+ All Categories
Home > Documents > Si APD (Avalanche Photodiodes)

Si APD (Avalanche Photodiodes)

Date post: 31-Oct-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
16
Si APD (Avalanche Photodiodes) Si APD (Avalanche Photodiodes) SOLID STATE DIVISION Selection Guide Dec. 2011 High-speed, high-sensitivity photodiodes having an internal gain mechanism
Transcript
Page 1: Si APD (Avalanche Photodiodes)

Si APD (Avalanche Photodiodes) Si APD (Avalanche Photodiodes)

SOLIDSTATE DIVISION

Selection GuideD e c . 2 0 1 1

High-speed, high-sensitivity photodiodes having an internal gain mechanism

Page 2: Si APD (Avalanche Photodiodes)

Si APD

Type Type no. Feature

APD modules

C5331 series Available for near infrared and short wavelength applications, and also with FC/SMA connector coupling, etc.

C5460 series High gain type for detection under low illuminance

C10508 Digital temperature-compensation, high-stability APD module

C4777 series

Standard type

High-sensitivity type

High-stability type

C5658 Operates over a wide range of frequency (up to 1 GHz)High-speed type

TE-cooled type High sensitivity type for low-light-level detection. Offers greatly improved stability by thermoelectric cooling.

HAMAMATSU Si APD

Si AVALANCHEPHOTODIODES

Si APD (Avalanche Photodiodes)

The APD is a highly sensitive photodiode that operates at high speeds and high

gain by applying a reverse bias. It has higher S/N than PIN photodiodes and is

widely used in optical rangefinders, spatial light transmission, scintillation detec-

tors, etc.

HAMAMATSU also provides compact APD modules that contain an APD, a low-

noise amplifier and a bias power supply.

Principle of avalanche multiplication

For detailed information and data on the products listed in this catalogue, see the datasheets that are available from our web site www.hamamatsu.com

When light enters a photodiode, if the light energy is higher than the band gap energy electron-hole pairs are generated. The ratio of the num-ber of generated electron-hole pairs to the number of incident photons is called the quantum efficiency or QE (usually expressed as a percen-tage). The process that generates those carriers inside an APD is the same as that in an ordinary photodiode. However, the APD has an inter-nal gain mechanism for amplifying the generated carriers.Among electron-hole pairs generated in the depletion layer of an APD with a reverse bias voltage is applied to the PN junction, the N+ side while the holes drift towards the P+ side due to the electric field developed across the PN junction. The drift speed of these carriers depends on the electric field strength. However, when the electric field is increased, the carriers are more likely to collide with the crystal lattice and scatter, saturating their speed at a certain level. If the reverse voltage is increased even further, some of the carriers which es-caped collision with the crystal lattice will have a great deal of energy. When these carriers collide with the crystal lattice, new electron-hole pairs are generated (ionization). These electron-hole pairs then create additional electron-hole pairs in a pro-cess like a chain reaction. This is a phenomenon referred to as avalanche multiplication.

Operating principle of APD

KAPDC0006EC

Generated carriers produce new electron-hole pairs while being accelerated by highelectric field. Ionization

Newly generated carriers are also acceleratedto produce further electron-hole pairs, and thisprocess repeats itself. Avalanche multiplication

Gain proportional to the applied reverse bias voltage can be obtained.

-

---- + +

+

+

-

- -

P+

P-

P

Highvoltage

N+

Avalanchelayer

Type Type no.Number

ofelements

Recommendedwavelength

(nm)

Peak sensitivitywavelength

(nm)Package Feature Application

Low bias operation

Low terminalcapacitance

200 to 650 620

800

800

860

960

600

1 Metal

1 Metal

1Ceramic

Metal

Surfacemounttype

Metal

32

S5343, S9073, etc.

S8664-K series

320 to 650

Low biasoperation

Lowtemperaturecoefficient

1000 nm band/high sensitivity

600 to 800

600 to 800

S8664-55/-1010

S8550

1S2381, etc.

