCs i s t h a t when n e u t r a l i z e d t o a s a l t , e s s e n t i a l l y no vo luve

r e d u c t i o n i s obta ined.

The r o t a r y k i l n a t INEL-PREPP uses a wet sc rubb ing s.ystem c o n s i s t i n g o f a

quencher , v a r i a b l e t h r o a t v e n t u r i , wave p l a t e separa to r , mesh pad m i s t e l i m i - na to r , gas r ehea te r , p r e f i l t e r s , HEPA f i l t e r s and an induced d r a f t b lower (see

F igu re 6 ) . Depending on t h e composi t ion o f t h e waste, t h e sc rubb ing s o l u t i o n s

may become q u i t e co r ros i ve . D e s t r u c t i o n of wastes c o n t a i n i n g halogens, such as

PVC and contaminated o i l s , c rea tes of f -gas c o r r o s i o n problems as i t would i n a

c o n t r o l l e d - a i r i n c i n e r a t o r o f f - gas system.

SHREDDER TESTS

SHREDDER TESTS

Low-speed sh redders f rom d i f f e r e n t manu fac tu re rs were t e s t e d u s i n g GPT,

SAC, HEPA f i l t e r s , Type 2 and Type 3 s i m u l a t e d wastes ( r e f e r t o Tab le 4). The

o b j e c t i v e s o f t h e t e s t s were t o :

C o n f i r m t h a t low-speed s h r e d d i n g can be used t o e f f e c t i v e l y s i z e

reduce s i m u l a t e d commercial TRU waste.

e Generate a shredded waste m a t e r i a l s u i t a b l e f o r use d u r i n g t h e

i n c i n e r a t i o n t e s t s .

E v a l u a t e t h e p rocess f o r a d a p t a b i l i t y t o remote r a d i o a c t i v e opera-

t i o n s and i d e n t i f y p o t e n t i a l p rocess problems.

Develop s p e c i f i c a t i o n s o f a r e f e r e n c e s h r e d d i n g system t o be used f o r

subsequent t e s t i n g and development.+

The waste m a t e r i a l was i n i t i a l l y d i v i d e d i n t o two i d e n t i c a l l o t s ; one t o

be shredded a t Shredd ing Systems, Inc . i n W i l s o n v i l l e , Oregon, and t h e o t h e r t o

be shredded a t Shred Pax Corp. i n Wood Dale, I l l i n o i s . These two companies a r e

c o n s i d e r e d ma jo r m a n u f a c t u r e r s of low-speed e l e c t r i c - d r i v e shredders.

The s u b c o n t r a c t o r per for rn ing t h e e l e c t r i c a l l y hea ted c o n t r o l l e d - a i r i n c i n -

e r a t i o n t e s t de te rm ined t h a t t h e shredded wastes were t o o l a r g e t o p rocess i n

t h e sma l l p i l o t - s c a l e i n c i n e r a t o r t h e y were us ing. As a r e s u l t , arrangements

were made w i t h a l o c a l shredder manufac turer ( S a t u r n Shredder n i v i s i o n o f MAC

Corp., Grand P r a i r i e , Texas) t o r e s h r e d t h e waste m a t e r i a l . Even though t h e

s h r ~ d d e r s used by Sa tu rn were h y d r a u l i c d r i v e and n o t t h e p r e f e r r e d e l e c t r i c

d r i v e , t h e s h r e d d i n g r e s u l t s as t h e y a r e a v a i l a b l e a r e i n c l u d e d w i t h t h e e l e c -

t r i c d r i v e shredder r e s u l t s .

m The remainder o f t h i s s e c t i o n c o n t a i n s d e s c r i p t i o n s o f t h e sh redders and

t h e t e s t r e s u l t s .

SHREDDER DESCRIPTIONS

The shredder systems t h a t were t e s t e d and t h e i r c u t t e r c o n f i g u r a t i o n s a re

l i s t e d i n Table 10. The f i r s t two t e s t u n i t s were a c t u a l l y t h e same model 1600

machine manufactured by Shredding Systems w i t h d i f f e r e n t c u t t e r con f i gu ra t i ons .

F igure 7 shows t h e Model 1600 u n i t w i t h i t s 100 hp e l e c t r i c d r i v e motor. Th is

u n i t i s a t e s t model and i s n o t c u r r e n t l y be ing marketed, a l though i t i s r ep re -

s e n t a t i v e o f o ther shredders on t h e market. The c u t t e r wheels used were

48.9 cm diameter, 5.1 cm wide, and had one t o o t h on each wheel w i t h a h e i g h t o f

5.1 cm. The t o o t h h e i g h t determines how much m a t e r i a l i s g r i pped and shredded

w i t h each r o t a t i o n of t h e wheel. The f i r s t t e s t u n i t had a 2+2+2 c u t t e r con-

f i g u r a t i o n ( 2 c u t t e r s , 2 spacers and 2 c u t t e r s ) . Each c u t t e r t o o t h was o f f s e t

from t h e ad jacen t t o o t h i n what i s termed a " s i n g l e - s p i r a l " a l ignment. The

t o o t h o f f s e t i s such t h a t i t takes t h e f u l l l e n g t h o f t h e c u t t e r s h a f t t o make

one rev01 u t i o n i n t h e c u t t e r t o o t h pos i t i ons . With a s ing1 e - s p i r a l con f i gu ra -

t i o n , on l y one t o o t h a t a t t ime shreds t h e waste ma te r i a l . T h e o r e t i c a l l y t h e

e n t i r e sha f t fo rce i s a p p l i e d t o each c u t t i n g t o o t h as i t con tac t s t h e waste.

TABLE 10. Shredder Test U n i t Comparison

Shaf t Speed, T o o t h Force , Tes t Shredder Power I n f e e d C o n f i g - C u t t e r Too th C u t t e r Wheel Newtons/1000 U n i t No. Model U n i t Opening, m u r a t i o n #/Wheel Ht , cm - --- Wth,cm D i a , c r n 6 F a s t Slow

1 1 6 0 0 ( ~ ) 100 hp E l e c t r i c Or1 ve

2 1 6 0 0 ( ~ ) 100 hp E l e c t r i c D r i v e

3 A Z - ~ O ( ~ ) 80 hp E l e c t r i c D r i v e

4 A Z - ~ O ( ~ ) 80 hp E l e c t r i c D r i v e

5 A Z - ~ U ( b , 80 hp E l e c t r i c D r i v e

1.27 x 0.91 2+2+2 1 5.1 5.1 48.9 26.7 21.1 109 138 S i n g l e S p i r a l

1.27 x 0.91 1+1+1 1 5.1 5.1 48.9 26.7 21.1 109 138 S i n g l e S p i r a l

1.60 x 0.84 1+1+1 3 6.0 4.7 47.0 25.0 21.7 97 112 I n L i n e

1.60 x 0.84 2+2+2 1 R 3 6.0 4.7 47.0 25.0 21.7 97 112 S i n g l e S p i r a l

1.60 x 0.84 1+1+1 1 6.0 4.7 47.0 NA(C) NA NA NA S i n g l e S p i r a l

6 3 6 - 2 ~ ( ~ ) 75 hp 0.91 x 0.56 1+1+1 2 3.2 1.9 27.3 83.6 53.6 37 58 H y d r a u l i c S i n g l e D r i v e S p i r a l

7 5 2 - 3 2 ( * ) 150 hp 1.32 x 1.02 1+1+1 2 5.4 3.8 43.2 47.7 23.5 83 115 H y d r a u l i c S i n g l e D r i v e S p i r a l

( a ) Model 1600 manufactured by Shredd ing Systems, Inc., W i l s o n v i l l e , Oregon. ( b ) Model AZ-80 r n a n ~ ~ f a c t u r e d by Shred Pax Corp., Wood Dale, I l l i n o i s . ( c ) S h a f t speed and t o o t h f o r c e d a t a on t e s t u n i t 5 i s n o t a v a i l a b l e . ( d ) Models 36-22 and 52-32 manufac tu red by S a t u ~ n Shredder D i v i s i o n o f MAC Corp., Grand P r a i r i e , Texas.

FIGURE 7. Model 1600 E l e c t r i c D r i v e Shredder (Manufactured by Shredding Systems)

Test u n i t number 2 (Table 10) was se t up u s i n g a 1+1+1 s i n g l e s p i r a l con-

f i g u r a t i o n . Th is c o n f i g u r a t i o n r e q u i r e s more power f o r shredding a g iven i t e m

b u t i t produces a sma l le r p a r t i c l e s ize .

Tes t u n i t s 3, 4 and 5 (Table 10) a r e model AZ-80 shredders manufactured by 4

Shred Pax. The u n i t s a r e equipped w i t h two 40 hp e l e c t r i c motors which t r a n s -

f e r power i n t o a s i n g l e gear box. F i g u r e 8 shows one o f t h e AZ-80 t e s t u n i t s .

* Cut te r s on t h e AZ-80 shredders were a l l 47.0 cm diameter, 4.7 cm wide and had

t e e t h 6.0 cm h igh. Test u n i t 3 had a 1+1+1 i n - l i n e c o n f i g u r a t i o n w i t h t h r e e

t e e t h per c u t t e r wheel. U n i t 4 had a 2+2+2 s i n g l e - s p i r a l c o n f i g u r a t i o n w i t h a

combinat ion of c u t t e r wheels which had one o r t h r e e t e e t h each. Test u n i t 5

had a 1+1+1 s i n g l e - s p i r a l c o n f i g u r a t i o n w i t h one t o o t h per c u t t e r wheel.

F I G U R E 8. Model AZ-80 E l e c t r i c D r i ve Shredder (Manufactured by Shred Pax)

Test u n i t s 6 and 7 (Table 10) are both hyd rau l i c d r i v e shredders manufac-

t u r e d by Saturn Shredders. Each u n i t has a 1+1+1 s i n g l e s p i r a l c u t t e r con-

f i g u r a t i o n w i t h two t e e t h per c u t t e r wheel. The model 36-22 ( t e s t u n i t 6) had

a s i n g l e 75 hp e l e c t r i c motor and hyd rau l i c pump which power a f i n a l h y d r a u l i c

d r i v e motor. The model 36-22, shown i n F igure 9, i s a smal ler and l i g h t e r du ty a

shredder than t h e o thers tested. It uses 27.3 cm diameter c u t t e r wheels which

are 1.9 cm wide. The combination of t he narrow dual t o o t h c u t t e r wheels and

1+1+1 con f i gu ra t i on , r e s u l t s i n a shredded product w i t h a much smal ler p a r t i c l e I

s i z e than achievable us ing t h e other shredder t e s t un i t s . The model 52-37

shredder ( t e s t u n i t 7) had two 75 hp e l e c t r i c motors and pumps which power a

s i n g l e h y d r a u l i c d r i v e motor. The c u t t e r s a re 43.2 cm diameter and 3.8 cm

wide.

FIGURE 9. Model 36-22 Hydraul i c Dr ive Shredder (Manufactured by Saturn Shredders)

The actual shredding power i s determined by t h e t o o t h f o r c e exer ted by t h e

f a s t e r s h a f t and by t h e c u t t e r conf igurat ion. Tooth fo rce i s dependent on

d r i v e u n i t power, c u t t e r wheel diameter, and s h a f t rpm. The l a s t f ou r columns

o f Table 10 show t h e s h a f t rpm and t o o t h fo rce o f t h e d i f f e r e n t shredder t e s t - un i t s . The model 1600 has t h e h ighes t t o o t h f o r c e a t 109,000 newtons (N) on

t h e f a s t s h a f t compared w i t h 97,000 N f o r t h e AZ-80s, 83,000 N f o r t h e model

52-32 and 37,000 N f o r t h e model 36-22. *

TEST RESULTS

Shredder performance was determined by measuring throughput ra te , number

of reversa ls , and p a r t i c l e s i z e f o r t h e d i f f e r e n t types o f s imulated TRU

wastes. A p o r t i o n of t h e waste ma te r ia l was shredded a second t ime t o prov ide

da ta on two-stage shredder systems. I n a l l cases, where two s tages o f shred-

d i n g was performed, t h e f i r s t u n i t had a 2+2+2 c o n f i g u r a t i o n and t h e second

u n i t had a f i n e r 1+1+1 c o n f i g u r a t i o n . Table 11 presents t he ! t h r o u - -e e

ghput da ta

and number r e v e r s a l s per 100 k g o f waste f o r each combinat ion or r i r s t and

second s tage shredders.

General Process Trash

Three d i f f e r e n t ' , tage shredders were t e s t e d us ing s imu la ted GPT

waste. Test u n i t 1 i s cons idered t h e b e t t e r per former s i nce no c u t t e r r e v e r -

s a l s occurred d u r i n g t h e t e s t i n g . The AZ-80 u n i t 4 exper ienced 1.4 r e v e r s a l s

per 100 kg b u t h i g h e s t n e t throughput o f 80 kg/min. a1 f a c t o r s had thc

e r s a l s

Sever

, n a r r o caus ing t h e r e v on u n i t 4 were: g rea te r t o o t h h e i g h t , wer c u t t e r

wheel w id th ( t h u s more t e e t h per s h a f t ) , l ower n e t t o o t h f o r ce , and t h e

presence of severa l t h r e e - t o o t h c u t t e r wheels. Test u n i t 3 e x h i b i t e d t h e most

r e v e r s a l s a t 14 per 100 kg of GPT. The i n l i n e c o n f i g u r a t i o n a long w i t h t h r e e

t o o t h c u t t e r wheels d i s t r i b u t e s t h e power ou t over many tee th . S ince severa l

t e e t h may con tac t a waste i t e m a t one t ime, t h i s u n i t i s much more l i k e l y t o

reverse. Second s tage shredding of t h e GPT by t e s t u n i t 5 was no problem as a

throughput r a t e of 76 kg lm in was ma in ta ined w i t h no reve rsa l s .

Sample and A n a l y t i c a l C e l l Wastes

Shredding of t h e SAC waste was more d i f f i c u l t , p r i m a r i l y because o f t h e

metal p resen t i n t h e waste. Test u n i t 1 e fper ienced 1.6 r e v e r s a l s per 100 kg

w h i l e t e s t u n i t 4 had 6.7 d u r i n g f i r s t - s t a g e shredding. The causes f o r t h e

d i f f e r e n c e i n r e v e r s a l s a r e t h e same as those g iven-above f o r t h e GPT wastes.

Second-stage shredding of SAC was l e s s d i f f i c u l t than t h e f i r s t stage, however,

t e s t u n i t s 2 and 5 bo th exper ienced some r e v e r s a l s (see Table 11). - Wood-Framed HEPA F i l t e r s

Wood-framed HEPA f i l t e r s were shredded us ing t e s t u n i t s 1, 4 and 5. No 0

c u t t e r r e v e r s a l s occur red d u r i n g any of these t e s t s ; however, f eed ing o f t h e

f i l t e r s t o t h e shredders was d i f f i c u l t . The wood-framed HEPAs tended t o r i d e

on t h e c u t t e r wheels and spacers w i t h o u t be ing g r ipped and shredded. I n o rder

t o complete t h e shredd ing process, i t was necessary manual ly r e p o s i t i o n t h e

f i l t e r s on t h e c u t t e r t ee th . Even w i t h t h i s manual r e p o s i t i o n i n g , t h e

TABLE 11. Shredder Performance Comparison

Waste Mater i a l

GPT

GPT

GPT

SAC

SAC

Wood HEPAs 0 v

Wood HEPAs

Wood HEPAs

Meta l HEPAs

Meta l HEPAs

F i r s t Stage Second Stage

Shredder C u t t e r Wheel Throughput Reversa l s Shredder C u t t e r Wheel Throughput Reversa I s (Model C o n f i g u r a t i o n Rate, kg/min p e r 100 kg (Model C o n f i g u r a t i o n Rate, kg/min p e r 100 kg

T e s t U n i t 1 2 +2 +2 60 0 None - - -- -- (1600) S i n g l e S p i r a l

Tes t U n i t 4 2 +2 +2 80 1.4 Tes t U n i t 5 1+1+1 76 0 (AZ-80) S i n g l e S p i r a l (AZ-80) S i n g l e S p i r a l

Tes t U n i t 3 1+1+1 19 14 None (AZ-80) I n L i n e

T e s t U n i t 1 2 +2 +2 ( 1600) S i n g l e S p i r a l

Tes t U n i t 4 2 +2 +2 (AZ-80) S i n g l e S p i r a l

T e s t U n i t 1 2 +2 +2 ( 1600) S i n g l e S p i r a l

T e s t U n i t 4 2 +2 +2 (AZ-80) S i n g l e S p i r a l

T e s t U n i t 5 ltl+l (AZ-80) S i n g l e S p i r a l

T e s t U n i t 1 2 +2 +2 ( 1600) S i n g l e S p i r a l

T e s t U n i t 4 2 +2 +2 (AZ-80) S i n g l e S p i r a l

T e s t U n i t 1 2 +2 +2 (1 600) S i n g l e S p i r a l

Tes t U n i t 2 (1600)

Tes t U n i t 5 (AZ-80)

None

Tes t U n i t 5 (AZ-80)

None

Tes t U n i t 2 (1 600)

None

Tes t U n i t 2 (1 600)

1+1+1 S i n g l e S p i r a l

1+1+1 S i n g l e S p i r a l

1+1+1 S i n g l e S p i r a l

1+1+1 S i n g l e S p i r a l

1+1+1 S i n g l e S p i r a l

T e s t U n i t 4 2 +2 +2 19 18 None -- -- -- (AZ-80) S i n g l e S p i r a l

T e s t U n i t 1 2 +2 +2 2 5 1.2 None -- -- -- ( 1600) S i n g l e S p i r a l

( a ) Wood HEPA f i l t e r s had t o be manual ly r e p o s i t i o n e d a t r e g u l a r i n t e r v a l s t o f a c i l i t a t e shredding. No th roughpu t data i s r e p o r t e d as it was dependent on t h e manual r e p o s i t i o n i n g , and n o t t h e shredder c a p a c i t y .

shredding was very slow. A f eed ing a s s i s t dev ice such as a t o p press should be

i nco rpo ra ted i f wood-framed f i l t e r s a re t o be r o u t i n e l y shredded. Th i s same

feeding problem was encountered by r l a rne l l and A1 d r i c h (1983) d u r i n g shredding

of plywood boxes. They s u c c e s s f u l l y designed and t e s t e d a dev i ce which h o l d s

t h e box u p r i g h t and r o t a t e s i t across t h e t o p o f t h e shredder c u t t e r wheels.