1

1

S10341 series

S6045 series

Metal800 nm band, low terminal capacitance 800 to 1000

900 to 1150

1

Metal1

S9251 series

S11519 series

Nearinfraredtype

ShortWavelengthtype

Low-light-level detection

Analytical instruments

Enhanced sensitivity in the UV to visible range

Spatial light transmission Optical rangefinder Optical fiber communications

Optical rangefinder Laser radar Spatial light

transmission Spatial light transmission Optical rangefinder Optical fiber communications Optical rangefinder Laser radar YAG laser

detection

High sensitivity in near infra-red region and low bias vol-tage operation

Low cost and high reliability APD using surface-mount ceramic packages with the same wide operating temperature range (-20 to +85 ˚C) as metal package types

Easy voltage adjustment due to low temperature coeffi-cient of bias voltageEnhanced sensitivity in 800 nm bandLow bias (low operation voltage) type with enhanced sensitivity in 1000 nm band

Page 3: Si APD (Avalanche Photodiodes)

Spectral response (Si APD)

KAPDB0096EF

Sensitivity vs. response speed (APD modules)

KACCB0115EC

Cutoff frequency vs. recommended wavelength (compared between Si APD with photosensitive area of 0.5 mm)

KAPDB0162EC

Wavelength (nm)

Pho

tose

nsiti

vity

(A/W

)

200 400

55

50

40

30

20

10

45

35

25

15

5

0600 800 1000 1200

Near infrared type(800 nm band, low terminal capacitance)

Near infrared type(low bias operation)

IR-enhanced type(1000 nm band/high sensitivity)

Near infrared type(low temperature coefficient)

Short wavelength type(low bias operation)

Short wavelength type(low terminal capacitance)

(Typ. Ta=25 ˚C, M=50, λ=650 nm)

Wavelength (nm)

Cut

off f

req

uenc

y (M

Hz)

2000

200

400

600

800

1000

400 600 800 1000 1200

High

Low

Short wavelength type(low bias operation)

Short wavelength type(low terminal capacitance)

Near infrared type(low bias operation, lowtemperature coefficient)

Near infrared type(1000 nm band/high sensitivity)

Near infrared type(800 nm band, low terminal capacitance)

DC103

104

105

106

107

109

1010

108

100 10 k10 1 k 100 k 1 M 10 M 100 M 1 G

2-stage thermoelectrically cooled APDDC to 5 kHz, -1.25 × 109 V/W

DC to 100 kHz-1.5 × 108 V/W

50 kHz to 1 GHz2.5 × 105 V/W

9 types are available with differentactive areas and wavelengths

4 kHz to 100 MHz-1 × 104 V/W

1-stage thermoelectricallycooled APD

10 kHz to 100 MHz-2.5 × 105 V/W

C4777-01

C5460-01

C5658

C5331 series C4777

DC to 10 MHz1.5 × 106 V/W

C5460

DC to 10 MHz2.5 × 105 to 1.25 × 107 V/W

C10508

Sen

sitiv

ity (V

/W) a

bso

lute

val

ue

Response speed (Hz)

Page 4: Si APD (Avalanche Photodiodes)

1

Low bias operation

Type no. Package

Spectralresponse

range(nm)

Gainλ=650 nm

Terminalcapacitance

(pF)

Breakdownvoltage

max.ID=100 A

(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

Risetime

RL=50 Ω(ns)

S9075

S5344

S5345

φ0.2

φ0.5

φ1.0

φ1.5

φ3.0

φ5.0

200 to 1000 200 0.14 50

TO-18

TO-8

TO-5

900

400

250

100

25

8

2

5

15

30

120

320

0.4

0.9

1.5

3.5

14

45

These short-wavelength APDs are optimized for detection of UV to visible light. High gain and high sensitivity can be obtained in short wavelength regions, making these APDs suitable for low-light-level measurements such as in analytical instruments.

*1: Photosensitive area in which a typical gain can be obtained*2: Measured under conditions that the device is operated at the gain listed in the specification table

Spectral response Quantum efficiency vs. wavelength Gain vs. reverse voltage

KAPDB0010ED

20

30

0

10

Pho

tose

nsiti

vity

(A/W

)

(Typ. Ta=25 ˚C, λ=650 nm)

Wavelength (nm)

200 400 600 800 1000

M=10

M=20

M=50

KAPDB0023EB KAPDB0011EC

*2 *2

0

20

40

60

80

100

Qua

ntum

eff

icie

ncy

(%)

(Typ. Ta=25 ˚C)

Wavelength (nm)

200 400 600 800 1000

Gai

n

Reverse voltage (V)

103

102

101

100

(Typ. λ=650 nm)