Metal-Framed HEPA F i l t e r s

G r i pp ing o f t h e metal- f ramed HEPA f i l t e r s by t h e shredder t e e t h was no

problem. The f i l t e r s r e q u i r e d more power t o shred as i n d i c a t e d by t h e h i g h

l e v e l o f r e v e r s a l s (4.1 per 100 kg w i t h t e s t u n i t 1 and 9.3 per 100 kg w i t h

u n i t 4). One reason t h e r e v e r s a l s occur red was because t h e shredders t r i e d t o

process t h e f i l t e r s t o o q u i c k l y . Second-stage shredding o f t h e metal HEPAs

us i ng t e s t u n i t 2 r e s u l t e d i n 4.4 r e v e r s a l s per 100 kg, s t i l l q u i t e h igh. The

p rocess ing r a t e cou ld be slowed down by r educ ing t h e t o o t h h e i g h t and by

decreas ing t h e s h a f t rpm. Another approach would be t o program t h e shredder t o

c y c l e fo rward and reve rse a t i n t e r v a l s t h a t a re f r equen t enough t o e l i m i n a t e

t h e h igh- to rque s i t u a t i o n s t h a t cause normal r eve rsa l s . When t h i s i s done, t h e

p a r t i a l l y shredded f i l t e r would be k i c k e d back up on t o p o f t h e c u t t e r wheels

d u r i n g t h e r e v e r s a l and then shredded a l i t t l e more d u r i n g t h e f o rwa rd cyc le .

Because t h e f i l t e r r e p o s i t i o n s i t s e l f each t i m e i t i s k i c k e d up, t h e shredded

p a r t i c l e s i z e would be smal ler . Programmed r e v e r s a l c y c l e s a r e commonly used

w i t h h y d r a u l i c d r i v e shredders because t h e h y d r a u l i c d r i v e s can be q u i c k l y and

e a s i l y reversed. E l e c t r i c d r i v e shredders cou ld i n c o r p o r a t e t h e au tomat i c

r eve rsa l s , however e x t r a wear and t e a r on t h e e l e c t r i c motor would occur due t o

t h e repeated on-of f cyc les .

The metal- f ramed HEPA f i l t e r s t h a t were shredded had been used p r e v i o u s l y

as o f f -gas f i l t e r s d u r i n g non rad ioac t i ve t e s t i n g of t h e l a r g e - s c a l e i n s i t u

v i t r i f i c a t i o n process ( B u e l t e t a l . 1985). Dur ing t h e shredder t e s t s , some o f

t h e dus t con ta ined on t h e l o a d f i l t e r s was released. A method f o r f i x i n g con-

taminants p r i o r t o shredding, such as a water or chemical spray, appears t o be

needed t o reduce o r e l i m i n a t e t h e d u s t i n g problem.

Type 2 Wastes

The Type 2 waste m a t e r i a l (waste judged d i f f i c u l t t o i n c i n e r a t e ) was ba tch

f e d t o t e s t u n i t s 1 and 4 i n 208 L (55 gal .) drums. Test u n i t 1 has 2.7 r e v e r -

s a l s per 100 kg w h i l e t e s t u n i t 4 was h i g h e s t a t 18 r eve rsa l s per 100 kg. The

frequency o f r e v e r s a l s i s a t t r i b u t e d t o t h e h i g h meta ls l o a d i n g of t h e Type 2

ma te r i a l . Second s tage shredding u s i n g t e s t u n i t 2 was somewhat eas ie r w i t h

o n l y 1.6 r e v e r s a l s per 100 kg.

Type 3 Wastes

Test u n i t 1 was used t o process t h e d i f f i c u l t t o shred Type 3 ma te r i a l .

The i tems were manual ly fed, one a t a t ime, i n t o t h e shredder. The o n l y

r e v e r s a l s occur red when a 1 /4 hp vacuum pump was shredded. Had t h e Type 3

waste been ba tch fed t o t h e shredder, t h e r e v e r s a l s would have heen much h i ghe r

than t h e 1.2 per 100 kg observed. No Type 3 m a t e r i a l was t e s t e d u s i n g an AZ-80

shredder as t h e manufacturer b e l i e v e d i t would r e s u l t i n unacceptable wear and

t e a r on t h e equipment. T h i s judgment was made a f t e r t h e h i g h frequency o f

r e v e r s a l s was observed w h i l e p rocess ing Type 2 waste w i t h t e s t u n i t 4.

Fragment S i ze Ana l ys i s

Fragment s i z e was determined by randomly s e l e c t i n g t e n p ieces o f each

major waste component ( i .e. paper, c l o t h , wood, meta l , f i l t e r media, e tc . ) f rom

t h e shredder p roduc t and measur ing t h e l eng th , w id th , and t h i ckness o f t h e

fragments. The mean dimensions and s tandard d e v i a t i o n o f t h e f ragment s i z e was

c a l c u l a t e d f rom these measurements.

Table 12 p resen ts t he f ragment s i z e a n a l y s i s o f t h e shredded wastes.

Several observa t ions r e g a r d i n g t h e e f f e c t s o f shredder c o n f i g u r a t i o n and s i n g l e - o r dual s tage ope ra t i on on t h e r e s u l t i n g waste f ragment s i z e have been made.

Wastes t h a t a re shredded one t i m e a re t y p i c a l l y l o n g and narrow. The mean

+ l e n g t h o f t h e f ragment i s p r o p o r t i o n a l t o t h e d i s t ance between t e e t h on t h e

c u t t e r wheel and t h e w i d t h corresponds c l o s e l y t o t h e w i d t h o f t h e cu t . The

c u t w i d t h f o r a 2+2+2 c o n f i g u r a t i o n i s two t imes t h e w i d t h o f t h e c u t t e r wheel.

The shredded fragment t h i c kness f o r t h e s imu la ted TRU wastes d u r i n g t h i s s tudy

was more a f u n c t i o n of t h e o r i g i n a l m a t e r i a l t h i c kness than any th i ng e lse.

M a t e r i a l s , which were bo th f l e x i b l e and durab le such as c l o t h and po l y -

e thy lene shee t ing , had shredded fragment s i z e s w e l l above t h e mean va lues shown

i n Table 12. Both l ow -s t r eng th m a t e r i a l s , such as paper, and r i g i d m a t e r i a l s ,

such wood, and metal , had average fragment s i z e s be1 ow t h e mean va l ue.

TABLE 12. Shredded Waste S ize Ana lys is

Sample Waste Shredd ing H i s t o r y Mean S i z e Number M a t e r i a l F i r s t Stage Second Stage L x W x H , c m

1 GPT Test U n i t 1 None 52 x 13 x 1.0 ( 1600) (27 x 6.8 x 0 . 8 ) ( ~ )

2 GPT Tes t U n i t 3 None 22 x 5.5 x 0.9 (AZ-80) (17 x 2.9 x 0.7)

3 GPT Tes t U n i t 2 Tes t U n i t 6 15 x 3.4 x 0.2 ( 1600) (36-22) (9.4 x 1.9 x 0.1)

4 SAC Tes t U n i t 1 Tes t U n i t 2 15 x 5.3 x 0.4 ( 1600) ( 1600) (6.8 x 1.7 x 0.5)

5 SAC Test U n i t 2 Tes t U n i t 7 7.8 x 2.5 x 0.6 ( 1600) (52 -32 ) (4.8 x 1.3 x 0.6)

6 SAC Tes t U n i t 4 Tes t U n i t 5 29 x 6.4 x 1.2 (AZ-80) (AZ-80) ( 2 9 x 4.4 x 1.1)

7 Wood Tes t U n i t 1 None 18 x 6.4 x 0.4 F i 1 t e r s ( 1600) ( 1 0 x 2.2 x 0.2)

8 Wood Tes t U n i t 5 None 12 x 5.5 x 0.5 F i 1 t e r s (AZ-80) (4.7 x 2.0 x 0.2)

9 Wood Tes t U n i t 1 Tes t U n i t 6 7.3 x 2.0 x 0.3 F i l t e r s ( 1600) (36-22) (5.2 x 0.9 x 0.4)

10 Wood Tes t U n i t 4 Tes t U n i t 5 9.8 x 6.1 x 0.4 F i 1 t e r s (AZ-80) (AZ-80) (3.5 x 2.2 x 0.2)

11 Meta l Tes t U n i t 4 None 15 x 7.3 x 2.4 F i 1 t e r s (AZ-80) (8.4 x 6.8 x 3.6)

12 Meta l Tes t U n i t 1 Tes t U n i t 2 9.5 x 4.2 x 0.4 F i l t e r s (1600) ( 1600) (4.4 x 1.8 x 0.8)

13 Type 2 Tes t U n i t 4 None 25 x 5.9 x 1.3 (AZ-80) (20 x 3.5 x 1.1)

14 Type 2 Tes t U n i t 4 Tes t U n i t 7 1 0 ' x 3.2 x 0.8 (AZ-80) (52-32) (4.8 x 1.4 x 0.6)

15 Type 2 Tes t U n i t 1 Tes t l l n i t 2 20 x 3.7 x 0.8 ( 1600) ( 1600) ( 1 1 x 1.7 x 0.6)

( a ) Numbers i n p a r e n t h e s i s are s t a n d a r d d e v i a t i o n s o f 30 o r more p ieces .

The e f f e c t s o f c u t t e r con f i gu ra t i on on shredded fragment s i z e i s r e a d i l y

apparent i n GPT samples 1 and 2 ( r e f e r t o Table 12). The l eng th o f t h e average

fragment was 52 cm us ing shredder u n i t 1 which had a s i n g l e t o o t h wheel and t h e

l eng th was reduced t o 22 cm us ing u n i t 3 which had t h r e e t e e t h per wheel. The

average w id th o f sample 1 was 13 cm and f o r sample 2 was 5.5 cm, corresponding - c l o s e l y w i t h t h e c u t widths o f 10.2 and 4.7 cm f o r t h e respect ive shredders. . Shredding t h e waste through a second stage reduces both the mean fragment

r., s i z e as we l l as t h e standard dev ia t i on of t he waste size. The GPT Sam~

(see Table 12) which was processed by both shredder u n i t s 2 and 6, had

average fragment s i z e of 15 x 3.4 x 0.2 cm, which i s s i g n i f i c a n t l y smal ler than

t h e GPT pieces produced by one-stage shredding (samples 1 and 2).

During the i n i t i a l shredding of t h e SAC wastes, i t became apparent t h a t

some of t h e l ong narrow pieces o f wood and metal were standing on end and

dropping through t h e shredder c u t t e r s w i thout adequate shredding. F igure 10

shows some o f these pieces a f t e r processing by t e s t u n i t 1 which had a 2+2+2

conf igura t ion . S im i l a r l o n g pieces were a lso observed a f t e r shredding by t e s t

u n i t 4 which a l so had a 2+2+2 conf igurat ion. Upon shredding t h e SAC through a

second stage, t h e fragment s i z e was reduced such t h a t t h e average l e n g t h ranged

FIGURE 10. Larger Metal and Wood Pieces of SAC Waste a f t e r Shredding by Test Un i t 1 .

f rom 7.8 t o 29 cm long. The smal lest s i z e shredded SAC waste was produced by

t e s t u n i t 7 which had a 1+1+1 s i n g l e s p i r a l con f igu ra t i on and two c u t t e r t e e t h

per wheel.

The wood-framed HEPA f i l t e r s were reduced q u i t e n i c e l y by a s i n g l e stage

o f shredding (Table 12 samples 7 and 8). The frames were made o f e i t h e r p l y - . wood or pressed wood, which tended t o f r a c t u r e i n t o shor ter pieces than wooden . boards present i n t h e GPT, SAC and Type 2 waste mater ia ls . Second stage shred-

d ing by t e s t u n i t s 5 o r 6 reduced t h e mean fragment l eng th t o between 7.3 and .4

9.8 cm. Figure 11 shows wooden HEPAs a f t e r shredding by t e s t u n i t 1 and a f t e r

dual shredding by both t e s t u n i t s 1 and 6 (samples'7 and 9 i n Table 12).

FIGURE 11. Wood Framed HEPA F i 1 t e r s Processed by (a) Sing1 e Stage Shredding (Test Un i t 1) and (b) Dual Stage Shredding (Test Un i t s 1 and 6)

Upon shredding, p ieces o f metal -framed HEPA f i l t e r s w i l l remain b a s i c a l l y

t h e same s i z e through subsequent i n c i n e r a t i o n and cementat ion processes because

85% o f t h e f i l t e r s a r e noncombustible. It i s impor tant , t he re fo re , t o reduce

t h e fragment s i z e by shredding t o t h a t which i s acceptable by bo th t h e i n c i n e -

r a t i o n and cementat ion processes. An acceptable s i z e f o r t h e cementation proc-

ess i s c u r r e n t l y undefined. S ing le-s tage shredding o f metal-framed f i l t e r s by

t e s t u n i t 4 produced a p roduc t w i t h an average l e n g t h of 15 cm (sample 11

Table 12). Dual shredding by u n i t s 1 and 2 r e s u l t e d i n a smal ler mean fragment

l e n g t h of 9.5 cm (sample 12 Table 12).

Two stages of shredding makes t h e p a r t i c l e s i z e more un i f o rm as i n d i c a t e d

by t h e standard d e v i a t i o n of t h e p a r t i c l e s i zes o f t h e Type 2 waste m a t e r i a l

(see Table 12 samples 13, 14 and 15) . One stage o f shredding by t e s t u n i t 4

r e s u l t e d i n an average fragment l e n g t h o f 25 (220) cm. Dual shredding w i t h

t e s t u n i t s 4 and 7 produced a fragment l e n g t h o f 10 (f4.8) cm and dual shred-

d i ng w i t h u n i t s 1 and 2 produced a fragment l e n g t h of 20 (211) cm. Ry u s i n g

two stages of shredding, t h e s tandard d e v i a t i o n of t h e p a r t i c l e l e n g t h was

reduced t o about 112 of t h e average length. Th is occurs because t h e longer

p ieces which a r e produced d u r i n g t h e f i r s t shred t end t o l i e down f l a t i n t h e

hopper d u r i n g t h e second s tage shred and a re segmented i n t o m u l t i p l e s h o r t

1 engths.

INCINERATOR TESTS

INCINERATOR TESTS

Three i n c i n e r a t o r s , t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r , gas-heated

c o n t r o l l e d - a i r , and gas-heated r o t a r y k i l n were t e s t e d u s i n g s imu la ted TRU

waste composi t ions ( r e f e r t o Table 4). The o b j e c t i v e s of t h e t e s t s were t o :

Conf i rm t h a t i n c i n e r a t i o n can be used t o e f f e c t i v e l y process simu-

1 a ted commerci a1 TRU waste.

Generate a low-carbon ash and r e s i d u e f o r p roduc t c h a r a c t e r i z a t i o n

t e s t s and f o l low-on cement immobil i z a t i o n t e s t s .

Eva luate t h e process f o r a d a p t a b i l i t y t o remote r a d i o a c t i v e opera-

t i o n s and i d e n t i f y p o t e n t i a1 process problems.

Se lec t a r e fe rence i n c i n e r a t o r system f o r f u r t h e r t e s t i n g and

devel opment . Tes t i ng o f t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r , gas-heated c o n t r o l l e d -

a i r , and r o t a r y k i l n i n c i n e r a t o r s was performed by o f f - s i t e con t rac to r s . Each

i n c i n e r a t o r was operated f o r two t e s t pe r iods ; one w i t h average (Type 1) and

t h e o ther w i t h d i f f i c u l t (Type ZA, B o r C) i n c i n e r a t o r feed. I n c i n e r a t i o n

parameters were se lec ted t o y i e l d t h e most complete combustion, p roduc ing a

low-carbon ash. The i n t e n t of these t e s t s was n o t t o o p t i m i z e t h e process, b u t

r a t h e r t o c o n f i r m t h a t t h e techno1 ogy i s appl i c a h l e f o r commerci a1 l y generated

TRU wastes. Fol low-on t e s t s w i l l be r e q u i r e d f o r process o p t i m i z a t i o n .

A l l s imu la ted wastes were preshredded f o r t h e t e s t s as descr ibed p r e v i -

ous l y i n t h e Shredder Tests sec t ion . A p o r t i o n o f t h e wastes were shredded

- t w i c e us i ng s i m i l a r s i z e d shredders t o reduce t h e mean p a r t i c l e s i z e o f t h e

i n c i n e r a t o r feed. Trace q u a n t i t i e s of Ce, Cs, Mo and Sr ( r e f e r t o Table 6)

were added t o t h e shredded waste t o f o l l o w t h e i r v o l a t i l i t y behav ior d u r i n g .) i n c i n e r a t i o n .

O f f gases were analyzed i n t r i p l i c a t e d u r i n g f eed ing o f both t h e average

and d i f f i c u l t i n c i n e r a t o r feeds. Off-gas da ta were taken i n accordance w i t h

€PA methods descr ibed i n 40 CFR Pa r t 60. A summary o f t h e o f f - gas analyses

t h a t were performed a re l i s t e d below:

Stack v e l o c i t y - EPA Method 1

Stack gas f l o w - EPA Method 2

C02, O2 and C O - EPA Method 3

Y o i s t u r e con ten t - EPA Method 4

P a r t i c u l a t e l o a d i n g - EPA Method 5

NOx - EPA Method 7

SOx - EPA Method 8 or combined Methods 5 and 8

CO - EPA Method 10 (Gas-Heated C o n t r o l l e d - A i r I n c i n e r a t o r t e s t o n l y )

C1' - Combined EPA Methods 5 and 8

llpoli complet ion o f t h e t e s t s , t h e i n c i n e r a t o r subcon t rac to rs s u p p l i e d o f f - gas

system samples and r e s i d u e product t o PNL f o r subsequent ana l ys i s . A f i n a l

t e s t r e p o r t was a l s o prepared by each subcontractor. These r e p o r t s c o n t a i n

i n c i n e r a t o r s p e c i f i c a t i o n s , of f -gas a n a l y s i s r e s u l t s , a summary of t h e i n c i n -

e r a t o r ope ra t i ng performance and a l o g o f a l l i n c i n e r a t o r o p e r a t i n g data.

The rena inder of t h i s s e c t i o n con ta i ns a more d e t a i l e d d i scuss ion o f t h e

t e s t equipment, p roced l~ re , and r e s u l t s o f t h e t h r e e i n c i n e r a t i o n t e s t s .

ELECTRICALLY HEATED CONTROLLED-AIR INCINERATOR --

A p i l o t - s c a l e i n c i n e r a t o r manufactured and operated by Shi rco, Inc. o f

Da l l as , Texas, was used f o r t h i s t e s t . Th is same u n i t was used e a r l i e r by SRL

d u r i n g development of t h e i r PWI process (Char leswor th and Hi1 1 1985).

Eauioment Descr i o t i o n

The process equipment c o n s i s t s of a conveyor feed system, a p y r o l y s i s

chamber w i t h a moving conveyor, an a f t e rbu rne r and a l i q u i d sc rub system.

F i gu re 12 s h o w a schematic of t h e Sh i r co p i l o t - s c a l e i n c i n e r a t i o n process

equipment and F i g u r e 13 shows a p i c t u r e of t h e t e s t u n i t .

The f eed ing conveyor c o n s i s t s of a hopper w i t h a v a r i a b l e speed conveyor

b e l t used t o meter t h e waste t o t h e i n c i n e r a t o r . Wastes drop o f f o f t h e b e l t

i n t o t h e f r o n t end of t h e p r imary chamber th rough a sea led feed chute, w i t h a

7.6 x 30.5 cm opening a t t h e i n l e t t o t h e i n c i n e r a t o r . Tho feed system des ign

Water W

FIGURE 12. E l e c t r i c a l l y Heated Cont ro l 1 ed-Ai r Test I n c i n e r a t o r Schematic

Off Gas .

FIGURE 13. E l e c t r i c a l l y Heated Cont ro l 1 ed-Ai r Test I n c i n e r a t o r

4 1

I

Secondary Chamber

4b

A

Spray Feed Tower

Combustion Modules Discharge Module

D bvk- 4 I Combustion Air

I

t I I

Primary Chamber Lt Ash Hopper Drain

a l l ows t h e waste t o be dropped a t an even r a t e , u n i f o r m l y across t h e w i d t h o f

t h e conveyor b e l t i n t h e p r imary chamber. Dur ing opera t ion , waste m a t e r i a l i s

f e d t o t h e i n c i n e r a t o r a t feed r a t e s up t o 10 kg/hr.

The p r imary chamber used f o r p i l o t t e s t i n g i s a scaled-down model of

p roduc t i on -s i ze furnaces ( r e f e r t o F igu re 5 f o r i n t e r n a l d e t a i l ) . It c o n s i s t s

o f a feed module, two combustion modules (zones) c o n t a i n i n g s i l i c o n ca rb ide 7 .

hea t i ng elements, and a d ischarge module. Heat ing elements d e l i v e r up t o

20 KVA t o each of t h e two furnace zones and 20 KVA t o t h e secondary chamber. h

The p r ima ry chamber has a s t e e l s k i n and measures 0.91 x 1.1 x 4.3 m.

A 41-cm wide conveyor b e l t woven of 315 SS w i r e i s used t o t r a n s p o r t t h e

waste m a t e r i a l f rom t h e feed end t o t h e ash d ischarge end o f t h e i n c i n e r a t o r .

The be1 t w i d t h i s wider than t h e feed i n l e t p o r t , which p reven ts waste f rom

f a l l i n g over t h e edge. The b e l t moves on a s e r i e s o f r o l l e r s , which have bear-

i ngs t h a t a re s e r v i c e a b l e from t h e ou ts ide . The d r i v e r o l l e r i s powered by a

v a r i a b l e speed motor t h a t a l l ows t h e waste res idence t i m e t o be c o n t r o l l e d f rom

10 t o 60 minutes. A t t h e feed end of t h e i n c i n e r a t o r , t h e r e i s a pneuma t i ca l l y

operated b e l t - c e n t e r i n g mechanism t h a t i s s e t t o p inch t h e b e l t f rom t h e s i des

once every minute, assu r i ng t h a t t h e b e l t remains i n t h e cen te r o f t h e r o l l e r

system. The cen te r t o cen te r d i s t ance between t h e end r o l l e r s i s 3.35 m and

t h e e f f e c t i v e b e l t l e n g t h from t h e feed drop p o i n t t o t h e d ischarge end i s

3.05 m. Ash r e s i d u e f rom t h e process d ischarges i n t o a sealed r e c t a n g u l a r

c ross-sec t ion hopper. The hopper i s f l anged t o t h e fu rnace d ischarge chu te t o

pe rm i t ash removal.

The combustion gas f l o w through t h e system i s coun te r -cur ren t t o t h e waste

m a t e r i a l f low. Combustion a i r i s p rov ided t o t h e fu rnace endp la te by means o f *

a p ressu r i zed l i n e from an a i r compressor, w i t h f l o w r a t e measured by a v e r t i c a l

flowrneter. A i r supp l i ed by a c e n t r i f u g a l fan i s i n j e c t e d through t h e p o r t s

a long t h e furnace l eng th . P y r o l y s i s products generated i n t h e p r imary chamber d

pass through an e l e c t r i c i 'n f rared secondary chamber where t hey a re combusterl a t

a nominal s e t p o i n t temperature of 980°C. Standard SPA gas sampl ing p o r t s a re

l o c a t e d i n t h e secondary chamber exhaust. Emissions were sampled f rom these

p o r t s as descr ibed e a r l i e r .

Combustion gases pass f r o m t h e secondary chamber t h r o u g h t h e i n s u l a t e d

o f f - g a s l i n e d i r e c t l y t o a v e n t u r i sc rubber wh ich q~ lenches t h e h o t o f f - g a s and

removes t h e p a r t i c u l a t e s . The gases then pass i n t o t h e bo t tom o f a s p r a y tower

t h a t has two sp ray n o z z l e s a x i a l l y l o c a t e d a t d i f f e r e n t h e i g h t s w i t h i n t h e

column. Of f -gases e x i t t h r o u g h t h e t o p o f t h e co luqn i n t o a b lower and o u t t h e

s tack . The o f f - g a s system uses a f r e s h wa te r s c r u b s o l u t i o n f o r b o t h t h e

v e n t u r i sc rubber and t h e s p r a y tower .

I n s t r u m e n t a t i o n and c o n t r o l s i n c l u d e independent tempera tu re c o n t r o l l e r s

f o r t h e h e a t e d zones and secondary chamber, thermocoup les connected t o a m u l t i -

p o i n t c h a r t r e c o r d e r and LED d i s p l a y t o m o n i t o r t h e the rma l p r o f i l e i n t h e

i n c i n e r a t o r . A1 so i n c l u d e d a r e b e l t speed c o n t r o l s and w a t t - h o u r me te rs t o

r e c o r d power consumpt ion. The sc rubber system i s i n s t r u m e n t e d w i t h wa te r

f l owmete rs f o r b o t h t h e v e n t u r i sc rubber and sp ray tower .

Tes t Descr i ti on

D u r i n g a p r e l i m i n a r y shakedown o p e r a t i o n o f t h e p i l o t system, i t was found

t h a t due t o t h e l a r g e p a r t i c l e s i z e , t h e waste wou ld b r i d g e i n t h e f e e d c h u t e

and cause p l u g g i n g . 4s a r e s u l t , i t was necessary t o r e s h r e d t h e waste mate-

r i a l t o a s m a l l e r s i z e . The Sa tu rn Shredder Company was c o n t r a c t e d t o r e p r o c -

ess t h e nonmetal waste u s i n g a shredder w i t h a 1.9 CQI c u t t e r wheel w i d t h ( t e s t

u n i t 6 Tab le 10) and t o r e p r o c e s s t h e m e t a l - c o n t a i n i n g waste by a shredder w i t h

a 3.8 cm w i d t h c u t t e r ( t e s t u n i t 7 ) .

The resh redded waste was b lended u s i n g a manual drum mixe r . The a p p r o p r i -

a t e pe rcen tages of each waste component was p l a c e d i n t o a 303 L (80 g a l .) drum,

wh ich was t h e n r o t a t e d s e v e r a l t i m e s t o o b t a i n a p a r t i a l mix. T race r m a t e r i a l

was s l u r r i e d i n abou t 200 ml o f wa te r and poured i n w i t h t h e waste as i t was

b e i n g tumbled. The t u m b l i n g was c o n t i n u e d f o r s e v e r a l m inu tes , a f t e r wh ich t h e

waste was ready f o r t h e i n c i n e r a t o r .

The S h i r c o p i l o t i n c i n e r a t o r r e q u i r e d a p p r o x i m a t e l y 45 m inu tes t o h e a t up

t o p rocess tempera tu res of 700°C i n Zone 1 and 870°C i n Zone 2. Temperature

s e t p o i n t s were t h e n s e l e c t e d on t h e panel mounted c o n t r o l l e r s f o r t h e d e s i r e d

fu rnace zone and a f t e r b u r n e r temperatures. When t h e fu rnace reached a p re -

determined temperature, t h e gas scrubber water f l o w was t u rned on a long w i t h

t h e induced d r a f t f an t h a t exhausts t h e system.

S imulated Type 1 waste m a t e r i a l ( r e f e r t o Table 5) was f e d a t r a t e s rang-

i n g from approx imate ly 5 t o 9 kg/hr . The feed conveyor b e l t speed was s e t t o

o b t a i n t h e des i r ed feed r a t e . An opera to r mon i to red t h e conve,yor t o assure

t h a t t h e c o r r e c t amount o f m a t e r i a l was on each f l i g h t . Th i s r e s u l t e d i n a

cont inuous and c o n s i s t e n t feed r a t e . Excess ive ly l a r g e p ieces o f metal o r

f a b r i c were p e r i o d i c a l l y encountered. Pieces t h a t were judged l a r g e enough t o

cause b r i d g i n g were separated ou t and n o t f e d t o t h e i n c i n e r a t o r . The d i f f i -

c u l t t o i n c i n e r a t e Type 2A waste m a t e r i a l (Table 5) was f e d a t 6.9 kg /h r d u r i n g

t h e l a s t day of opera t ion .

Combustion a i r f o r o x i d a t i o n o f t h e waste s o l i d s i n t h e p r imary combustion

chamber was i n p u t through end p o r t s as descr ibed p rev i ous l y . I n an a t tempt t o

decrease t h e f i x e d carbon con ten t i n t h e ash, t h e combustion a i r f l o w was

inc reased a t severa l i n t e r v a l s through t h e f i r s t day o f opera t ion . Due t o

l i m i t a t i o n s of t h e compressed a i r system, t h i s f l ow was l a t e r decreased and

a d d i t i o n a l a i r was added f rom a blower through p o r t s i n t h e furnace s ide.

It was n o t necessary t o add combustion a i r t o t h e secondary chamber d u r i n g

t h i s t e s t program. The a i r leakage i n t o t h e secondary chamber around i t s glow-

bars was s u f f i c i e n t t o s u s t a i n a complete combustion process. Th is was based

upon r e s i d u a l oxygen measurements made down stream of t h e secondary combustion

chamber. For t h e p i l o t t e s t program, fu rnace d r a f t was measured i n t h e fu rnace

d ischarge module. To min im ize a i r i n - leakage and c o n t r o l t h e p y r o l y s i s p roc -

ess, t h e exhaust system was ad jus ted t o e l i m i n a t e smoke emissions f rom t h e

m a t e r i a l feed i n l e t . Th is was done by manual ly p o s i t i o n i n g t h e scrubber ven-

t u r i b u t t e r f l y damper. The s e t t i n g remained s u b s t a n t i a l l y cons tan t f o r each

t e s t cond i t i on . Thus, t h e d r a f t was p r i m a r i l y ad jus ted w h i l e r each ing s teady

s t a t e f o r each cond i t i on . A t t h e end of each of t h e d i f f e r e n t ope ra t i ng con-

d i t i o n s , t h e e n t i r e ash hopper was emptied. The r e s i d u e was weighted and i t s

volume measured. A f t e r complet ion of f eed ing bo th Type 1 and Type 2 wastes,

t h e i n c i n e r a t o r was a l lowed t o coo l , was opened up, and r e s i d u a l ash and

r e s i d u e was removed.

Opera t ing da ta f o r t h e t h r e e i n c i n e r a t o r s t e s t e d a r e p resen ted i n

Table 13. The e l e c t r i c a l l y heated c o n t r o l 1 ed-a i r u n i t was operated f o r f i v e

t e s t pe r i ods (A-1 th rough A-5) us i ng Type 1 waste m a t e r i a l and one t e s t p e r i o d 1

( A - 6 ) us ing Type 2A waste m a t e r i a l . The i n c i n e r a t o r conveyor speed was

ad jus ted t o p r o v i d e a 0.5 h r res idence t i m e d u r i n g a l l t e s t pe r i ods except A-5

i n , w h i c h i t was ad jus ted t o 1.0 h r . A t one p o i n t d u r i n g opera t ioo , t h e d r i v e

r o l l e r began t o s l i p , caus ing t h e conveyor t o stop. The conveyor was r e s t a r t e d

manual ly by a p p l y i n g a wrench t o t h e p inch r o l l e r shaf t . The p ressure between

TABLE 13. I n c i n e r a t o r Operat ing Data Summary

- . Temperature , OC

.. . T e s t Feed Feed Rate, Run Time, Res idence P r i m a r y Chamber Secondary

P e r i o d Type k g l h r h r Time, h r Feed End Mid S e c t i o n Exhaust Chamber

E l e c t r i c a l l y Heated C o n t r o l 1 ed-A i r I n c i n e r a t o r

A- 1 1 8.7 13.9 0.5

Gas-Heated C o n t r o l l e d - A i r I n c i n e r a t o r

8- 1 1 6 6 7 .O 2.0 t o 9.0 --- 860( b, --- 980 ( 8 1 ) ( 5 9 )

8-2 2 8 6 6 6.2 2.2 t o 8.2 --- 895(b ) --- 980 ( 7 7 ) ( 3 4 )

R o t a r y K i l n I n c i n e r a t o r

C-1 1 57 1.5 1.5 605 400 290 N A ( C ) ( 4 5 ( 7 5 ) ( 3 0 )

C-2 1 54 7.2 1.5 800 620 4.20 N A ( 8 4 ) ( 8 3 ) ( 2 2

( a ) Numbers i n p a r e n t h e s i s a r e s t a n d a r d d e v i a t i o n s o f m u l t i p l e read ings . ( b ) Gas f i r e d c o n t r o l l e d - a i r i n c i n e r a t o r equ ipped w i t h s i n g l e p r i m a r y zone. ( c ) Not a p p l i c a b l e s i n c e r o t a r y k i l n i n c i n e r a t o r d i d n o t have a secondary chamber.

t h e d r i v e and p inch r o l l e r s was inc reased which so lved t h e s l i ppage problem.

Cur ren t p roduc t i on model i n c i n e r a t o r s o f t h i s des ign a r e equipped w i t h pneuma-

t i c c y l i n d e r s t h a t a u t o m a t i c a l l y ma in ta i n t h e d e s i r e d p ressure between t h e

d r i v e and p i nch r o l l e r s .

Temperatures d u r i n g t hese t e s t s averaged f rom 710 t o 770°C i n t h e zone

neares t t h e r e s i d u e d ischarge end and f rom 875 t o 880°C i n t h e zone neares t t h e

feed end. Al though t h e system cou ld opera te a t h i ghe r temperatures, these

ranges prevented m e l t i n g of g lass m a t e r i a l s i n t o t h e woven w i r e conveyor, which

would be de t r imen ta l t o t h e cont inuous movement o f t h e conveyor. A t t h e p r i -

mary chamber exhaust p o r t , where t h e wastes a re a c t i v e l y burn ing, temperatures

averaged up t o and above 970°C. Secondary chamber temperatures were lower ,

r a n g i n g f rom 865 t o 940°C.

Dur ing opera t ion , a smal l p o r t i o n o f t h e ash and r e s i d u e f e l l o f f t h e con-

veyor b e l t . Most of t h e i n c i n e r a t o r r e s i d u e was d ischarged i n t o t h e ash hopper

w i t h o n l y 1.0 wt% rema in ing i n t h e p r imary chamber.

Off-gas emiss ion sampling, as descr ibed e a r l i e r , was performed i n t r i p l i -

c a t e d u r i n g f eed ing of bo th waste types. The fu rnace system was operated u n t i l

a steady s t a t e c o n d i t i o n was achieved b e f o r e sampl ing was i n i t i a t e d . 4s sev-

e r a l d i f f e r e n t s e t s of opera t ing ' parameters were t e s t e d d u r i n g f eed ing o f

Type 1 waste, environmental samples were taken d u r i n g t h e p e r i o d thought t o be

p roduc ing t h e l owes t carbon ash.

GAS-HEATED CONTROLLED-AIR INCINERATOR

The gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r t e s t e d i s a p roduc t i on model

500-TE manufactured by Ecol a i r Environmental Con t ro l Products (ECP), Inc. o f

Cha r l o t t e , Nor th Caro l ina . The t e s t u n i t i s owned by Bowman Gray School o f

Medic ine i n Winston-Salem, Nor th C a r o l i n a and i s used f o r d i spos ing o f patho-

l o g i c a l wastes. The i n c i n e r a t o r i s of a r ecen t design, f a b r i c a t e d i n 1983, and

f i r s t pu t i n t o ope ra t i on i n A p r i l of 1984. D e s c r i p t i o n s of t h e equipment and

t h e t e s t a re presented i n t h e remainder o f t h i s sec t ion .

The 500-TE u n i t i s a dual chamber i n c i n e r a t o r heated by e i t h e r d i ese l f u e l

o r n a t u r a l gas. It i s designed f o r semicontinuous (ram) f eed ing and ba tch ash

d ischarge (cont inuous ash d ischarge model s a re ava i l ab le ) . It has a r a t e d

capac i t y o f 180 kg/hr f o r p a t h o l o g i c a l wastes. A schematic o f t h e system i s

I. shown i n F i g u r e 14 and a p i c t u r e i s presented i n F i g u r e 15. The u n i t i s equip-

ped w i t h a h y d r a u l i c system which powers a ram feeder, a r e f r a c t o r y - f a c e d

g u i l l o t i n e charge door, an ash d ischarge ram, and an ash s l i d e gate. 8

Both p r imary and secondary chambers a r e l i n e d w i t h r e f r a c t o r y b r i c k and

con ta ins dual f u e l burners. There a r e two a i r b lowers assoc ia ted w i t h each

chamber; one p rov ides a i r t o t h e gas burner and t h e second p rov ides combustion

a i r t o o x i d i z e t h e wastes. The blowers and t h e burners a l l operate automat-

i c a l l y t o ma in ta i n t h e des i r ed temperature and t o c o n t r o l t h e a i r ba lance

w i t h i n t h e i n c i n e r a t o r d u r i n g t h e feed cyc le . The gas res idence t i m e i s

approx imate ly 11 seconds i n t h e p r imary chamber and two seconds i n t h e secon-

dary chamber.