130 160140 150

-20 ˚C

0 ˚C

20 ˚C

40 ˚C

60 ˚C

Short wavelength type Si APD

S12053-02NEW

S12053-05NEW

S12053-10NEW

CutofffrequencyRL=50 Ω

(MHz)

*2Effectivephotosensitive

area(mm)

*1

Page 5: Si APD (Avalanche Photodiodes)

2

Low terminal capacitance

Type no. Package

Spectralresponse

range(nm)

Gainλ=420 nm

Terminalcapacitance

(pF)

Breakdownvoltage

max.ID=100 A

(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

Risetime

RL=50 Ω(ns)

S8664-02K φ0.2

S8664-05K φ0.5

S8664-10K φ1.0

S8664-20K φ2.0

S8664-30K φ3.0

S8664-50K φ5.0

S8664-55 5 × 5

S8664-1010 10 × 10

320 to 1000

320 to 1000

0.78500 50

TO-8

Ceramic

TO-5

700

680

530

280

140

60

40

11

0.5

0.52

0.66

1.3

2.5

6

9

32

0.8

1.6

4

11

22

55

80

270

Type no. Package

Spectralresponse

range(nm)

Gainλ=420 nm

Terminalcapacitance

(pF)

Breakdownvoltagemax.(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

S8550-021.6 × 1.6

(× 32 elements) Ceramic250 50500 0.7810

(per 1 element)

*1: Photosensitive area in which a typical gain can be obtained*2: Measured under conditions that the device is operated at the gain listed in the specification table

Spectral response

KAPDB0073EC

10

25

20

15

0

5

Pho

tose

nsiti

vity

(A/W

)

(Typ. M=50 at 420 nm)

Wavelength (nm)

200 400 600 800 1000 1200

S8664-02K/-05K/-10K/-20K/-30K/-50K

S8664-55/-1010S8550

Quantum efficiency vs. wavelength

KAPDB0125EA

Gain vs. reverse voltage

KAPDB0076EB

*2 *2

*2

40

100

80

60

0

20

Qua

ntum

eff

icie

ncy

(%)

Wavelength (nm)

200 400 600 800 1000 1200

(Typ. Ta=25 ˚C)

S8664-02K/-05K/-10K/-20K/-30K/-50K

S8664-55/-1010S8550

4 × 8 element array

1000(Typ. λ=420 nm)

1

100

10

Gai

n

Reverse voltage (V)

200 300 400 500

-20 ˚C

0 ˚C

20 ˚C

40 ˚C

60 ˚C

CutofffrequencyRL=50 Ω

(MHz)

*2

CutofffrequencyRL=50 Ω

(MHz)

*2

Effectivephotosensitive

area(mm)

*1

Effectivephotosensitive

area(mm)

*1

Page 6: Si APD (Avalanche Photodiodes)

3

Near infrared type Si APD

Low bias operation

S3884

S2384

S2385

φ0.2

φ0.5

φ1.0

φ1.5

φ3.0

φ5.0

400 to 1000

100

60

40

200 0.65

600 6

400

120

40

10

40

95

1000 1

900 2

TO-18

TO-5

TO-8

Type no. Package

CutofffrequencyRL=50 Ω

(MHz)

Terminalcapacitance

(pF)

Spectralresponse

range(nm)

Gainλ=800 nm

Breakdownvoltage

max.ID=100 A

(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

1000

900

φ0.2

400 to 1000 200 0.65 100

1

2

Plastic

φ0.5

S10341-02

S10341-05

Type no. PackageTerminal

capacitance

(pF)

Spectralresponse

range(nm)

Gainλ=800 nm

Breakdownvoltage

max.(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

Surface mount type

*2 *2

*2

These near infrared APDs are designed to be operated at low voltages. High gain can be obtained with bias voltages below 200 V, making these APDs suitable for spatial light transmission, laser radar and optical fiber communications.

The S10341 series is a low cost, small size Si APD with a surface-mount plastic package suitable for mass production.