The i n c i n e r a t o r i s n o t equipped w i t h an . .

o f f -ga

p o l l u t i o n c o n t r o l , as i t meets t h e e x i s t i n g Federal

gas treatment. Two p o r t s were p laced on t h e s tack

a n a l y s i s o f t h e o f f gas d u r i n g t h e t e s t . No blower

gases because n a t u r a l convect ion p rov ides t h e d r a f t

c i n e r a l

chambc

ram pu

: r a c t s

t o perr

i s usc

tment system f o r a i r

ion Code w i t h o u t o f f -

n i t environmental

?d t o remove t h e o f f

The i n c i n e r a t o r i s equipped w i t h a c o n t r o l sys~ttrn L I I ~ ~ p e r m l ~ s e l t h e r

automat ic o r manual operai To begin t h e automa zd cyc le , t h e waste i s

dropped i n t o a ram charge area and t h e t o p door c l o The charge door i n t o

t h e i n :or then opens, t h e shes t h e waste m a t e r i a l i n t o t h e i n c i n - *

e r a t o r :r and p a r t i a l l y r e t t o a1 1 ow t h e charge door t o c l ose, a

spray (

pens t c

and i t

vext wa

i t s o r i

r i s f e e

g i n a l I

d cyclc

water he ram : r e t u r n s t o i

. door o t t h e I ~ s t e drop. Tk minu te t o complete. The p r ima ry chamber burner a u t o m a t i c a l l y sh

t h e g u i l l o t i n e door i s open t o p reven t smoke f rom e x i t i n g t h e op

3 o s i t i a

z takes - -

In, and t h e t o p

about one

~ u t s o f f w h i l e

)en charge door.

Ram Feeder

I I

Off Gas Sample

I f I Stack

---------

Secondary Chamber

Primary Chamber

-Slide Gate Assemblv

Underfire Combustion

FIGURE 14. Gas-Heated Control led-Air Test Inc inera tor Schematic

FIGURE 15. Gas-heated Control 1 ed-Air Test Inc inera tor

48

Test D e s c r i p t i o n

P r i o r t o t e s t i n g , t h e i n c i n e r a t o r was cleaned out , w i t h a l l ash f rom p r i o r

i n c i n e r a t i o n s removed. As t h e i n c i n e r a t o r had been used f o r some wastes t h a t

con ta ined s h o r t 1 i v e d low-1 eve1 rad io i so topes (1 i q u i d s c i n t i l l a t i o n v i a l s ,

animals w i t h microspheres, etc.) , i t was checked f o r bo th gamma and be ta con-

tamina t ion . A survey o f t h e p r imary chamber and en t rance t o t h e secondary

chamber showed t h a t no r a d i a t i o n above background was p resen t .

The feed m a t e r i a l s were loaded i n t o cardboard boxes t h a t measured 42 x

42 x 52 cm and had a t a r e weight o f 0.91 kg. Composit ions f o r Type 1 and

Type 2B wastes were t e s t e d (see Table 5). Because t h e i n c i n e r a t o r was charged

batchwise, i t was judged l e s s impor tan t f o r t h e wastes t o be i n t i m a t e l y mixed

as t hey were d u r i n g t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r t e s t s . As a r e s u l t ,

t h e shredded wastes were loaded i n t o t h e cardboard boxes w i t hou t mix ing. Trace

elements were s l u r r i e d w i t h approx imate ly 200 m l of water and were poured on

t o p of t h e Type 1 wastes.

The i n c i n e r a t o r was s t a r t e d up and a l lowed t o warm up f o r a p e r i o d o f

45 minutes t o 60 minutes be fo re f eed ing was i n i t i a t e d . Boxes o f waste w i t h a

n e t weight o f 15 kg each were charged t o t h e i n c i n e r a t o r every 15 minutes dur-

i n g each o f t h e two t e s t per iods. Ash and r e s i d u e was a l lowed t o accumulate i n

t h e p r imary chamber u n t i l complet ion o f each run. A f t e r each feed p e r i o d was

completed, an au tomat i c two-hour shut-down sequence was i n i t i a t e d . The i n c i n -

e r a t o r was ma in ta ined a t o p e r a t i n g temperatures d u r i n g t h i s p e r i o d t o ensure

t h a t t h e l a s t waste charged was comple te ly combusted.

The gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r was operated d u r i n g t e s t pe r i ods - B-1 and B-2 as shown p r e v i o u s l y i n Table 13. The res idence t i m e f o r t h e waste

charges ranged f rom 2 t o 9 hours w i t h Type 1 waste and 2.2 t o 8.2 w i t h Type 2B

waste. The v a r i a b l e res idence t i m e i s due t o t h e semicont inuous f eed ing and

t h e batch mode of ash removal, i n which a l l r e s i d u e remains i n t h e p r imary

chamber u n t i l a f t e r t h e i n c i n e r a t i o n burn i s completed.

A t one p o i n t d u r i n g f e e d i n g of Type 1 m a t e r i a l , a c i r c u i t breaker t r i p p e d

on one of t h e automat ic c o n t r o l c i r c u i t s and had t o be r e s e t . Th is caused t h e

i n c i n e r a t o r t o momentar i ly shu t down. Upon i n i t i a t i n g t h e au to s t a r t sequence,

t h e s tack smoked f o r about 2 minutes u n t i l t h e burners and combustion a i r blow-

e r s were on and ope ra t i ng normal ly . The smoking c o n d i t i o n cou ld have been

prevented had t h e i n c i n e r a t o r been r e s t a r t e d manually.

Temperatures i n t h e p r imary chamber of t h e gas-heated c o n t r o l l e d - a i r

i n c i n e r a t o r averaged f rom 860 t o 895OC, e s s e n t i a l l y t h e same as i n t h e feed end

o f t h e e l e c t r i c a l l y heated u n i t (see Table 13). The secondary chamber was

ma in ta ined somewhat h o t t e r , a t 980°C.

The i n c i n e r a t o r was a l lowed t o coo l f o r a t l e a s t 36 h r a f t e r each t e s t

be fo re t h e r e s i d u e was removed. An access door on t h e end o f t h e p r ima ry

chamber was opened so t h a t t h e ash removal process cou ld be viewed. F i r s t t h e

ash s l i d e ga te was opened and then t h e au tomat i c ash d ischarge ram was c y c l e d

severa l t imes t o d ischarge t h e r e s i d u e i n t o 208-L ( 5 5 g a l l o n ) b a r r e l s . The

s l i d e ga te was appa ren t l y warped and cou ld o n l y be opened about h a l f way. Th i s

caused some d i f f i c u l t y i n d i s c h a r g i n g t h e res idue , e s p e c i a l l y t h e l a r g e r p ieces

of metal . A f t e r t h e au tomat i c removal process was completed, t h e i n s i d e o f t h e

i n c i n e r a t o r was manual ly swept ou t t o remove a l l t h e rema in ing ash.

The ash d ischarge ram e f f e c t i v e l y removed 80 w t % of t h e i n c i n e r a t o r r e s i -

due a f t e r t e s t i n g ; however, t h e rema in ing 20% had t o be removed manual ly. The

removal e f f i c i e n c y cou ld be inc reased s i g n i f i c a n t l y by us i ng an a1 t e r n a t e

p r imary chamber design. The t e s t i n c i n e r a t o r had a round ing bot tom t h a t per -

m i t t e d t h e r e s i d u e t o remain on t h e s loped w a l l s a f t e r t h e d ischarge ram was

cycled. E c o l a i r has manufactured p r imary chambers w i t h a f l a t bot tom and

square s ides, which would pe rm i t much b e t t e r d ischarge e f f i c i e n c i e s than

exper ienced w i t h t h e t e s t u n i t .

ROTARY K I L N INCINERATOR

The r o t a r y k i l n i n c i n e r a t i o n system was b u i l t and opera ted by Colorado

School of Mines Research I n s t i t u t e (CSMRI) i n Golden, Colorado. Th i s i s t h e

same t e s t u n i t used by INEL d u r i n g t h e r o t a r y - k i l n p r o o f - o f - p r i n c i p l e t e s t s

conducted p r i o r t o des ign of t h e PREPP i n c i n e r a t i o n system (t iedahl 1982a).

The process equipment c o n s i s t s o f a ram feed u n i t , r o t a t i n g k i l n , cyc lone

dus t separator w i t h spray quench, baghouse dus t separator and a f i n a l induced-

d r a f t b lower (see F igures 16 and 17). The ram feed system c o n s i s t s of a hopper

on t o p o f a 61-cm diameter ram sha f t . The ram i s h y d r a u l i c a l l y d r i v e n and has #

Gas Sampling

Waste

Gas End Hood Burner End Hood

Ram Off Gas Cyclone Feeder I Rotary Kiln - .. - --

Quench Collection

Incineration Cyclone Residue Dust

Stack A

Bag House

Baghouse Dust

FIGURE 16. Ro ta ry -K i l n Test I n c i n e r a t o r Schematic

FIGURE 17. Rotary-Ki 1 n Test I n c i n e r a t o r

5 1

a s t r o k e o f 2.3 m. The r o t a r y k i l n i n c i n e r a t o r has a 0.91-m ( 3 f t ) ID, a

1.2-m ( 4 f t ) OD, a 9.1-m (30 f t ) e f f e c t i v e leng th , and a 10.7-111 (35 f t ) ac tua l

leng th . The k i l n i s operated i n a concur ren t g a s - f i r i n g mode w i t h an 0.8O

slope. The k i l n d r i v e uses a cha in -d r i ven r i n g sprocket and a var ib le -speed

d r i v e u n i t . The r o t a t i o n a l speed o f t h e k i l n i s a d j u s t a b l e f rom approx imate ly

0.5 t o 3 rpm, b u t was operated a t 1 rpm f o r t h e t e s t . The k i l n i s suppor ted by *

f i v e se t s o f r o l l e r s a long i t s leng th . Dur ing opera t ion , t h e i n c i n e r a t o r

r es i due i s d ischarged from t h e k i l n i n t o a r e f r a c t o r y - l i n e d end housing where L

i t drops i n t o a 208 L (55 g a l l o n ) drum.

Temperatures i n s i d e t h e k i l n a re moni tored a t f i v e l o c a t i o n s u s i n g thermo-

couples. A p a i r of cont inuous copper r i n g s mounted around t h e k i l n and a p a i r

of g r a p h i t e con tac t s mounted on t h e suppor t s t r u c t u r e a re used t o t r a n s m i t t h e

thermocouple s i g n a l from each sensor on t h e moving k i l n t o a temperature

recorder . The burner system c o n s i s t s of a 7.6-cm main burner and a 5.1-cm p i l o t

burner w i t h n a t u r a l gas as fue l . 80th burners a re p o s i t i o n e d a t t h e feed end

of t h e i n c i n e r a t o r above t h e ram feeder tube. The p o s i t i o n o f t h e p i l o t burner

t i p i s l o c a t e d below and behind t h e main burner t i p , c ross ing a t an ang le t o

t h e a x i s of t h e main burner. The burner gas f l o w r a t e s a re c o n t r o l l e d manu-

a l l y , however au tomat ic systems a re ava i l ab le .

O f f gases e x i t from t h e end of t h e k i l n i n t o a 0.91-m diameter by 1.52-m

t a l l cyclone. Gases a r e then rou ted through a 0.61-m diameter by 11.3-m l o n g

p i p e t h a t i s used f o r e f f l u e n t sampling. Gases then pass v e r t i c a l l y through a

water quench s e c t i o n of p i p e and i n t o a baghouse. n u r i n g opera t ion , t h e r e s i -

due f rom t h e cyc lone and f rom t h e baghouse i s dropped i n t o 208-L (55 g a l ) . drums. The baghouse con ta ins 36 ny lon bags t h a t a r e 3 . 7 4 l o n g and 11-cm

diameter. It i s equipped w i t h a p u l s e a i r blow-back system f o r p e r i o d i c

un load ing of t h e f i l t e r s . Cleaned gases then pass through an induced-dra f t - blower and t o t h e s ta

Test Descr i ti on

The r o t a r y k i l n was preheated f o r 4.75 h r us i ng t h e main and p i l o t burners p r i o r t o t h e i n t r o d u c t i o n of Type 1 feed waste ma te r i a l . The temperature a t

t h e s t a r t o f feed ing was 550°C near t h e burner end o f t h e k i l n . The tempera-

t u r e o f t h e e n t i r e k i l n r ose s t e a d i l y t o 927OC d u r i n g t h e t e s t due t o t h e

a d d i t i o n a l heat i n p u t o f t h e combust ib le waste. The k i l n was fed t h e Type 1

waste m a t e r i a l batchwise every 10 minutes. The waste was loaded d i r e c t l y i n t o

t h e charg ing chu te w i t h o u t us i ng a box as was done d u r i n g t h e gas-heated

c o n t r o l l e d - a i r i n c i n e r a t o r t e s t . A feed r a t e o f 80 k g l h r was t r i e d f o r t h e

f i r s t two batch charges b u t was then reduced t o 54 k g l h r a f t e r excess ive smoke,

f lame ou t of t h e p r imary burner , and minor d r a f t f l u c t u a t i o n s were observed.

The system e f f e c t i v e l y handled t h e 54 kg/hr feed r a t e (batches o f 9 kg every

10 min) . Each batch was prepared by weigh ing ou t t h e c o r r e c t amounts o f waste

m a t e r i a l ( r e f e r t o Table 5 ) i n t h e ram c y l i n d e r , pou r i ng t h e t r a c e r ( s l u r r i e d

w i t h approx imate ly 200 m l o f wa te r ) over t h e batch, and then a c t i v a t i n g t h e

p lunger t o charge t h e batch i n t o t h e k i l n .

The k i l n and cyc lone p roduc ts f rom Test 1 were c o l l e c t e d a t two d i f f e r e n t

t imes d u r i n g t h e t e s t ( pe r i ods C - 1 and C-2 Table 1 3 ) . The f i r s t c o l l e c t i o n was

made f o l l o w i n g 3 h r of f eed ing i n order t o a l l o w obse rva t i on o f t h e products.

The product f rom t h e f i r s t p e r i o d represen ted feed f o r t h e f i r s t 1.5 h r because

res idence t i m e was measured a t 1.5 h r ( t i m e r e q u i r e d f o r waste t o t r a v e l t h e

l e n g t h of the k i l n ) . The product f rom t h e remainder o f t h e Test 1 was c o l l e c -

t e d con t i nuous l y d u r i n g t h e balance of t h e t e s t and d u r i n g t h e k i l n d r a i n

per iod.

The procedure f o r f eed ing Type 2C waste ( t e s t p e r i o d C-3) was s i m i l a r t o

t h e t e s t procedure f o l l owed f o r t h e Type 1 t e s t i n g except t h a t t h e k i l n was

heated f o r over 7.7 h r p r i o r t o i n i t i a l feeding. The k i l n was f ed t h e Type 2C

waste i n 11.3 kg bdtches every 10 min r e s u l t i n g i n a feed r a t e o f 68 k g l h r . *

The k i l n temperature a t t h e s t a r t of feed of Type 2C was 555°C near t h e

burner end o f t h e k i l n . Due t o t h e l onge r p rehea t i ng per iod , t h e temperatures * d were approx imate ly 170°C h o t t e r f u r t h e r down t h e k i l n than f o r t h e p rev ious

s ta r t up . The i n c i n e r a t o r system temperatures a l l began t o r i s e s t e a d i l y as

soon as feed was i n t r oduced t o t h e system. Temperatures d u r i n g t h e l a t t e r

p o r t i o n o f t h i s t e s t approached 980°C near t h e feed end o f t h e k i l n ( r e f e r t o

Table 1 3 f o r average k i l n temperatures) .

D u r i n g b o t h t e s t s , t h e k i l n t e m p e r a t u r e p r o f i l e was l o g g e d c o n t i n u o u s l y on

a s t r i p c h a r t r e c o r d e r w h i l e p ressu res and o t h e r o p e r a t i n g d a t a were r e c o r d e d

a p p r o x i m a t e l y e v e r y one h a l f hour on a l o g sheet . The o b j e c t i v e was t o r e a c h a

s t e a d y - s t a t e t e m p e r a t u r e ; however, due t o t h e r e l a t i v e l y s h o r t d u r a t i o n o f t h e

t e s t s , t h e k i l n t e m p e r a t u r e s were s t i l l c l i m b i n g a t t h e end o f each t e s t .

The ram f e e d system and k i l n d r i v e system per fo rmed w e l l d u r i n g a l l t e s t

pe r iods . The k i l n o p e r a t i o n c o u l d be improved by i n c r e a s i n g t h e bu rne r s i z e i n

t h e p r i m a r y chambers t o f a c i l i t a t e a f a s t e r warm-up c y c l e . Also, t h e sys tem

s h o u l d be b u i l t t i g h t e r t o p e r m i t b e t t e r c o n t r o l over t h e combust ion a i r f l o w .

Upon c o m p l e t i o n o f each t e s t , t h e r e s i d u e , c y c l o n e p r o d u c t , and baghouse

p r o d u c t were c o l l e c t e d . Samples were a l s o t a k e n o f t h e quench l i q u i d . The

we igh ts and volumes of each p r o d u c t were a l s o measured.

TEST RESULTS

R e s u l t s o f t h e t h r e e i n c i n e r a t o r t e s t s a r e compared i n t h i s s e c t i o n . Data

p e r t a i n i n g t o r e s i d u e c h a r a c t e r i s t i c s , of f -gas c h a r a c t e r i s t i c s , and t r a c e e l e -

ment behav io r a r e p r e s e n t e d and discussed.

Residue C h a r a c t e r i s t i c s ---- --- Weight and volume r e d u c t i o n s ach ieved d u r i n g t h e i n c i n e r a t o r t e s t p e r i o d s

a r e p resen ted i n Tab le 14. Weights and volumes f o r t h e i n c i n e r a t o r r e s i d u e and

o f f - g a s p a r t i c u l a t e a r e a1 so presented. The e l e c t r i c a l l y hea ted c o n t r o l 1 e d - a i r

i n c i n e r a t o r had t h e h i g h e s t average w e i g h t and volume r e d u c t i o n s (4.1 and 10.8,

r e s p e c t i v e l y ) wh ich were n e a r l y doub le t h o s e ach ieved w i t h t h e gas-heated

c o n t r o l l e d - a i r and r o t a r y k i l n i n c i n e r a t o r s . These h i g h n e t r e d u c t i o n s a r e

somewhat m i s l e a d i n g and s h o u l d be l ower . A p o r t i o n o f t h e me ta l i n t h e e l e c -

t r i c a l l y h e a t e d i n c i n e r a t o r feed was s o r t e d o u t due t o l i m i t a t i o n s o f t h e

shredder used f o r t h e a d d i t i o n a l f e e d s i z e r e d u c t i o n . Some meta l was a l s o

removed p r i o r t o t h e i n c i n e r a t i o n t e s t due t o t h e s i z e l i m i t a t i o n imposed by

t h e i n c i n e r a t o r f e e d chute . Ry remov ing a f r a c t i o n o f t h e rnetal (wh ich does

n o t undergo w e i g h t o r volume r e d u c t i o n d u r i n g i n c i n e r a t i o n ) t h e apparen t r e d u c -

t i o n s i n c r e a s e as t h e y a r e more dependent on t h e c o m b u s t i b l e f r a c t i o n o f t h e

w a ~ t e . The r e s h r e d d i n g o p e r a t i o n a l s o i n c r e a s e d t h e p a c k i n g f a c t o r o f t h e

TABLE 14. I n c i n e r a t o r Weight and Vol ume Reduct ions

I n c i n e r a t o r Off-Gas (b ) Tes t Feed Res i due P a r t i c u l a t e Tota I P roduc t Net Reduct ion

Pe r i od W t , kq V O I , ' ~ ' L W t , kq Vol, L W t , Kq Vol, L W t , kg Val, L Weiqht Volume -------- E l e c t r i c a l l y Heated Contro l led-Ai r I n c i n e r a t o r

A-1 8 2 129.3 580 35.8 84.9 0.28 1.40 36.1 86.3 3.6 6.7

A-3 122.5 549 27.2 37.4 0.26 1.30 27.5 38.7 4.5 14.2

A-4 79.4 356 14.5 14.6 0.17 0.85 14.7 15.5 5.4 23.0

A-5 18.1 81.2 5.1 4.7 0.04 0.20 5.1 4.9 3.5 16.5

A-6 59.0 258 15.4 22.4 0.15 0.75 15.6 23.2 3.8 11.1 - - - - - - - - - TOTAL A: 408 1824 98 164 0.9 4.5 99 169 4.1 10.8

Gas-Heated Contro l led-Ai r I n c i n e r a t o r

TOTAL 8: 869 3330 380 503 18.3 91.5 398 59 5 2.2 5.6

Rota ry K i l n I n c i n e r a t o r

C- 1 81.6 34 7 25.8") 33.4 5.63 28.2 31.4 61.6 2.6 5.6

C-2 402.8 1710 149.6") 148.0 27.8 139.0 177.4 287.0 2.3 6.0

C-3 294.8 989.0 108.9 '~) 96.2 32.0 115.3 128.2 2.6 - 6.4 - - - 7.7 - TOTAL C: 779 3046 284 278 39.8 199 324 477 2.4 6.4

( a ) Volumes ca l cu l a ted from feed dens i t i e s . ( b ) Weights ca l cu l a t ed from o f f -qas p a r t i c u l a t e loadinqs. Volumes c a l c u l a t e d us i ng dens i t y o f 0.20 kq/L,

which i s measured dens i t y o f bag house p a r t i c u l a t e d u r i n q t e s t pe r i od C-2. ( c ) Rotary k i I n res idue weight inc ludes weight o f cyc lone product.

metal noncombust ib les, which f u r t h e r inc reases t h e n e t volume reduc t i on . The

average we igh t and volume reduc t i ons measured d u r i n g t h e gas-heated c o n t r o l l e d -

a i r and r o t a r y k i l n i n c i n e r a t i o n t e s t s a re approx imate ly equal , as any d i f -

ferences a re w i t h i n t h e s tandard d e v i a t i o n o f t h e data.

Table 15 p resen ts t h e chemical a n a l y s i s o f t h e i n c i n e r a t o r ash. O f p r ime

i n t e r e s t i s t h e f a t e o f aluminum ( A l ) f rom t h e HEPA f i l t e r separators . The

presence o f A1 metal i n a cement waste form promotes an undes i r ab le h y d r o l y s i s

r e a c t i o n , which generates H2 gas. A s i g n i f i c a n t f r a c t i o n o f t h e ash i s A l ,

r ang ing f rom 11.7 wt% i n t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r r e s i d u e t o

TABLE 15. Chemical Ana lys is of I n c i n e r a t o r ~ s h ( ~ ) ---

El ement

A1

B

B a

Ca

C e

Cr

Cs

Cu

Fe

K

L i

Yg Mn

Mo

N i

P

Pb

S i

Sr

T i

Z n

E l e c t r i c a l l y Heated C o n t r o l l e d - A i r , wt%

Gas-Heated C o n t r o l l e d - A i r , wt4

15.0

Ro ta ry K i 1 n, wt%

37.7

( a ) Numbers shown a r e average va lues o f t h r e e sample a n a l y s i s . The noncombust ib le r e s i d u e ( i .e. meta ls , g lass , e tc . ) was separa ted f rom t h e ash p r i o r t o a n a l y s i s . Cs was analyzed by f l ame atomic absorp t ion . A l l o t h e r elements were analyzed by i n d u c t i v e l y coupled argon plasma atomic emiss ion spect roscopy.

37.7 wt% i n t h e r o t a r y k i l n res idue . None o f t h e i n c i n e r a t o r s e f f e c t i v e l y o x i -

d i zed t h e A1 as HC1 so l u b i l i t y t e s t s revea led t h a t over 95% i s i n t h e metal

form. Other elements which were predominent i n t h e i n c i n e r a t o r ash i n c l u d e B y

Ca, Fe, S i , and Zn. It i s l i k e l y t h a t these elements a re p resen t as ox ides;

however, an a n a l y s i s o f chemical form was no t made.

High concen t ra t i ons o f unburned carbon i n t h e ash i s undes i rab le , as t h e

a b i l i t y o f t h e r e s i d u e t o become wet ted i n t h e cementing process i s h indered.

The i n c i n e r a t o r ash carbon con ten t shown i n Table 16, was lowes t a t 1.9 w t % f o r

t h e gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r , p robab ly due t o t h e pro longed r e s i -

dence t i m e c h a r a c t e r i s t i c of t h i s u n i t . No carbon a n a l y s i s was performed on

t h e o f f - gas f i l t e r p a r t i c u l a t e c o l l e c t e d d u r i n g t h i s t e s t due t o t h e smal l s i z e

of sample. Ash f rom t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r t e s t

con ta ined t h e h i g l i es t l e v e l of r e s i d u a l carbon a t 11.0 wt%. Th is i s p robab ly

due t o t h e s h o r t res idence t i m e ( 4 . 5 h r ) used d u r i n g t h e t e s t per iod. The

carbon con ten t of t h e o f f -gas p a r t i c u l a t e t h a t passed th rough t h e secondary

combustion chamber was lower a t 3.1 wt%. I n c i n e r a t o r r e s i d u e f rom t h e r o t a r y

k i l n ash con ta ined 6.7 w t % carbon w h i l e t h e o f f - gas p a r t i c u l a t e con ta ined

29 w t % . The q u a n t i t y of unburned carbon i n t h e r o t a r y k i l n ash i s l i k e l y due

t o t h e lower ope ra t i ng temperature of t h e k i l n compared t o t h a t o f t h e two

c o n t r o l l e d - a i r i n c i n e r a t o r s ( r e f e r t o Table 13). The tumbl i n g a c t i o n w i t h i n a

k i l n promotes ent ra inment of t h e l i g h t e r carbonaceous m a t e r i a l as i n d i c a t e d by

t h e ex t reme ly h i g h carbon con ten t of t h e o f f -gas p a r t i c u l a t e . The carbon

TABLE 16. Residual Carbon Ana lys is o f I n c i n e r a t o r

I n c i n e r a t o r ' E l e c t r i c a l l y - H e a t e d Gas-Heated R o t a r y P r o d u c t C o n t r o l 1 ed-Ai r, w t % C o n t r o l 1 ed-A i r, wt% K i 1 n, wt%

Ash 11.0 1.9 6.7

O f f -Gas P a r t i c u l a t e

( a ) Numbers shown a r e average v a l u e s o f t h r e e sample a n a l y s i s . The non- c o m b u s t i b l e r e s i d u e ( i .e. m e t a l s , g l a s s , e tc . ) was s e p a r a t e d f rom t h e ash p r i o r t o a n a l y s i s . Carbon a n a l y s i s was pe r fo rmed by t h e r m a l decomposi t o n and o x i d a t i o n o f t h e ca rbon f o l 1 owed by gas chromatograph analy;is f o r COj: ,

( b ) There was i n s u f i c l e n t sample on t h e o f f - g a s p a r t i c u l a t e f i l t e r s t o % ,

p e r f o r m ca rbon a n a l y s i s .

con ten t o f t h e o f f - gas p a r t i c u l a t e would have been s u b s t a n t i a l l y lower had t h e

r o t a r y k i 1 n i n c i n e r a t o r been equipped w i t h a secondary combusti on chamber.

The ash r e s i d u e f rom t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r

t e s t i s c h a r a c t e r i z e d by smal l chunks o f carbonized wood as w e l l as chunks o f

unfused and fused A l . Much of t h e unfused A1 remained w i t h t h e l a r g e r metal

f r a c t i o n when t h e ash was separated from t h e metal. The r e s i d u e generated

d u r i n g t h e gas-heated c o n t r o l l e d - a i r t e s t con ta ined c l i n k e r s o f fused A1 and

fused g lass media from t h e HEPA f i l t e r s . Rotary k i l n r e s i d u e con ta ined t h e A1

c l i n k e r s b u t no s i g n i f i c a n t q u a n t i t i e s o f fused g lass f i l t e r media.

Off-Gas C h a r a c t e r i s t i c s -- --- Off-gas analyses were performed i n t r i p l i c a t e d u r i n g t e s t pe r i ods A-4,

A-6, R-1, R-2, C-2 and C-3. Table 17 p resen ts t h e r e s u l t s o f these analyses,

showing o f f - gas f l ow , excess a i r , water vapor, gas composi t ion and norma l i zed

re leases. Test p e r i o d s A-4, B-1 and C-2 w i l l be used f o r purposes o f comparing

t h e t h r e e i n c i n e r a t o r s because a l l t h r e e t e s t pe r i ods used a cornmon Type 1

waste m a t e r i a l . The o the r t h r e e t e s t pe r i ods (A-6, B-2 and C-3) cannot be used

f o r d i r e c t comparison s i n c e t h e Type 2 feed composi t ion was d i f f e r e n t f o r each

per iod.

The norma l i zed of f -gas f l o w d u r i n g t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r

t e s t ranged f rom 10 t o 12 dscrnlkg of waste feed. The f l o w d u r i n g t e s t i n g o f

t h e gas-heated u n i t was t h r e e t imes h i ghe r , r ang ing f rom 32 t o 36 dscm/kg due

t o t h e a d d i t i o n a l gases i n t r oduced by t h e gas burners. Flows were h i g h e s t a t

75 t o 93 dscmlkg d u r i n g t h e gas-heated r o t a r y k i l n t e s t s . Excess a i r was

lowes t f o r t h e gas-heated c o n t r o l l e d - a i r i ~ c i n e r a t o r (138% excess a i r f o r t e s t

p e r i o d R - 1 ) as i t was equipped w i t h t h e most automated burner and combustion

a i r c o n t r o l system. The lower O2 concen t ra t i on and h i ghe r CO? and water vapor

concen t ra t i ons (see Table 17) d u r i n g p e r i o d R - 1 c o r r e l a t e w i t h t h e lower excess

a i r l e v e l d u r i n g t h i s per iod. The CO l e v e l was l e s s than fl.1 vo l % d u r i n g bo th

c o n t r o l l e d - a i r t e s t s ; however, t h e CO averaged 0.57 vo l % d u r i n g ope ra t i on o f

t h e r o t a r y k i l n ( p e r i o d C-2) p r i m a r i l y because t h e k i l n was n o t equipped w i t h a

secondary combustion chamber.

TABLE 17. I n c i n e r a t o r Test Off-Gas C h a r a c t e r i s t i c s

Gas Composition, Normalized Release, Test Feed Off-Gas Flow Excess Water dry vo 1 $ g/kg Waste

Per iod Type dscm/kg A i r , % Vapor, $ -- 4 c% CO C I - s% P a r t i cu I a te

E l e c t r i c a l l y Heated Control led-Air I nc ine ra to r

Gas-Heated Cont ro l led-A i r Inc inera tor

Rotary K i l n Inc inera tor

( a ) Dry Standard Cubic Meters per kg o f waste feed. ( b ) Numbers i n parenthesis are standard dev ia t ions of t h ree or more samples.

Normal ized r e l e a s e da ta f o r C1-, SO2, NOx and p a r t i c u l a t e , expressed as

g/kg waste, a re presented i n t h e l a s t f o u r columns o f Table 16. The C1-

re leases were s i g n i f i c a n t l y h i ghe r d u r i n g t h e gas-heated c o n t r o l l e d - a i r i n c i n -

e r a t i o n t e s t s as were t h e S O p and NOx re leases d u r i n g t h e r o t a r y k i l n t e s t -

ing. Reasons f o r t h i s behav ior a re n o t r e a d i l y apparent. P a r t i c u l a t e r e l eases

were lowes t a t 2.2 g /kg waste d u r i n g t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r

t e s t , were somewhat h i ghe r a t 13.9 g/kg d u r i n g t h e gas-heated c o n t r o l l e d - a i r

i n c i n e r a t o r t e s t , and were h i g h e s t a t 69 g/kg d u r i n g t h e r o t a r y k i l n t e s t . Low

p a r t i c l e re leases d u r i n g t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r

t e s t s a re a t t r i b u t e d t o t h e low l e v e l of t u rbu lence i n t h e p r ima ry chamber.

Add i t i ona l gas f l o w and t u rbu lence generated by t h e gas burner i n t h e gas-

heated c o n t r o l l e d - a i r i n c i n e r a t o r i s b e l i e v e d t o be r e s p o n s i b l e f o r t h e h i ghe r

p a r t i c u l a t e re lease . The h i g h e s t r e l e a s e assoc ia ted w i t h t h e r o t a r y k i l n i s

a t t r i b u t e d t o t h e r o t a t i n g a c t i o n of t h e k i l n i n con junc t i on w i t h t h e inc reased

gas f l o w i n t r o d u c e d by t h e gas burner system.

Trace Element Rehavi o r --- -7

The d i s t r i b u t i o n of t r a c e elements i n t h e i n c i n e r a t o r p roduc t and o f f - g a s

p a r t i c u l a t e i s presented i n Table 18. Elements cons idered n o n v o l a t i l e (Ce and

Sr ) a re l i s t e d sepa ra te l y f rom those t h a t have s e m i v o l a t i l e tendenc ies (Cs and

0 ) . Concent ra t ions of t h e n o n v o l a t i l e Ce and Sr i n t h e ash and o f f - gas pa r -

t i cu l a t e were averaged and used t o c a l cu l a t e t r a c e e l ement ma te r i a1 ha1 ances

f o r t h e t e s t pe r i ods A-4, B - 1 and C-2. The t o t a l t r a c e element m a t e r i a l

balance was l owes t a t 39% f o r t e s t p e r i o d A-4 b u t was much more reasonable a t

71% and 75% fo r t e s t pe r i ods 9-1 and C-2, r e s p e c t i v e l y . The h i g h unaccounta-

b i l i t y d u r i n g ope ra t i on o f t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r

i s n o t understood and tends t o d im in i sh t h e use fu lness o f t h a t data. It i s

impo r tan t t o no te , however, t h a t e s s e n t i a l l y a l l t h e t r a c e element m a t e r i a l

de tec ted d u r i n g t h e e l e c t r i c a l l y heated t e s t was i n t h e r es i due .

Desp i te t h e l e s s than i d e a l m a t e r i a l balances, i t appears t h a t t h e b u l k o f

t h e n o n v o l a t i l e t r a c e m a t e r i a l s de tec ted d u r i n g t h e two c o n t r o l l e d - a i r t e s t s

were present i n t h e ash, w i t h l e s s than 1% showing up i n t h e o f f - g a s p a r t i c u -

l a t e . I n c o n t r a s t , t h e r o t a r y k i l n o f f gas con ta ined 20% o f t h e n o n v o l a t i l e

t r a c e elements added t o t h e feed. Th i s i l l u s t r a t e s t h e b u l k o f f - gas s o l i d s

TABLE 18. D i s t r i b u t i o n o f Trace Elements i n t h e I n c i n e r a t o r Product and Off-Gas P a r t i c u l a t e

Trace Element D i s t r i b u t i o n , % o f I n i t i a l Added

Test Per iod A-4 Test Per iod B- 1 ( E l e c t r i c a l l y Heated (Gas-Heated Test Per iod C-2

Control led-Air) Control led-Air) (Rotary K i l n)

E lement Ash o f f - ~ a s ( ~ ) Tota l Ash o f f - ~ a s ' ~ ) Tota l Ash Cyclone Subtotal o f f - ~ a s ( ~ ) Tota l - - -- Nonvolat i les:

Ce 37.9 (9.5)(b)

S r 39.1 (3.3)

.4verage 39

Mater ia l Balance: ( c )

Semivo la t i les :

Cs 28.8 (6.1)

Mo 37.9 (6.0)

(a ) Off-gas analysis are o f p a r t i c u l a t e co l l ec ted on f i l t e r s dur ing environmental t es t i ng . (b ) Numbers i n parenthesis are standard dev ia t ions o f t h ree samples. ( c ) The net mater ia l balance i s based on +be accountabi I i t y o f Ce and S r i n t he i nc ine ra to r

product and o f f-gas pa r t i cu la te .

car ry -over assoc ia ted w i t h t h e t umb l i ng a c t i o n o f a r o t a r y k i l n , which i s n o t

observed w i t h a c o n t r o l l e d - a i r t y p e o f i n c i n e r a t o r .

The s e m i v o l a t i l e components (Cs and Mo) were de tec ted p r i m a r i l y i n t h e ash

d u r i n g t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r t e s t w i t h l e s s than 1% i n t h e

of f -gas s o l i d s . Th i s i n d i c a t e s good r e t e n t i o n and i s p robab ly a r e s u l t o f t h e

r e l a t i v e l y s h o r t r es i dence t i m e (0.5 h r ) d u r i n g t h e t e s t pe r iod . For t h e gas-

heated c o n t r o l l e d - a i r t e s t , t h e s e m i v o l a t i l e s were dep le ted i n t h e ash and

enr i ched i n t h e of f -gas, p robab ly due t o t h e much l onge r r es i dence t i m e assoc i -

a t e d w i t h t h e ba tch mode of ash removal. As seen i n Table 18, o n l y 0.4% o f t h e

n o n v o l a t i l e elements were de tec ted i n t h e o f f - gas p a r t i c u l a t e w h i l e 4.1% o f t h e

Cs and 3.1% of t h e Mo were present. A s i m i l a r v o l a t i l i z a t i o n e f f e c t was

observed d u r i n g t h e r o t a r y k i l n t e s t , however, phys i ca l en t ra inment was t h e

predominant mechanism f o r l o s s of t r a c e element t o t h e o f f gas. O f t h e 75% o f

t o t a l t r a c e element accounted f o r i n t h e r o t a r y k i l n t e s t , 55% of t h e nonvola-

t i l e s were p resen t i n t h e ash and cyc lone product . The rema in ing 20% was pres-

en t i n t h e o f f -gas p a r t i c u l a t e , suggest ing phys i ca l ca r r yove r as t h e mechanism.

Some v o l a t i l i z a t i o n o f Cs i s ev i den t s i nce 36.3% was p resen t i n t h e ash and

28.4% was de tec ted i n t h e o f f -gas p a r t i c u l a t e .