Effectivephotosensitive

area(mm)

*1

*1: Photosensitive area in which a typical gain can be obtained*2: Measured under conditions that the device is operated at the gain listed in the specification table

S12023-02NEW

S12023-05NEW

S12023-10NEW

S12023-10ANEW

S12051NEW

S12086NEW

CutofffrequencyRL=50 Ω

(MHz)

*2

Effectivephotosensitive

area(mm)

*1

Page 7: Si APD (Avalanche Photodiodes)

4

Spectral response

KAPDB0020EB

Gain vs. reverse voltage

KAPDB0017EC

Wavelength (nm)

Pho

tose

nsiti

vity

(A/W

)(Typ. Ta=25 ˚C, λ=800 nm)

200 400 600 800 1000

40

20

0

50

30

10

M=100

M=50

80 100 120 140 160 1801

10

100

1000

10000

Reverse voltage (V)

Gai

n

(Typ. λ=800 nm)

-20 ˚C

0 ˚C

20 ˚C

40 ˚C

60 ˚C

Quantum efficiency vs. wavelength

KAPDB0021EA

Wavelength (nm)

Qua

ntum

eff

icie

ncy

(%)

60

200 400 600 800 1000

40

20

0

80

100(Typ. Ta=25 ˚C)

Page 8: Si APD (Avalanche Photodiodes)

5

Low temperature coefficient

Spectral response

KAPDB0026EA

Wavelength (nm)

Pho

tose

nsiti

vity

(A/W

)

(Typ. Ta=25 ˚C, λ=800 nm)

200

40

20

0

50

30

10

400 600 800 1000

M=100

M=50

Quantum efficiency vs. wavelength

KAPDB0027EA

Gain vs. reverse voltage

KAPDB0029EBReverse voltage (V)

Gai

n

(Typ. λ=800 nm)

160 200 220 240

102

100

101

260

104

103

180

-20 ˚C

0 ˚C

20 ˚C

40 ˚C

60 ˚C

*1: Photosensitive area in which a typical gain can be obtained*2: Measured under conditions that the device is operated at the gain listed in the specification table

Wavelength (nm)

Qua

ntum

eff

icie

ncy

(%)

(Typ. Ta=25 ˚C)

200 400 600 800 1000

40

20

0

80

60

100

S6045 series are Si APDs optimized for near infrared detection. Because their bias voltage exhibits a low temperature coeffi-cient, a stable gain can be obtained over a wide temperature range. Common applications include spatial light transmission, laser radars and optical fiber communications.

Type no. PackageSpectralresponse

range(nm)

Breakdownvoltage

max.ID=100 A

(V)

Temp.coefficient ofbreakdown

voltage(V/˚C)

Terminalcapacitance

(pF)

Gainλ=800 nm

*2 *2

S6045-04

S6045-05

S6045-06

φ0.2

φ0.5

φ1.0

φ1.5

φ3.0

φ5.0

400 to 1000

1000

900

600

350

80

35

1

2.5

6

12

50

120

60

40

300 0.4

100

TO-18

TO-5

TO-8

Effectivephotosensitive

area(mm)

*1 CutofffrequencyRL=50 Ω

(MHz)

S12060-02NEW

S12060-05NEW

S12060-10NEW

Page 9: Si APD (Avalanche Photodiodes)

Near infrared type Si APD

6

*1: Photosensitive area in which a typical gain can be obtained*2: Measured under conditions that the device is operated at the gain listed in the specification table

800 nm band, low terminal capacitance

Spectral response (M=100)

KAPDB0109EB

Gain vs. reverse voltage

KAPDB0185EAKAPDB0082EA

Reverse voltage (v)

(Typ. λ=800 nm)

Gai

n

150 200 2501001

10

100

1000

10000

300

-20 ˚C 20 ˚C0 ˚C

40 ˚C

60 ˚C

The S12092/S9251 series are used for laser radars. Its gain versus reverse voltage curve is less sharp, so stable operation can be maintained.

Type no. Package

CutofffrequencyRL=50 Ω

(MHz)

Spectralresponse

range(nm)

Temp.coefficient ofbreakdown

voltage(V/ ˚C)

Terminalcapacitance

(pF)

Gainλ=900 nm

Breakdownvoltage

max.ID=100 A

(V)

*2

*2

S9251-10

S9251-15

φ0.2

φ0.5

φ1.0

φ1.5

440 to 1100

400

350 1.85 100

TO-18

TO-5

380

350

1.9

0.7

0.4

3.6

Effectivephotosensitive

area(mm)

*1

S12092-02NEW

S12092-05NEW

Type no. Package

CutofffrequencyRL=50 Ω

(MHz)

Spectralresponse

range(nm)

Temp.coefficient ofbreakdown

voltage(V/˚C)

Terminalcapacitance

(pF)

Gainλ=890 nm

Breakdownvoltage

max.ID=100 A

(V)

S11519-10 φ1.0

φ3.0

600 to 1150

400

230

500 1.7 100

TO-8

TO-5

12.0

2.0

The S11519 series is manufactured using MEMS technology to improve sensitivity in the near infrared region for detection of YAG lasers (1.06 m).