COMPARISON OF INCINERATOR PROCESSES

COMPARISON OF INCINERATOR PROCESSES

The e l e c t r i c a l l y heated c o n t r o l l e d - a i r , gas-heated c o n t r o l l e d - a i r , and

r o t a r y k i l n i n c i n e r a t i o n processes were eva lua ted based on t e c h n i c a l m e r i t and

system cost. C a p i t a l and o p e r a t i n g cos t s were es t imated f o r shredding, i n c i n -

e r a t i o n , and of f -gas t rea tment operat ions. The t e c h n i c a l m e r i t o f each process

was judged by a f i v e member panel us i ng t h e F igu re -o f -Me r i t (FOM) process

s e l e c t i o n methodology. The FOM numbers a re viewed as a measure of t h e o v e r a l l

process e f f ec t i veness . Cos t -e f fec t i veness r a t i o s were generated u s i n g t h e

cost/FOM r a t i o f o r each process. These r a t i o s were then used t o s e l e c t a

re fe rence shredder and i n c i n e r a t o r process f o r f u r t h e r development.

INCINERATOR ECONOMICS - Capi ta l cos t s have been es t imated f o r feed shredding, i n c i n e r a t i o n , o f f -

gas t rea tment , and t h e p o r t i o n o f t h e f a c i l i t y occupied by these u n i t p ro -

cesses. Annual cos t s were es t imated f o r l a b o r and energy t o heat t h e i n c i n -

e r a t o r . Other f i x e d o p e r a t i n g cos t s w i l l be s i m i l a r f o r t h e t h r e e processes

and as such, were n o t i n c l u d e d i n t h e c o s t ana lys is . L ikewise, t h e economic

comparison does n o t i n c l u d e t h e r e s i d u e hand l i ng and cementat ion p o r t i o n s o f

t h e process s i n c e t h e y would be t h e same rega rd l ess o f t h e i n c i n e r a t i o n system

used.

Cap i t a l cos t s f o r t h e process components a r e based on t h e equipment

requi rements l i s t e d i n Table 19. nue t o t h e i r mechanical nature, t h e i n c i n e r a -

t i o n systems a re bes t s u i t e d f o r remote ope ra t i on i n a h o t c e l l as opposed t o a

canyon. Ho t - ce l l volumes f o r t h e o f f -gas systems were c a l c u l a t e d us i ng t h e

vo l umes of a p i 1 o t - sca l e and 1 arge-scal e i n s i t u v i t r i f i c a t i o n o f f - gas system

(Timmerman and Oma 1984, Rue l t e t a l . 1985). To compensate f o r p e r i o d i c

surges, an overdes ign f a c t o r of f ou r was used t o s c a l e t h e o f f - gas system t o

t h e r e q u i r e d capac i t y . C e l l volumes f o r t h e o the r i n c i n e r a t o r subsystems were

es t imated by t a k i n g f o u r t imes t h e equipment volume envelope as s p e c i f i e d by

t h e manufacturers. The a d d i t i o n a l vo l ume a1 1 ows f o r c e l l rnani pu l a t o r s and an

overhead crane r e q u i r e d f o r remote ope ra t i on and maintenance.

TABLE 19. I n c i n e r a t i o n System Equipment Requirements Used f o r Cost E s t i m a t e

E l e c t r i c a l l y Heated Control led-Ai r

I n c i n e r a t o r Requ i red Subsystem Volume, 3"

Feed System: ' Coarse shredder Metering pump Fine shredder

Primary Ch ambe r:

40 kg/hr Type 1 waste 90 m i n residence t ime Continuous ash removal Automatic hea te r

con t ro l (no computer)

O f f -Gas System:

Seconda ry 2 sec residence t ime Chamber: 1 100°C mean temperature

200% excess a i r Automatic heater c o n t r o l (no computer)

6.7 scm/min mean f low Quenche r Ventur i scrubber Condenser Gas reheater HEPA f i l t e r s

Gas-Heated Control l ed-Ai r

Required Cel I Equipment Informat ion Volume, m 3

Coarse shredder 80 Top loading chute

40 kg/hr Type 1 waste 90+ m i n residence t ime Batch ash removal Automatic bu m e r con t ro l (no computer)

2 sec residence t ime 70 1 100°C mean temperature 200% excess a i r Automatic b u m e r cont ro I (no computer)

33 scm/mi n mean f l ow Quenche r Ventur i scrubber Condenser Gas reheater HEPA f i l t e r s

Rotary K i In

Requ i red Equipment Informat ion Volume,

Coarse shredder 8 5 V ib ra t i ng conveyor Feed s h u t t l e system

40 kg/hr Type 1 waste 90 min residence t i m e Continuous ash removal Automatic burner con t ro l (no computer)

Pressur ized k i I n sea ls

2 sec residence t ime 1 100°C mean temperature 200% excess a i r Automatic burner con t ro l (no conpute r )

33 scm/min mean f low Cyclone separa tor Quencher Ventur i scrubber Condenser Gas reheater HEPA f i l t e r s

To ta l C e l l Volume:

The e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r process r e q u i r e s two

stages o f feed shredding w h i l e t h e o the r two i n c i n e r a t o r s r e q u i r e o n l y one

( r e f e r t o Table 19). A sma l le r waste fragment s i z e f o r t h e e l e c t r i c a l l y heated

u n i t i s needed t o promote complete combustion o f t h e wastes f o r severa l

reasons:

The wastes a r e n o t tumbled or a g i t a t e d as t hey a re w i t h t h e r o t a r y

k i l n . Combustion a i r must reach t h e unburned waste by d i f f u s i o n .

The res idence t i m e i s s h o r t compared t o t h a t o f t h e gas-heated

c o n t r o l l e d - a i r i n c i n e r a t o r , which has batch ash removal.

Heat t r a n s f e r t o t h e waste i s by r a d i a t i o n f rom t h e glowbars. For

most e f f e c t i v e hea t i ng , t h e glowbars must be p o s i t i o n e d w i t h i n inches

of t h e woven w i r e conveyor. Th i s l i m i t s t h e maximum s i z e o f waste

f ragments t h a t can be 1 oaded on to t h e conveyor.

For t h e economic comparison, f eed ing i s accomplished us i ng a waste meter-

i n g pump s i m i l a r t o t h a t demonstrated on t h e SRL-PWI system (Char leswor th and

McCampbell 1985) f o r t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r process. The gas-

heated c o n t r o l l e d - a i r process has a t o p l o a d i n g chu te w i t h a i r l o c k doors f o r

f eed ing w h i l e t h e r o t a r y k i l n process uses a v i b r a t i n g conveyor and feed shut -

t l e system s i m i l a r t o t h a t used on t h e INEL-PREPP k i l n process.

Another b a s i c d i f f e r e n c e between t h e i n c i n e r a t i o n processes i s t h e

r e q u i r e d of f -gas capac i t y . S ince t h e e l e c t r i c a l l y heated u n i t does n o t have

a d d i t i o n a l combustion a i r and combustion gases f rom a gas burner system, t h e

of f -gas f l o w r a t e i s about one f i f t h o f t h a t r e q u i r e d f o r t h e two gas-heated

i n c i n e r a t i o n processes. Th i s reduces bo th t h e equipment cos ts and f a c i l i t y

cos ts assoc ia ted w i t h t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r process o f f - gas

system. For t h e c o s t comparison, t h e r o t a r y k i l n o f f - gas system has a cyc lone

as t h e f i r s t s tage c l e a n i n g dev ice s i nce h i g h p a r t i c l e ca r r yove r i s a t r a i t o f

t h e process.

The c a p i t a l c o s t es t imates a re presented i n Table 20 showing t h e cos t

breakdown between t h e f a c i l i t y and process equipment. Cost da ta f o r t h e feed

systems and i n c i n e r a t o r s were ob ta ined f rom p o t e n t i a l manufacturers w h i l e t h e

o f f -gas system cos t s were d e r i v e d f rom ac tua l cos t s o f t h e i n s i t u

TABLE 20. C a p i t a l Costs f o r I n c i n e r a t i o n Processes ($1000)

C a p i t a l E l e c t r i c a l l y Heated Gas-Heated Component C o n t r o l 1 ed-Ai r C o n t r o l 1 e d - A i r R o t a r y K i 1 n

F a c i l i t y 5,360 5,420 6,520

Equipment Cost :

Feed System

I n c i n e r a t o r

Of f -Gas System 440 1,150 1,260

S u b t o t a l Equipment 1,520 1,5417 2,245

T o t a l C a p i t a l Cost 6,880 6,960 8,765

3 ( a ) Cost based on $11,60O/m h o t c e l l volume. I n c l u d e s c o s t o f h o t c e l l w i t h m a n i p u l a t o r s and windows, an overhead crane, o p e r a t i n g g a l l e r y , r e a r f a c e g a l l e r y , aqueous s t o r a g e , and c e l l v e n t i l a t i o n . F a c i l i t y c o s t does n o t i n c l u d e t h o s e c o s t s wh ich a r e i ndependen t o f t h e p r o c e s s s i z e such as a n a l y t i c a l l a b o r a t o r y and o f f i c e s .

v i t r i f i c a t i o n o f f -gas t r e a t m e n t systems (Timmerman and Oma 1984). O f f -gas

system c o s t s were a d j u s t e d t o t h e r e q u i r e d equipment c a p a c i t y u s i n g t h e s i x -

t e n t h s - f a c t o r r u l e ( P e t e r s and Timmerhaus 1968) and were e s c a l a t e d t o 2nd

q u a r t e r 1985 d o l l a r s . F a c i l i t y c o s t s were based on $11,600 p e r c u b i c meter of

h o t c e l l volume p l u s $85,000 f o r one h o t c e l l crane. F a c i l i t y c o s t s i n c l u d e

t h e h o t c e l l w i t h m a n i p u l a t o r s and windows, o p e r a t i n g g a l l e r y , r e a r f a c e

g a l l e r y , aqueous s t o r a g e , and c e l l v e n t i l a t i o n . These c o s t s were based on a

1981 P a c i f i c Nor thwes t L a b o r a t o r y c o s t e s t i m a t e f o r a Ryproduc t Recovery

F a c i l i t y and were e s c a l a t e d t o 1985 d o l l a r s .

To d e t e r m i n e equipment and f a c i l i t y s i z e and annual o p e r a t i n g c o s t s , t h e

f o l l owing assumpt ions a r e made:

38,500 k g o f TRU wastes a r e shredded and i n c i n e r a t e d each yea r .

I n c i n e r a t o r i s o p e r a t e d t h r e e s h i f t s pe r day d u r i n g waste p r o c e s s i n g

campai gns.

I n c i n e r a t o r i s on l i n e 20% o f t i m e and t h e r e a r e 250 w o r k i n g days p e r

y e a r ( t h i s co r responds t o a p p r o x i m a t e l y 40 k g l h r p r o c e s s i n g

c a p a c i t y ) .

Labor d i r e c t r a t e s a re : - $25/hr f o r s u p e r v i s o r and eng ineer

- $21/hr f o r maintenance, o p e r a t o r and r a d i a t i o n t e c h n i c i a n

Labor overhead i s 110%.

C a p i t a l equipment i s c o s t e d based on t h e f o l l o w i n g i n f o r m a t i o n :

- Equipment l i f e = 15 y e a r s

- F a c i l i t y l i f e = 30 y e a r s

- Salvage v a l u e = O

- Real d i s c o u n t r a t e ( i ) = 3% p e r annurn ( t h e c o s t o f i n f l a t i o n f r e e

money) 4 - Present w o r t h f a c t o r i n y e a r n (pwf,) = 1

( 1 + iIn

Table 2 1 g i v e s t h e e s t i m a t e d annual l a b o r r e q u i r e m e n t and o p e r a t i n g c o s t s

f o r each i n c i n e r a t i o n process. Annual l a b o r r e q u i r e m e n t s f o r s u p e r v i s i o n and

o p e r a t i o n personne l i s j udged t o be i d e n t i c a l f o r a l l t h r e e processes.

TABLE 21. Annual Labor Requireme t and O p e r a t i n g Cost E s t i m a t e f o r I n c i n e r a t i o n Processes Pay

I n c i n e r a t i o n Process Annual D i r e c t Labo r , E l e c t r i c a l l y Hea ted Gas-Heated

man y e a r s C o n t r o l 1 e d - A i r C o n t r o l 1 e d - A i r R o t a r y K i l n

S u p e r v i s o r ' 0.6 Eng i nee r 0.3 Ma in tenance 1.1 Opera to r 2.4 R a d i a t i o n T e c h n i c i a n 0.6

T o t a l Labor 5.0 4.6 5.9

Annual Cos t , $1000

Labo r : D i r e c t 217 Overhead ( 110%) 239

I n c i n e r a t o r H e a t i n g : E l e c t r i c i t y 7 D i e s e l #1

T o t a l Annual Cos t 463

( a ) F i x e d o p e r a t i n g c o s t s w h i c h a r e t h e same f o r a l l i n c i n e r a t o r o p t i o n s a r e n o t i n c l u d e d . The c o s t a n a l y s i s o n l y i n c l u d e s c o s t s j u d g e d t o have a dependency on t h e p r o c e s s s e l e c t e d .

6 7

Eng ineer ing and maintenance personnel requi rements a re s l i g h t l y lower f o r t h e

gas-heated c o n t r o l l e d - a i r process because o f lower o v e r a l l maintenance. Main-

tenance and r a d i a t i o n t e c h n i c i a n personnel requi rements a re h i g h e s t f o r t h e

r o t a r y k i l n process p r i m a r i l y because t h e r e f r a c t o r y o f t h e k i l n r e q u i r e s more

f requen t replacement than f o r t h e two c o n t r o l l e d - a i r processes.

The p resen t -wor th method (Pe te rs and Timmerhaus 1968) was used t o ca l cu -

l a t e t h e cos t s of t h e t h r e e i n c i n e r a t i o n processes f o r a 30 year o p e r a t i n g

per iod. Th is was done by app l y i ng t h e f a c i l i t y cos t t o year zero, t h e equip-

ment c o s t t o yea rs ze ro and s i x t een , and t h e ope ra t i ng c o s t s t o yea rs 1 th rough

30. The t o t a l cash out1 ay i n each year was niul t i p 1 i e d by t h e p resen t -wor th

f a c t o r and then summed f o r a l l t h e years t o generate t h e p resen t -wor th o f each

i n c i n e r a t i o n process. The present wor th c o s t o f t h e e l e c t r i c a l l y hea ted

c o n t r o l l e d - a i r and gas-heated c o n t r o l l e d - a i r i n c i n e r a t i o n processes were l owes t

a t $16.3 M and $16.9 M r e s p e c t i v e l y . Due t o bo th h i ghe r c a p i t a l and o p e r a t i n g

cos ts , t h e p resen t wor th o f t h e r o t a r y k i l n processes was c a l c u l a t e d t o be

$20.8 M. These cos t s a re n o t ad jus ted f o r f u t u r e i n f l a t i o n .

FIGURE-OF-MERIT ANALYSIS

A five-member panel , c o n s i s t i n g of t h e au thors and two o the r t e c h n i c a l l y

qua,l i f i e d persons, was es tab l i shed t o conduct t h e FOM eva l u a t i o n o f t h e i n c i n -

e r a t i o n processes. The panel members had v a r i e d t e c h n i c a l backgrounds i n areas

re1 a ted t o t h e eva l u a t i on i n c l u d i n g : i n c i n e r a t o r t e s t i n g , r a d i o a c t i v e process

development, waste fo rm development, of f -gas t rea tment , CH and RH equipment and

f a c i l i t y design, and waste form c h a r a c t e r i z a t i o n . The FOM eval u a t i o n was pe r -

formed as f o l l o w s :

I n c i n e r a t i o n o p e r a t i n g requi rements were d e f i n e d ( f e e d composi t ion,

feed r a t e , etc.).

A l i s t o f e v a l u a t i o n c r i t e r i a was prepared by t h e panel members.

The l i s t was d i v i d e d i n t o p r imary and secondary c r i t e r i a .

Performance measures used t o judge t h e c r i t e r i a were def ined.

Panel members independent l y assigned weights t o t h e p r ima ry and

secondary c r i t e r i a . For each s e t of c r i t e r i a , t h e sum of weights i s

u n i t y . The i n d i v i d u a l we igh t ings f o r each c r i t e r i a were then

averaged t o o b t a i n group we igh t ings t h a t were used t o generate a FOV

model.

Panel members independent l y assigned r a t i n g s o f 1 t o 10 f o r each o f

t h e secondary c r i t e r i a f o r t h e t h r e e candidate i n c i n e r a t i o n

processes.

A FOM number f o r each cand ida te process was c a l c u l a t e d f o r each panel

member and f o r t h e group as a whole. Th is was done by m u l t i p l y i n g

t h e p r imary c r i t e r i a we igh t i ng by t h e secondary c r i t e r i a we igh t i ng

and by t h e group r a t i n g f o r t h a t c r i t e r i a .

The FOM model was t e s t e d f o r s e n s i t i v i t y .

The panel members were g iven t h e o p p o r t u n i t y t o r e v i s e t h e i r we igh t -

i n g ~ and r a t i n g s and a f i n a l FOM model was developed.

The f i n a l i z e d FOM model i s shown i n Table 22 a long w i t h t h e group r a t i n g s

and FOM va lues f o r t h e t h r e e i n c i n e r a t i o n processes. The p r imary c r i t e r i a

se l ec ted were p roduc t , equipment and ope ra t i ng cons idera t ions . Secondary

c r i t e r i a and t h e assoc ia ted performance measures a re a l s o shown i n Table 22.

The maximum poss i h l e FOM va lue a process cou ld ach ieve u s i n g t h i s model i s a

10; The FOM numbers d e r i v e d f rom t h e model were 7.0 f o r t h e gas-heated

c o n t r o l l e d - a i r i n c i n e r a t o r , 6.1 f o r t h e e l e c t r i c a l l y heated c o n t r o l l e d - a i r

i n c i n e r a t o r , and 5.8 f o r t h e r o t a r y k i l n i n c i n e r a t o r . The r a t i n g s a re r a t h e r

t i g h t l y grouped; however, t h e FOM r a t i n g s based on each panel member's i n d i v i -

dual e v a l u a t i o n were c o n s i s t e n t l y h i g h e s t f o r t h e gas-heated c o n t r o l l e d - a i r

process. The i n d i v i d u a l FOM e v a l u a t i o n r e s ~ ~ l t s f o r t h e f i v e panel members a r e . 1 i s t e d i n Table 23. Four of t h e f i v e panel members ranked t h e e l e c t r i c a l l y

heated c o n t r o l l e d - a i r process second and t h e r o t a r y k i l n process t h i r d w h i l e

one of t h e panel members reversed t h i s rank ing. The d i f f e r e n c e between t h e FGM &

number f o r t h e second and t h i r d ranked processes i s o n l y 0.3 and, as such, t hey .

a re cons idered about equal i n o v e r a l l e f f ec t i veness .