1000 nm band/high sensitivity

S11519-30

Effectivephotosensitive

area(mm)

Wavelength (nm)

Pho

tose

nsiti

vity

(A/W

)

(Typ. Ta=25 ˚C, λ=800 nm)

400

50

20

0

80

70

40

60

30

10

600 800 1000 1200

S9251 series

S11519 series

Reverse voltage (V)

Gai

n

100 300

102

100

101

400

104

103

200

-20 ˚C

0 ˚C20 ˚C

60 ˚C

40 ˚C

(Typ.)

S11519 seriesS9251 series

Page 10: Si APD (Avalanche Photodiodes)

7

* Products listed in the previous catalog but removed from this catalog

Near infrared type Si APD

S9074

S9073 S12053-02

S12053-05

S12053-10

S8550-02

Products removed from this catalog

Conventional product* Replacement

S8550

S12023-02S2381

S12023-05S2382

S12051S5139

S12086S8611

S12023-10S2383

S12023-10AS2383-10

Not availableS9717-02K

Not availableS9717-05K

S5343

S6045-01

S9717-05L Not available

S12060-02

S12060-05

S12060-10S6045-03

S12092-02S9251-02

S12092-05S9251-05

Not availableS8890-02

Not availableS8890-05

S11519-10S8890-10

Not availableS8890-15

S11519-30S8890-30

S6045-02

Page 11: Si APD (Avalanche Photodiodes)

APD modules

8

APD modules are designed for easy use of Si APD. Each module consists of a Si APD, an amplifier and abias power supply, assembled in a compact configuration. The APD modules operate from a +5 V power supply, and can be used for various applications of light detection in a frequency range up to 100 MHz.

Standard type

C5331

4 kHz

S3884φ1.5

100 MHz

-4.65 × 104

3

+5

Type no.Supplyvoltage

(V)

Effective*photosensitive

area

(mm)

Built-inAPD

Photoelectric sensitivity

built-in APDM=30, λ=800 nm

(V/W)

Minimum detection limit

built-in APDM=30, λ=800 nm

(nW rms)

±2.5

C5331-01 S2381φ0.2 -7.50 × 104

C5331-02 S2382φ0.5 -7.50 × 104

C5331-03 S2383φ1.0 -6.75 × 104

C5331-04 S2384φ3.0 80 MHz -2.30 × 104 3.6

C5331-05 S2385φ5.0 50 MHz -0.83 × 104 4.9

Temperaturestability of gain

25 ± 10 ˚C(%)

Low band High band

Cutoff frequency

C5331-11

4 kHz

S5343φ1.0

40 MHz

100 MHz

20 MHz

-2.46 × 104

8.2

5

7.6

+5

Type no.Supplyvoltage

(V)

Effective*photosensitive

area

(mm)

Built-inAPD

Photoelectric sensitivity

built-in APDM=30, λ=620 nm

(V/W)

Minimum detection limit

built-in APDM=30, λ=620 nm

(nW rms)

±2.5C5331-12 S5344φ3.0 -1.26 × 104

C5331-13 S5345φ5.0 -0.69 × 104

Temperaturestability of gain

25 ± 10 ˚C(%)

Low band High band

Cutoff frequency

Near infrared type

Peak sensitivity wavelength: 800 nm Wide bandwidth Available with optical fiber adapter (sold separately)

APD evaluation Spatial light transmission Optical rangefinders Optical communications Laser radars

Short wavelength type

Peak sensitivity wavelength: 620 nm Wide bandwidth Available with optical fiber adapter (sold separately)

Film scanners Laser monitors

* Photosensitive area in which a typical gain can be obtained

C5331-30

Type no. Feature

C5331-31

C5331 + FC connector

C5331-01 + FC connector with lens

FC connector coupling type

Features Applications

Features Applications

Page 12: Si APD (Avalanche Photodiodes)

9

The C5460 series are high gain APD modules suited for low-light-level detection including DC light.