The e l e c t r i c a l l y heated c o n t r o l l e d - a i r i n c i n e r a t o r ' s s t r o n g p o i n t s a re t h e

minimal o f f - gas t rea tment requi rements , l ow ash/ res idue ho ldup i n t h e p r imary

chamber, l o n g equipment l i f e , and t h e a b i l i t y t o process d i f f e r e n t feed m a t e r i -

a l s ( a l l o f these areas rece i ved r a t i n g s o f g rea te r than 8). The main weak-

nesses o f t h e process were t h e i n a b i l i t y t o burn ou t t h e r e s i d u a l carbon, t h e

h i g h l e v e l o f feed p re t rea tment r equ i r ed , t h e presence o f k l i n k e r s i n t h e ash,

and t h e d i f f i c u l t y of remote maintenance ( these areas rece i ved rank ings o f l e s s

than 5).

The h i ghe r r a t e d f e a t u r e s of t h e gas-heated c o n t r o l l e d - a i r i n c i n e r a t o r a r e

t h e complete burnout of r e s i d u a l carbon i n t h e ash and t h e s t a t e o f development

(severa l u n i t s a re ope ra t i ona l w i t h bo th TRU and LL wastes). The process was

r a t e d g rea te r than 5.6 f o r a l l of t h e o the r e v a l u a t i o n c r i t e r i a and as stlch,

t h e r e a re no process weaknesses t h a t s tand out.

The r o t a r y k i l n ' s g r e a t e s t s t r e n g t h i s i t s a b i l i t y t o process d i f f e r e n t

feed m a t e r i a l s i n c l u d i n g so l i d s , 1 i q t r i ds and sludges w i t h up t o 100% noncom-

b u s t i b l e content . The k i l n a l s o r ece i ved a h i g h r a t i n g f o r feed p re t r ea tmen t

because i t can hand le r e l a t i v e l y l a r g e p ieces o f feed m a t e r i a l . The process

rece i ved r a t i n g s of l e s s than 5 f o r t r a c e element r e t e n t i o n i n t h e r es i due ,

o f f - gas t rea tment requi rements , maintenance requi rements and personnel expo-

sure. Because of t h e c o n t i n u a l t umb l i ng a c t i o n assoc ia ted w i t h k i l n r o t a t i o n ,

phys i ca l en t ra inment of t h e ash p a r t i c l e s was noted bo th i n terms o f a h i g h

car ryover of s e m i v o l a t i l e and n o n v o l a t i l e t r a c e elements and i n terms o f a h i g h

p a r t i c u l a t e l o a d i n g i n t h e off-gas. The h i g h maintenance requi rements and h i g h

personnel exposures a r e r e l a t e d t o one another. Remote maintenance i tems add

t o t h e personnel exposure assoc ia ted w i t h t h a t maintenance. The des ign r e f r a c -

t o r y l i f e f o r t h e r o t a r y k i l n i s es t imated t o be 3 years as compared t o 5 f o r

t h e c o n t r o l l e d - a i r i n c i n e r a t o r s . Replacement o f t h e r e f r a c t o r y adds t o bo th

t h e remote maintenance requi rements and personnel exposures assoc ia ted w i t h t h e

r o t a r y k i l n .

COST E F F E C T I V E N E S S A N A L Y S I S

The c o s t e f f e c t i v e n e s s r a t i o of each i n c i n e r a t i o n process i s c a l c u l a t e d by

d i v i d i n g t h e p resen t wor th by t h e FOM number and then n o r m a l i z i n g t h e r a t i o s

such t h a t t h e most c o s t e f f e c t i v e system has a r a t i o o f u n i t y . k i n g t h i s technique, t h e most c o s t e f f e c t i v e i n c i n e r a t i o n process i s t h e gas-heated

TABLE 22. F i gu re -o f -Mer i t Model f o r I n c i n e r a t o r Process Comparison

Pr imary C r i t e r i a Secondary C r i t e r i a D e s c r i p t i o n Weight D e s c r i p t i o n Weight Performance Measure

E l e c t r i c a l l y Heated Cont ro l l e d - A i r Performance Measure R a t i n g FOM Value

Product 0.376 E l i m i n a t i o n o f 0.31 Residual Carbon Cons idera t ions Combustibles Residual A1 Metal

11.0% o f ash 3.2 0.37 Most A1 as metal

1.9% o f ash 8.2 0.96 5.4 0.63 6.7% i n ash Most A1 as meta l Most A1 as meta l

Net Reduct ion 0.45 Volume Reduct ion Weight Reduct ion

10.8 ( l a r g e r meta l p ieces 6.8 1.15 4.2 s o r t e d f rom feed)

Trace Element R e t e n t i o n 0.16 F r a c t i o n of Trace Element Reta ined i n Residue

Ce/Sr - 39% 6.0 0.36 CS - 29% MO - 38% ( M a t e r i a l Balance - 39%)

Ce/Sr - 70% 6.6 0.40 Ce/Sr - 55% 4.0 0.24 CS - 28% CS - 36% Mo - 49% MO - 58% ( M a t e r i a l Balance - 71%) ( M a t e r i a l Balance - 75%)

a Ash P a r t i c l e Size 0.08 Presence o f K l i n k e r s Carbon r i c h wood chunks, 4.4 0.13

most HEPA f i l t e r A1 spacers unfused

Fused A1 f rom HEPA sep- 6.6 0.20 Fused A1 f rom HEPA 6.4 0.19 a r a t o r s and fused g l a s s separa to rs f rom HEPA media

TOTAL 1.00

Equipment 0.336 S t a t e o f Development 0.15 Nuclear Systems i n SRL ( c o l d s t a r t u p FY-85) 6.2 0.31 Cons idera t ions Progress

INEL ( o p e r a t i o n a l FY-85) 8.0 0.40 INEL ( f i n a l c o n s t r u c t i o n ) 5.8 0.29 LANL (LL & TRU o p e r a t i o n ) ORNL (des ign complete) SRL (LL o p e r a t i o n FY-85) SRL ( i n i t i a l des ign)

Feed Pret reatment 0.13 F e e d p a r t i c l e s i z e Requirements L i m i t s

2 i n . max (L+W) 3.8 0.17 (Accura te m e t e r i n g rqd.)

18 i n . max (L+W) 7.4 0.32 24 i n . max (L+W) 8.4 0.37

Off-Gas Requirements 0.16 Off-Gas P a r t i c u l a t e Loading

O f f -Gas Vol ume

2.2 g/kg waste 8.8 0.47 14 g/kg waste 5.8 0.31 4 .O 0.22 69 g/kg waste

10 scm/kg waste 50 scm/kg waste 50 scm/kg waste

Product Hand1 i n g 0.17 Ash/Residue Holdup Requi rements

20% (Can be reduced by 5.8 0.33 6% (can be reduced by 7.2 0.41 redes ign) redes ign)

Remote Mai n t a i n a b i 1 i t y 0.28 Idumber of Major Maintenance I tems I n s i d e C e l l

( 8 ) Two shredders, feed 4.8 0.45 pump, i n c i n e r a t o r conveyor, r o l l ers , be1 t c e n t e r i n g system, ash dropout door, hea te rs

( 7 ) Shredder, a i r - l o c k 7.6 0.72 (11) Shredder, feed 5.0 0.47 door, c h a r g i n g door, ash conveyor, feed s h u t t l e , d i scharge ram, ash dropout a i r - l o c k door, c h a r g i n g door, u n d e r - f i r e a i r p o r t s , door, r o t a t i n g seal , k i l n burners r o l l e r s , d r i v e system, ash

dropout door, s l i d i n g T/C connectors, bu rners

Equi pment L i f e 0.11

TOTAL 1 .OO

T o t a l System L i f e R e f r a c t o r y L i f e

20 y r des ign 8.0 0.30 5 y r des ign (10 y r max)

2 f o r i n c i n e r a t o r 7.4 0.47 P o s s i b l e by over feed ing No combus t ib le f u e l s used

15 t o 20 y r des ign 7.8 0.29 10 t o 15 y r des ign 5.6 0.21 5 y r des ign (10 yr max) 2 y r des ign (10 y r max)

2 f o r i n c i n e r a t o r 7.0 0.44 2 f o r i n c i n e r a t o r 7 .O 0.44 P o s s i b l e by over feed ing P o s s i b l e by o v e r f e e d i n g Fuel l i n e break Fuel l i n e break

a. Opera t ing 0.288 C o n t r o l a b i l i t y / S a f e t y 0.22 Cons idera t ions

Number o f Operators P r e s s u r i z a t i o n

P o t e n t i a1 F i r e P M e n t i a l

A b i l i t y t o Process 0.23 D i f f e r e n t Feeds

Feed Types Noncombustible L i m i t

S o l i d s & s ludges 8.2 0.54 Up t o 100%

S o l i d s & l i q u i d s 7 .O 0.46 S o l i d s , l i q u i d s & s ludges 9.0 0.60 50% (depends on waste) Up t o 100%

Maintenance Requirements

Number Maintenance I tems

Percent Downtime

Personnel Exposure 0.22

T o t a l 1 .OO TOTAL 1 .OO

5.2 0.33

TOTAL FOM VALUE 6.1

7.2 0.46 4.6 0.29

TOTAL FOM VALUE 7 .O TOTAL FOM VALUE 5.8

TABLE 23. F i gure-of-Meri t Resu l t s f o r I n d i v i d u a l Panel Members

E l e c t r i c a l 1 y Heated Gas-Heated Panel Member Cont ro l 1 ed-Ai r Contro l 1 ed-Ai r Rotary K i 1 n

1 5.7 6.0 3.9

2 6.1 6.5 5.4

3 5.5 7.1 6.3

4 6.4 7.5 6.1

5 6.6 7.4 6.5

c o n t r o l l e d - a i r u n i t w i t h a c o s t e f f e c t i v e n e s s r a t i o o f 1.0 f o l l owed by t h e

e l e c t r i c a l l y heated c o n t r o l l e d - a i r process w i t h a r a t i o o f 1.2 and t h e r o t a r y

k i l n process w i t h a r a t i o of 1.5. Rased on t h i s ana l ys i s , t h e gas-heated con-

t r o l l e d a i r i n c i n e r a t o r i s judged supe r i o r f o r t h e commercial TRU waste a p p l i -

c a t i o n and i s se l ec ted as t h e re fe rence process f o r f u r t h e r development.

The t h r e e i n c i n e r a t o r s t e s t e d a r e a l l e x c e l l e n t p ieces o f equipment and

each has i t s advantages f o r d i f f e r e n t i n c i n e r a t i o n app l i ca t i ons . The s e l e c t i o n

o f t h e g a s - f i r e d c o n t r o l l e d - a i r u n i t o n l y a p p l i e s , t o t h i s TRU waste a p p l i c a -

t i o n . The e l e c t r i c a l l y heated c o n t r o l l e d - a i r or r o t a r y k i l n systems a re 1 i k e l y

t o be r a t e d supe r i o r f o r o t he r waste a p p l i c a t i o n s .

DEVELOPMENT NEEDS

DEVELOPMENT NEEDS

The i n c i n e r a t o r FOM and economic a n a l y s i s shows t h e gas-heated c o n t r o l l e d -

a i r i n c i n e r a t i o n system t o be t h e most c o s t e f f e c t i v e f o r p r o c e s s i n g commer-

c i a l l y genera ted TRU wastes. One s t a g e o f s h r e d d i n g i s adequate f e e d p r e -

t r e a t m e n t t o produce a waste p a r t i c l e s i z e t h a t can be e f f e c t i v e l y passed

t h r o u g h t h e i n c i n e r a t o r . W h i l e t h e i n i t i a l t e s t s c o n f i r m e d t h a t t h e t e c h n o l o g y

i s a d a p t a b l e t o t h e TRU waste t r e a t m e n t a p p l i c a t i o n , t h e s e t e s t s d i d n o t d e t e r -

mine p r o c e s s i n g ranges, o p t i m i z e t h e o p e r a t i n g parameters , o r e v a l u a t e t h e

equipment des ign f o r remote o p e r a t i o n . Several development needs f o r t h e

shredder and gas-heated c o n t r o l l e d - a i r i n c i n e r a t i o n system a r e l i s t e d below.

I d e n t i f y and t e s t methods t o f i x r a d i o a c t i v e con taminan ts on HEPA

f i l t e r s p r i o r t o t h e s h r e d d i n g process. O u r i n g t h e s h r e d d i n g t e s t s ,

i t was n o t e d t h a t a p o r t i o n of t h e d u s t c o n t a i n e d on loaded HEPA

f i l t e r s was r e 1 eased.

Develop and t e s t a mechan ica l d e v i c e f o r f e e d i n g wood-framed HEPA

f i l t e r s t o t h e shredder. I n o r d e r f o r t h e shredder t e e t h t o e f f e c -

t i v e l y grab t h e edges o f t h e wood-framed HEPA f i l t e r s d u r i n g t h e

shredder t e s t s , i t was necessary t o manua l l y r e p o s i t i o n them a t r e g u -

1 a r i n t e r v a l s .

Tes t a shredder t h a t i s programmed f o r p e r i o d i c a u t o m a t i c r e v e r s a l

cyc les . Such a shredder c o u l d f u r t h e r reduce t h e p a r t i c l e s i z e o f

t h e wastes and more e a s i l y p rocess d i f f i c u l t t o s h r e d i t e m s such as

meta l - f ramed HEPA f i l t e r s . - E v a l u a t e t h e i n c i n e r a t o r o f f - g a s t r e a t m e n t requ i remen ts and s e l e c t a

r e f e r e n c e o f f - g a s t r e a t m e n t system. Roth wet and d r y des igns s h o u l d

be c o n s i d e r e d as w e l l as t h e need f o r f i s s i o n p r o d u c t so rbe rs . C

Determine impac t of r e s i d u a l A1 me ta l c o n t e n t i n t h e ash on subse-

quent cement ing o p e r a t i o n s and p r o d u c t performance.

E s t a b l i s h t h e o p e r a t i n g ranges of t h e i n c i n e r a t o r d u r i n g independent

f e e d i n g o f each d i f f e r e n t waste compos i t i on (i.e., GPT, SAC, wood

f ramed HEPAs, and me ta l f ramed HEPAs).

Prepare preconceptua l and conceptual designs o f t h e i n t e g r a t e d

shredder, i n c i n e r a t o r , and o f f - gas system.

Test a p r o t o t y p e shredder, i n c i n e r a t o r , and o f f -gas t rea tment system

w i t h s imu la ted TRU wastes. The shredder should have an op t im i zed

c u t t e r c o n f i g u r a t i o n . The i n c i n e r a t o r should have an improved ram

and ash d ischarge des ign t o reduce t h e ash l r es i due ho ldup w i t h i n t h e

p r imary chamber. The system should a l s o have remote des ign f ea tu res

t o pe rm i t ope ra t i on and maintenance by master man ipu la to r s and an

overhead crane.

Perform r a d i o a c t i v e v e r i f i c a t i o n t e s t i n g o f t h e i n t e g r a t e d shredder,

i n c i n e r a t o r , and of f -gas system.

REFERENCES

REFERENCES

A1 1 ied-General Nuclear Services. 1978. S tud ies and Research Concerning BNFP--Storage and Handl ing o f Wastes f rom Uranium Fuel Processing A1 t e r n a t i v e s . AGNS-1040-3.3-3.4, A1 1 i e d General Nucl ear Serv ices, Barnwel l , South Caro l ina.

Bordiun, L. C., and A. L. Taboas. 1980. "USDOE Rad ioac t i ve Waste I n c i n e r a t i o n Techno1 ogy: S ta tus Review," CONF-800334-5, 2nd DOE Environmental Con t ro l Symposium, Reston, V i r g i n i a , March 17, 1980.

Bue l t , J. L., V. F. F i t z P a t r i c k , and C. L. Timmerman. 1985. " E l e c t r i c a l Technique f o r In -P l ace S t a b i l i z a t i o n o f Contaminated S o i l s." Chemical Engineer ing Progress, March 1985, pp. 43-48.

Char lesworth, D. L., and M. Hi1 1. 1985. " E l e c t r i c a l l y F i r e d I n c i n e r a t i o n o f Combustible Rad ioac t i ve Waste." CONF-850744-1, presented a t t h e 1985 Nat iona l Conference on Environmental Engineer ing, J u l y 1-3, 1985, Boston, Massachusetts.

Char lesworth, D. L., and R. B. McCampbell . 1985. "Design of a PU-238 Waste I n c i n e r a t i o n Process." Waste Management 1985, Volume 1, pp. 301-307. U n i v e r s i t y o f Ar izona, Tucson, Ar izona.

Da rne l l , G. R., and W. C. A l d r i ch . 1983. Low-Speed Shredder and Waste S h r e d d a b i l i t y Tests. EGG-2226, EG&G Idaho, Inc., Idaho F a l l s , Idaho.

Darr , D. G. 1983. Waste Model C h a r a c t e r i z a t i o n Study: Eva lua t ion o f R e ~ r o c e s s i n a Waste Est imates. DOEl3156lFR-01. A l l i ed -Genera l Nuclear

- 8 d

Serv ices , Barnwel l , South Caro l ina.

Hedahl , T. G. 1982a. Con t ro l 1 ed-Ai r and Rotary-Ki 1 n I n c i n e r a t i o n Proo f -o f - P r i n c i p l e Tests. EGX-WN-5841. tG&G Idaho, Inc., Idaho Fa1 1 s, Idaho.

Hedahl , T.G. 1982b. Off-Gas Treatment System Process Exper imental P i1 o t P l a n t (PREPP) K-T Evaluat ion. EGG-WM-5866, EG&G Idaho, Inc., Idaho F a l l s , Idaho.

s

K l i n g l e r , L. M. 1981. Mound Cyclone I n c i n e r a t o r Volume 1, D e s c r i p t i o n and Performance. MLM-MU-81-72-0003, Mound F a c i l i t y , Miamisburg, Ohio.

L Montgomery, 0. R. 1984. Consol i d a t i o n of Sirnul a ted Nuclear Metal 1 i c Waste by Vacuum Core1 ess I n d u c t i o n Me1 t i n q . PNL-5254. P a c i f i c Northwest Laboratorv .

< ~

R ichland, Washington.

Neuls, A. S., W. E. Oraper, R. A. Koenig, J. M. Newmyer, and C. L. Warner. 1982. C o n t r o l l e d A i r I n c i n e r a t i o n f o r Rad ioac t i ve Waste - Volume 1. LA-UR-82-2282, Los A1 amos Nat iona l Laboratory , Los A1 amos, New Mexico.