An FC connector or SMA connector can be attached to the following products of the C5331/C5460 series APD modulesby using a dedicated adapter.

High-sensitivity type

Low-light-level detection DC light detection High gain

Barcode readers Fluorescence measurement Particle counters

C5460

DC

S3884φ1.5

100 kHz

10 MHz 1.50 × 106

6.3

630

±12

Type no.Supplyvoltage

(V)

Built-inAPD M=30, λ=800 nm

(V/W)M=30, λ=800 nm

(pW rms)

±2.5

C5460-01 S2384φ3.0 -1.50 × 108

Temperaturestability of gain

25 ± 10 ˚C(%)

Low band High band

Cutoff frequency

C5331-01 A8407-18

APD module FC adapter

A8424-18

C5331-02 A8407-18 A8424-18

C5331-03 A8407-18 A8424-18

C5331-04 A8407-05A A8424-05A

C5331-05 A8407-08

C5331-11 A8407-18 A8424-18

C5331-12 A8407-05A A8424-05A

C5331-13 A8407-08

C5460 A8407-05 A8424-05

C5460-01 A8407-05A A8424-05A

C10508 *2 *2

SMA adapter

*2: Please consult your local sales office for more information.

Attachment adapters for FC and SMA connectors (sold separately)

Features Applications

Easily adjustable gain: adjustable by switch or by PC command Gain fluctuation with temperature: ±5 % Max. (M=250, Ta=0 ˚C to 40 ˚C) Easy handling: ±5 V supply voltage

APD evaluation Power meter Low-light-level detection

Features Applications

Effective photosensitive

area

(mm)

*1 Photoelectricsensitivity

Minimumdetection limit

High-stability type

C10508 DCS2383φ1.0 10 MHz 1.25 × 107 63 ±5

Type no.Built-in

APD

±5.0 Max.

Low band High band

Cutoff frequency

*1: Photosensitive area in which a typical gain can be obtained

Along with an APD, current-to-voltage conversion circuit, and high-voltage power supply circuit, the C10508 contains a microcontroller to perform temperature compensation based on information from the internal thermosensor. Because temperature coefficients that match the APD temperature characteristics are written in the microprocessor chip, the APD can be operated with a highly stable gain over a wide temperature range even at high gain levels.

Effective photosensitive

area

(mm)

*1

M=250, λ=800 nm(V/W)

Photoelectricsensitivity

M=250, λ=800 nm(pW rms)

Minimumdetection limit Supply

voltage

(V)

Temperaturestability of gain

0 to 40 ˚C(%)

Page 13: Si APD (Avalanche Photodiodes)

This APD module is designed for light detection in a wideband frequency range (up to 1 GHz).

High-speed type

High-speed response OTDR Optical communications

C5658 φ0.5 1 GHz50 kHzS2382

S4315-01

2 TE-cooledtype of S4315-04

2.50 × 105 16 +12

Type no. Built-inAPD

Supplyvoltage

(V)

Effective*1

photosensitivearea

(mm)M=100, λ=800 nm

(V/W)M=100, λ=800 nm

(nW rms)

±5.0

Temperaturestability of gain

25 ± 10 ˚C(%)

Low band High band

Cutoff frequency

The C4777 series is high sensitivity APD module for low-light-level detection.

TE-cooled type

Highly stable photometry Wide bandwidth (C4777) DC light detection (C4777-01) High sensitivity (C4777-01)

Low-light-level detection Scientific measurements

C4777 φ0.5 100 MHz10 kHz -2.50 × 105 *2 0.8 nW rms *2

±15+5

Type no.Supplyvoltage

(V)

Effective*1

photosensitivearea

(mm)λ=800 nm

(V/W)λ=800 nm

±3.0

C4777-01 φ3.0 5 kHzDC -1.25 × 109 *3 0.28 pW rms *3

Temperaturestability of gain

25 ± 15 ˚C(%)

Low band High band

Cutoff frequency

*1: Photosensitive area in which a typical gain can be obtained*2: M=100*3: M=50

Built-inAPD

Features Applications

Features Applications

10

Photoelectricsensitivity

Minimumdetection limit

Photoelectricsensitivity

Minimumdetection limit

APD modules

Page 14: Si APD (Avalanche Photodiodes)

MEMO

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

Page 15: Si APD (Avalanche Photodiodes)

www.hamamatsu.comPlease access our website to check various information about our latest productcatalogues, news, technology introduction and corporate outline.Some of the new/developmental products in this catalogue may not be available onour website. Please consult your local sales office for more information.

N o t i c eCopies of the full warranty can be obtained prior to the purchase of products by contacting your local HAMAMATSU sales office.

HAMAMATSU makes no other warranties, and any and all implied warranties of merchantability, or fitness for a particular purpose, are hereby disclaimed. The customer is responsible for use of the product in accordance with HAMAMATSU's instructions and within the operating specifications and ratings listed in this catalogue. HAMAMATSU shall not be responsible for the customer's improper selection of a product for a particular application or otherwise. No warranty will apply if the products are in any way altered or modified after delivery by HAMAMATSU or for any intentional misuse or abuse of the products. Proper design safety rules should be followed when incorporating these products into devices that could potentially cause bodily injury.

HAMAMATSU 's liability on any claim for loss or damage arising out of the supplying of any products, whether based on contract, warranty, tort (including negligence and for property damage or death and bodily injury) or other grounds, shall not in any event exceed the price allocable to such products or a part thereof involved in the claim, regardless of cause or fault. In no event shall HAMAMATSU be responsible to the customer or any third party for any consequential, incidental or indirect damages, including but not limited to loss of profits, revenues, sales, data, business, goodwill or use, even if the company has been advised of the possibility of such loss or damage. The limitation of liability set forth herein applies both to products and services purchased or otherwise provided hereunder. This warranty is limited to repair or replacement, at the sole option of HAMAMATSU, of any product which is defective in workmanship or materials used in manufacture. All warranty claims must be made within 1 year from the date of purchase or provision of the products or services.

Products that are amenable to repair shall be done so either under warranty or pursuant to a separate repair agreement. Some products cannot be repaired either because of the nature or age of the product, the unavailability of spare parts, or the extent of the damage is too great. Please contact your local HAMAMATSU office for more details.

The products described in this catalogue should be used by persons who are accustomed to the properties of photoelectronics devices, and have expertise in handling and operating them. They should not be used by persons who are not experienced or trained in the necessary precautions surrounding their use.

The information in this catalogue is subject to change without prior notice

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions.

No patent rights are granted to any of the circuits described herein.

We welcome you to visit our website.

Page 16: Si APD (Avalanche Photodiodes)

Cat. No. KAPD0001E04Dec. 2011 DNPrinted in Japan (2,500)

HAMAMATSU PHOTONICS K.K., Solid State Division1126-1, Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558, JapanTelephone: (81)53-434-3311, Fax: (81)53-434-5184

www.hamamatsu.com

Information in this catalogue isbelieved to be reliable. However,no responsibility is assumed forpossible inaccuracies or omissions.Specifications are subject tochange without notice. No patentrights are granted to any of thecircuits described herein.

© 2011 Hamamatsu Photonics K.K.

Quality, technology, and serviceare part of every product.

Main ProductsSi photodiodesAPDMPPCPhoto ICImage sensorsX-ray flat panel sensorsPSDInfrared detectorsLEDOptical communication devicesAutomotive devicesMini-spectrometers High energy particle/X-ray detectorsOpto-semiconductor modules

Hamamatsu also supplies:Photoelectric tubesImaging tubesLight sourcesImaging and processing systems

JAPAN:HAMAMATSU PHOTONICS K.K.325-6, Sunayama-cho, Naka-kuHamamatsu City, 430-8587, JapanTelephone: (81)53-452-2141, Fax: (81)53-456-7889

U.S.A.:HAMAMATSU CORPORATIONMain Office360 Foothill Road, P.O. BOX 6910,Bridgewater, N.J. 08807-0910, U.S.A.Telephone: (1)908-231-0960, Fax: (1)908-231-1218E-mail: [email protected]

Western U.S.A. Office:Suite 200, 2875 Moorpark Avenue San Jose, CA 95128, U.S.A.Telephone: (1)408-261-2022, Fax: (1)408-261-2522E-mail: [email protected]

United Kingdom, South Africa:HAMAMATSU PHOTONICS UK LIMITEDMain Office2 Howard Court, 10 Tewin Road, Welwyn Garden City,Hertfordshire AL7 1BW, United KingdomTelephone: (44)1707-294888, Fax: (44)1707-325777E-mail: [email protected]