P a t t e n g i l l , M. G., F. A. Brunner, J. L. Fasso, S. R. M i t che l , and R. T. Praskac. 1982. Rotary K i l n I n c i n e r a t o r Engineer ing Tests on Simul a ted Transuran ic Wastes f rom t h e Idaho Nat iona l Eng ineer ing Laboratory . EGG-2223, EG&G Idaho, Inc., Idaho F a l l s , Idaho.

Perkins, R. L. 1976. I n c i n e r a t i o n F a c i l i t i e s f o r Treatment o f Rad ioac t i ve Wastes: A Review. LA - 6252 , Los Alamos Nat iona l Laboratory , Los Alamos, New Mexi co.

Peters, M. S., and K. D. Timmerhaus. 1968. P l a n t Oesign and Economics f o r Chemical Engineers, Second Ed i t i on . McGraw-Hill Rook Company, New York, New York.

ROSS, W. A., K. J. Schneider, J. L. Swanson, K. M. Yasutake, and R. P. A l len . 1985. ~ r e l i m i n a r y Ana lys is of Treatment S t r a t e g i e s f o r T ransuran ic Wastes from Reprocessing P lan ts . PNL-5130, P a c i f i c Northwest Laboratory , R ich land, 'hashi ngton.

T a i t , T. D. 1983. Demonstrat ion Test Assessment of t h e S lagg ing P y r o l y s i s I n c i n e r a t o r f o r Process ing I N t L T ransuran ic Waste, tG&G-TF-6192, Idaho Nat iona l Eng ineer ing Laboratory , Idaho Fa1 1 s, Idaho.

Timmerman, C. L., and K. H. Oma. 1984. An I n S i t u V i t r i f i c a t i o n P i l o t - S c a l e Rad ioac t i ve Test. PNL-5240, P a c i f i c Northwest Laboratory , Rich1 and, Washington.

Treat , R. L., R. 0. Lokken, and M. J. Schl iebe. 1983. I n c i n e r a t i o n o f a Typ ica l LWR Combust ib le Waste and Ana l ys i s o f t h e R e s u l t i n g Ash. NUREGICR-3087, Nucl ear Regul a t o r y Commi ss ion, Washington, D.C.

U. S. DOE. 1979. Technol ogy f o r Commerci a1 Rad ioac t i ve Waste Management, Vol. 1. DOEIET-0028, U.5. Dept. of tnergy, Washington, D.C.

Waters, R. Y., and M. Volodzko. 1983. "The Impact o f PVC on Waste I n c i n e r a t i o n Systems." Presented a t American Nucl ear Soc ie t y 11 th B i e n n i a l Conference on Reactor Opera t ing Exper ience, August 1-3, 1983, S c o t t s c a l e, Arizona.

Westsik, J. Y., J r . 1984. C h a r a c t e r i z a t i o n of Cement and Bitumen Waste Forms Conta in ing Simulated Low-Level Waste I n c i n e r a t o r Ash. NURtG/CR - 3/98, Nuclear Regul a t o r y Commission, Washington, O.C.

Z i eg l e r , D. L. 1982. Technol ogy Documentation f o r Se lec ted Radwaste I n c i n e r a t i o n Systems. Rl-P - 3411 , Rocky t l a t s P lan t , Golden Colorado.

DISTRIBUTION

No. o f Copies

No. o f COP i es

OFFSITE

b' J. E. R a u b l i t z , NE-24 . DOE O f f i c e o f Termina l Waste

D isposa l II Remedial A c t i o n

J GTN Washington, D.C. 20545

J. A. Coleman, NE-25 DOE O f f i c e o f Termina l Waste

D isposa l R Remedial A c t i o n GTN Washington, D.C. 20545

0. J. McGoff, NE-23 DOE O f f i c e o f Termina l Waste

D isposa l & Remedial A c t i o n GTN Washington, D.C. 20545

J. A. T u r i . NE-25

30 DOE Techn ica l I n f o r m a t i on Center

J. W. Bennet t , RW-20 DOE O f f i c e o f Terminal Waste

n i s p o s a l R Remedial A c t i o n GTN Washington, D.C. 20545

C. R. Cooley, RW-4 r)OE O f f i c e o f Termina l Waste

D isposa l 8 Remedial A c t i o n GTN Washington, D.C. 20545

M. W. F r e i DOE O f f i c e o f Terminal Waste

D isposa l h Remedi a1 A c t i o n GTN Washington, D.C. 20545

DOE O f f i c e o f Termina l Waste R. Rusche, RY-1 Disposa l R Remedial A c t i o n DOE O f f i c e of Terminal Waste

GTN D isposa l R Remedial A c t i o n Washington, D.C. 20545 GTN

W. R. V o i g t , NE-20 DOE O f f i c e o f Termina l Yaste

D isposa l & Remedial A c t i o n GTN Washington, D.C. 20545

H. F. Wa l te r , NE-25 DOE O f f i c e o f Termina l Waste

D isposa l h Remedial A c t i o n GTN Washington, D.C. 20545

J. R. l o r n , NE-25

Washington, D.C. 20545

R. S t e i n , RW-?3 DOE O f f i c e o f Termina l Waste

O i sposal R Remedial A c t i o n GTN Washington, D.C. 20545

n. R. L e C l a i r e , DP-12 DOE O f f i c e o f Defense Waste 8

Ryproducts Management GTN- Washington, DC 30545

DOE O f f i c e o f Termina l Waste R. D. Walton, Jr., DP-123 Disposa l & Remedial A c t i o n DOE O f f i c e o f Defense Waste h

GTbI Ryproducts Management Washington, D.C. 20545 GTN

Washington, DC 20545

No. of Copi es

No. o f Copi es

M. J. Re11 D i v i s i o n o f Nuclear M a t e r i a l s

Safety & Safeguards Mai l S t a t i o n 881-SS Nucl ear Regul a t o r y Commi s s i on Washington, DC 20555

A. T. C l a r k D i v i s i o n o f Fuel M a t e r i a l Safety Nucl ear Regul a t o r y Commission Washington, DC 20555

W. J. D i r cks O f f i ce o f t h e Execu t i ve

D i r e c t o r f o r Operat ions Ma i l S t a t i o n 6209 Nucl ear Regul a t o r y Cornrni s s i on Washington, DC 20555

0. Egan Environmental P r o t e c t i o n Agency O f f i c e o f Rad ia t i on Programs 401 M S t r e e t , S.W. Washington, OC 20460

G. L. Sjoblom Environmental P r o t e c t i o n Agency O f f i c e of Rad ia t i on Programs 401 Y St ree t , S.W. Washington, DC 20460

R. Y. Lowrey DOE A1 buquerque Operat ions

O f f i c e P.O. Rox 5400 A1 buquerque, NM 87185

(3. M c G o u ~ ~ DOE A1 buquerque Operat ions

O f f i c e P. 0. Box 5400 A1 buquerque, NM 87185

M. H. McFadden DOE A1 buquerque Operat ions

O f f i c e P.O. Box 5400 A1 buquerque, NM 87185

W . 4. Hannum OOE West Val 1 ey Operat ions

O f f i c e P.O. Box 191 West Va l ley , NY 14171

J. 0. Harnric 90E Idaho Operat ions O f f i c e 550 Second S t r e e t Idaho Fa1 1 s, I D 83401

J. R. W h i t s e t t DOE Idaho Operat ions O f f i c e 550 Second S t r e e t Idaho Fa1 1 s, I 9 83401

L. Lanni DOE San Fr anc i sco Oper a t i ons 1333 Rroadway San Franc isco, CA 94612

W. E. Pasko DOE Oak Ridge Operat ions O f f i c e P.O. Box E Oak Ridge, TN 37830

S. A. Mann DOE Chicago Operat ions O f f i c e 9800 South Cass Avenue Argonne, I L 60439

(1. 0. Nef f DOE Na t iona l Waste Program

O f f i c e 505 King Avenue Col urnbus, OH 43201

6. K. Oer te l DOE Savannah R i ve r Operat ions

O f f i c e P.O. Box A Aiken, SC 29801

D. L. V ie th DOE Nevada Operat i ons O f f i c e P.O. Rox 14100 Las Vegas, NV 89114

No. of Cop i es

No. of Copies

C. S. Arbamsl J. H. K i t t e l

Argonne N a t i o n a l L a b o r a t o r y 9700 South Cass Avenue Argonne, I L 60439

M. J. S t e i n d l e r l L. E. Trevor row

A r gonne Nat i onal Labor a t o r y 9700 South Cass Avenue Argonne, I L 60439

W. A. C a r b e i n e r l S. H. Basham

R a t t e l l e Memori a1 I n s t i t u t e P r o j e c t Management D i v i s i o n 505 K i n g Avenue Col unbus, OH 43201

J. F. K i r c h e r B a t t e l l e Memorial I n s t i t u t e P r o j e c t Management D i v i s i o n 505 K ing Avenue Col umbus, OH 43201

R. 9awl es R a t t e l l e Memorial I n s t i t u t e P r o j e c t Management D i v i s i on 505 K ing Avenue Col umbus, OH 43201

W. $1. Madia R a t t e l l e Vemor i a1 I n s t i t u t e P r o j e c t Management D i v i s i o n 505 K ing Avenue Col umbus, OH 43201

H. J. Pe te rs R a t t e l l e Memori a1 I n s t i t u t e P r o j e c t Management D i v i s i o n 505 K i n g Avenue Col umbus, OH 43201

F. Ho lze r Lawrence L i vermore N a t i o n a l

L a b o r a t o r y U n i v e r s i t y o f C a l i f o r n i a P.O. Rox 808 L ivermore, CA 94550

D. T. Oakley Los Alamos S c i e n t i f i c

Labor a t o r y MS 671 P.O. Box 1663 Los A1 amos, NM 87544

I... C. Rordwin Los A1 amos Sc i e n t i f i c

L a b o r a t o r y MS 671 P.O. Rox 1663 Los A1 atnos, NM 87544

R. A. Koenig Los A1 amos Sc i en t i f i c

L a b o r a t o r y MS 671 P.O. Rox 1663 Los A1 amos, NM 87544

T. H. Row Oak Ridge N a t i o n a l L a b o r a t o r y P.0. Box X Oak Ridge, TN 37830

J. 0. Rlomeke Oak Ridge N a t i o n a l L a b o r a t o r y P.O. Rox Y Oak Ridge, TN 37830

W. O. Rurch Oak Ri dge Nat i onal L a b o r a t o r y P.O. Rox Y Oak Ridge, TN 37830

L. A. Do le Oak Ridge N a t i o n a l L a b o r a t o r y P.0. Rox Y Oak Ridge, TN 37830

R. R. K i m m i t t Oak Ridge N a t i o n a l L a b o r a t o r y P.O. Rox Y Oak Ridge, TN 37830

O. R. Anderson Sandia L a b o r a t o r i e s P.O. Box 5800 A1 buquerque, NM 87185

No. of C o ~ i es

R. W. Lynch Sandia L a b o r a t o r i e s P.0. Box 5800 A1 buquerque, NM 87185

J. F. Ney Sandia L a b o r a t o r i e s P.O. Box 5800 A1 buquerque, NM 87185

W. Weart Sandi a L a b o r a t o r i e s P.O. Box 5800 A1 buquerque, NM 87185

Techn ica l L i b r a r y Sandia L a b o r a t o r i e s P.O. Rox 5800 A1 buquerque, NM 87185

B. R. Wheeler West inghouse Idaho Nuc lear Co.,

I nc . P.O. Box 4000 Idaho Fa1 1 s, I D 83401

M. D. Rorsma E. I. du Pont de Nemours &

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

J. L. C r a n d a l l E. I. du Pont de Ue~nours ,%

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

E. (1. H e n n e l l y E. I , du Pont de Uemours &

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

L. I-. K i l p a t r i c k l L. M. Lee

E. I. du Pont de Nemours & Company

Savannah Ri v e r L a b o r a t o r y A iken, SC 29801

No. o f Copies

S. Mirshak E. I. du Pont de Nemours R

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

R. M. Wal lace E. I. du Pont de Nemours &

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

D. L. Char leswor th E. I. du Pont de Nernours &

Company Savannah R i v e r L a b o r a t o r y Aiken, SC 29801

R. B. McCampbell E. I. du Pont de Nemours ,%

Company Savannah Ri v e r L a b o r a t o r y Aiken, SC 29801

G. R. Darne l1 EGRG Idaho P.O. Box 1625 Idaho F a l l s , I D 83415

C. A. Cargo EGRG Idaho P.O. Rox 1625 Idaho F a l l s , I D 83415

T. G. Hedahl EGRG Idaho P.O. Rox 1625 Idaho Fa1 1 s, I D 83415

E. A. J e n n r i c h EG&G Idaho P.O. Box 1625 Idaho Fa1 1 s, I D 83415

D. E. W i l k i n s EGG Idaho P.O. Box 1625 Idaho Fa1 1 s, I D 83415

No. of Copies

No. of Copi es

K. McKinley/P. G. Hagen J o i n t I n t e g r a t i o n O f f i c e P.O. Box 3150 A1 buquerque, NM 84190

G. W. Meyers Atomics I n t e r n a t i o n a l D i v i s i o n Rockwel l I n t e r n a t i o n a l 8900 DeSoto Avenue Canoga Park, CA 91304

R. F. W i l l i a m s El e c t r i c Power Research

I n s t i t u t e 3412 H i l l v i e w Avenue P.O. Box 10412 Pa lo . A1 t o , CA 94304

A. R. Te te r Rockwel l I n t e r n a t i o n a l Rocky F l a t s P l a n t P.O. Box 464 Go1 den, C O 80402-0464

D. L. Z i e g l e r Rockwel l I n t e r n a t i o n a l Rocky F l a t s P l a n t P.O. Rox 464 Go1 den, CO 80402-0464

J. E. Krauss West Val 1 ey Nucl ea r Se rv i ces

Company P.O. Box 191 West Val l e y , NY 14171-0191

J. M. Pope West Val 1 ey Nucl ear Se rv i ces

Company P.O. Rox 191 West Val l e y , NY 14171-0191

W. A. Freeby/J. L. J a r d i n e Rechte l N a t i o n a l , Inc. P.O. Box 3965 San F ranc isco , CA 94119

L i b r a r i a n Westinghouse E l e c t r i c

C o r p o r a t i o n Techn ica l L i b r a r y P.O. Box 40039 A1 buquerque , NM 87196

L. L. Hench nepar tment o f M a t e r i a1 s Science

R E n g i n e e r i n g I J n i v e r s i t y o f F l o r i d a G a i n e s v i l l e , FL 32611

J. C. Cwyner J. L. Larocca, Chairman West V a l l e y Nuc lear S e r v i c e s Energy Research R neve l opment

Company A u t h o r i t y P.O. Box 191 Empire S t a t e P laza West V a l l e y , Y Y 14171-0191 A1 bany , NY 12223

L. R. E i s e n s t a t t West Val 1 ey Nuc lear S e r v i c e s

Company P.O. Rox 191 West V a l l e y , NY 14171-0191

(1. L. Knabenschuh West Val 1 ey Nucl ea r S e r v i c e s

Company P.O. Box 191 West V a l l e y , NY 14171-0191

R. I;. Post C o l l e g e o f E n g i n e e r i n g l l n i v e r s i t y o f A r i z o n a Tucson, AZ 85721

S. R. M i t c h e l Co lorado School o f Mines

Research I n s t i t u t e 5920 M c I n t y r e S t r e e t Golden, C O 80403

Di s t r -5

No. of Copi es

No. o f Cop ies

F. L. Van Swearingen 17 Bowman Grey School o f M e d i c i n e o f Wake F o r e s t U n i v e r s i t y 300 South Hawthorne Road Winston-Salem, Nor th C a r o l i n a 27103

K. J. Johanson S h i r c o I n f r a r e d Systems 1195 Empire C e n t r a l D a l l as, Texas 75247-4301

D. W. Dedo MAC Cor po r a t i on Sa tu rn Shredder D i v i s i o n 201 East Shady Grovey Road Grand P r a i r i e , Texas 75050

W e M. Coppel Shredd ing Systems, Inc . P.O. Box 869 W i l sonv i 11 e, Oregon 97070

J. Meyers Shred Pax C o r p o r a t i o n 136 W. Commercial Avenue 2 Wood Dal e, I 1 1 i n o i s 60191-1304

C. Raker H e a l t h Phys i cs Department U n i v e r s i t y o f C a l i f o r n i a 7 3 I r v i n g , CA 92717

3. G. T r i podes H e a l t h Phys i cs Department U n i v e r s i t y o f C a l i f o r n i a I r v i n g , CA 92717

ONS I TE

6 DOE R i c h l a n d Opera t i ons O f f i c e

J. H. Anttonnen/P. A. C r a i g E. A. Bracken H. E. Ransom J. L. Rhoades M. W. Shupe

Rockwel l Hanford Opera t i ons

J. D. Whi te E. R. Ash G. D. Dymmel K. A. Gasper R e N. Gur ley K. J. L e i s t R. S. YcBeath J. W e P a t t e r s o n R e D. Prosser J. H. Roecker K. R. Shah Y. J. Smith T. V. Veneziano G. F. W i l l i a m s o n C. E. Wi lson O. D. Wodr ich F i l e Copy

UNC U n i t e d Nuc lear I n d u s t r i e s

T. E. Dabrowski/W. J. K y r i a z i s

Westinghouse Han fo rd Company

R. E. Le rch J. 9. Watrous

P a c i f i c Nor thwest L a b o r a t o r y

Re P. A l l e n W. J. B j o r k l u n d W. F. Ronner J. L. R u e l t H e C. Bu rkho lde r J. R. C a r r e l 1 T. D. C h i k a l l a R. Y. Co le P. M. Oal i n g V. F. F i t z P a t r i c k J. He J a r r e t t / C . 4. Geffen Y. R. Katayama D. E. Knowlton W. L. Kuhn/R. D. P e t e r s

No. o f C o ~ i es

No. of Copies

L. T. Lakey/K. M. Harmon J. M. L a t k o v i c h R. C. L i i k a l a / M . R. K r e i t e r R. 0. Lokken D. McCarthy J. L. WcElroy R. W. McKee G. B. M e l l i n g e r J. E. Mendel/M. D. Merz J. E. Winor D. R. Montgomery K. H. Oma (10 ) A. M. P l a t t J. V. Robinson

W. A. Ross (10) L. J. Schneider P. A. S c o t t N. M. Sherer S. C. S l a t e (1. L. Swanson C. L. Timrnerman R. L. T r e a t G. L. McVay J. H. Wests ik (10 ) W. R. Wiley/D. B. Cear lock /

R. P. M a r s h a l l Techn ica l I n f o r m a t i o n ( 5 ) Pub1 i s h i n g C o o r d i n a t i o n ( 2 )


Recommended