South Africa office:PO Box 1112Buccleuch 2066Johannesburg, South AfricaTelephone/Fax: (27)11-802-5505

France, Portugal, Belgium, Switzerland, Spain:HAMAMATSU PHOTONICS FRANCE S.A.R.L.19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, FranceTelephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10E-mail: [email protected]

Swiss Office:Dornacherplatz 74500 Solothurn, SwitzerlandTelephone: (41)32/625 60 60, Fax: (41)32/625 60 61E-mail: [email protected]

Belgian Office:Scientific Park,7, Rue du BosquetB-1348 Louvain-La-Neuve, BelgiumTelephone: (32)10 45 63 34Fax: (32)10 45 63 67E-mail: [email protected]

Spanish Office:C. Argenters, 4 edif 2Parque Tecnologico del Valles E-08290 CERDANYOLA, (Barcelona) SpainTelephone: (34)93 582 44 30Fax: (34)93 582 44 31E-mail: [email protected]

Germany, Denmark, Netherlands, Poland:HAMAMATSU PHOTONICS DEUTSCHLAND GmbHArzbergerstr. 10,D-82211 Herrsching am Ammersee, GermanyTelephone: (49)8152-375-0, Fax: (49)8152-265-8E-mail: [email protected]

Danish Office:Lautruphoj 1-3DK-2750 Ballerup, DenmarkTelephone: (45)70 20 93 69, Fax: (45)44 20 99 10E-mail: [email protected]

Netherlands Office:Televisieweg 2NL-1322 AC Almere, The NetherlandsTelephone: (31)36-5405384, Fax: (31)36-5244948E-mail: [email protected]

Poland Office:02-525 Warsaw,8 St. A. Boboli Str., PolandTelephone: (48)22-646-0016, Fax: (48)22-646-0018E-mail: [email protected]

North Europe and CIS:HAMAMATSU PHOTONICS NORDEN ABSmidesvägen 12SE-171 41 Solna, SwedenTelephone: (46)8-509-031-00, Fax: (46)8-509-031-01E-mail: [email protected]

Russian Office:Vyatskaya St. 27, bld. 15Kosmodamianskaya nab. 52/1, 14th floorRU-127015 Moscow, RussiaTelephone: (7) 495 258 85 18, Fax: (7) 495 258 85 19E-mail: [email protected]

Italy:HAMAMATSU PHOTONICS ITALIA S.R.L.Strada della Moia, 1 int. 620020 Arese, (Milano), ItalyTelephone: (39)02-935 81 733Fax: (39)02-935 81 741E-mail: [email protected]

Rome Office:Viale Cesare Pavese, 43500144 Roma, ItalyTelephone: (39)06-50513454, Fax: (39)06-50513460E-mail: [email protected]

China:HAMAMATSU PHOTONICS (CHINA) CO., LTD.1201 Tower B, Jiaming Center, No.27 Dongsanhuan Beilu,Chaoyang District, Beijing 100020, ChinaTelephone: (86)10-6586-6006, Fax: (86)10-6586-2866E-mail: [email protected]

Hong Kong:HAKUTO ENTERPRISES LTD.Units 709-712, 7/F, Miramar Tower,132 Nathan Road, Tsimshatsui, Kowloon, Hong KongTelephone: (852)2578-4921, Fax: (852)2807-2498

Taiwan:HAKUTO TAIWAN LTD.6F, No.308, Pa teh Road, Sec, 2,Taipei, Taiwan R.O.C.Telephone: (886)2-8772-8910Fax: (886)2-8772-8918

KORYO ELECTRONICS CO., LTD.9F-7, No.79, Hsin Tai Wu Road Sec.1, Hsi-Chih, Taipei, Taiwan, R.O.C.Telephone: (886)2-2698-1143, Fax: (886)2-2698-1147

Republic of Korea:SANGKI CORPORATIONSuite 431, World Vision BLDG.24-2 Yoido-DongYoungdeungpo-KuSeoul, 150-877Telephone: (82)2-780-8515Fax: (82)2-784-6062

Singapore:HAKUTO SINGAPORE PTE LTD.Block 2, Kaki Bukit Avenue 1, #04-01 to #04-04Kaki Bukit Industrial Estate, Singapore 417938Telephone: (65)67458910, Fax: (65)67418200

Sales Offices


Recommended