+ All Categories
Home > Documents > Side Reactions in Organic Synthesis II (Aromatic Substitutions) || Electrophilic Formation of...

Side Reactions in Organic Synthesis II (Aromatic Substitutions) || Electrophilic Formation of...

Date post: 06-Jan-2017
Category:
Upload: florencio
View: 217 times
Download: 5 times
Share this document with a friend
14
191 7 Electrophilic Formation of Aromatic C–S Bonds 7.1 Sulfonylation 7.1.1 General Aspects The preparation of arenesulfonic acids, arenesulfonyl chlorides, and sulfones from arenes is a widely used and versatile reaction (Scheme 7.1). The yields are generally high because the products are unreactive and only slowly sulfonylate the excess arene. Sulfones are, though, often obtained as byproducts in small quantities in the synthesis of aromatic sulfonic acids or sulfonyl halides [1]. O H 2 SO 4 (20% SO 3 ) 40 °C, 18 h, then Na 2 CO 3 O S NaO O O 81% WO 2008040934 NH 3 HSO 4 Cl 200 °C neat, vacuum NH 2 Cl SO 3 H 48% 04jmc6948 Cl NH 2 12 eq ClSO 3 H 12 eq NaCl 160 °C, 3 h NH 3 , H 2 O 100 °C, 1 h Cl NH 2 S S Cl Cl O O O O Cl NH 2 S S NH 2 H 2 N O O O O 30% (two steps) 60joc965 N O Br Br Br N O Br Br Br S F O O FSO 3 H 160 °C, 3 h 76% 83joc3220 Scheme 7.1 Examples of the preparation of arene sulfonic acids and sulfonyl halides [2–5]. Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza D¨ orwald. c 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
Transcript

191

7Electrophilic Formation of Aromatic C–S Bonds

7.1Sulfonylation

7.1.1General Aspects

The preparation of arenesulfonic acids, arenesulfonyl chlorides, and sulfones fromarenes is a widely used and versatile reaction (Scheme 7.1). The yields are generallyhigh because the products are unreactive and only slowly sulfonylate the excessarene. Sulfones are, though, often obtained as byproducts in small quantities inthe synthesis of aromatic sulfonic acids or sulfonyl halides [1].

O

H2SO4 (20% SO3)40 °C, 18 h, then

Na2CO3 OS

NaO

O O

81%WO 2008040934

NH3HSO4Cl200 °C

neat, vacuum NH2Cl

SO3H48%

04jmc6948

Cl NH2

12 eq ClSO3H12 eq NaCl160 °C, 3 h

NH3, H2O100 °C, 1 h

Cl NH2

SSClCl

O O O O

Cl NH2

SSNH2H2N

O O O O30%

(two steps)60joc965

N

O Br

Br

Br

N

O Br

Br

Br

SF

OOFSO3H

160 °C, 3 h

76%83joc3220

Scheme 7.1 Examples of the preparation of arene sulfonic acids and sulfonyl halides [2–5].

Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza Dorwald.c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

192 7 Electrophilic Formation of Aromatic C–S Bonds

The AlCl3-mediated conversion of arenesulfonyl chlorides into diarylsulfonesproceeds smoothly with simple substrates (Scheme 7.2). For alkanesulfonyl halides,though, special catalysts and conditions are required [6]. Sulfonic anhydridessulfonylate arenes more cleanly than sulfonyl halides [7, 8] because the latter oftenact as halogenating reagents or oxidants.

SCl

O O5.6 eq C6H6

1.2 eq AlCl320 °C, 16 h

92%

SO O 10 eq ClSO3H

50 °C, 6 h

100%

SO O

SCl

O O

08jmc7670

SO

S

O OO O

2 eq AlCl3excess C6H6

77%

S

O O

SCl

OO2 eq AlCl3excess C6H6

2%

54ja1222

F

F

Cl

2 eq (MeSO2)2O

0.1 eq F3CSO3H

130 °C, 21 h

43%

2 eq (EtSO2)2O

2 eq F3CSO3H

130 °C, 18 h

13%

F

F

Cl

S O

O

F

F

Cl

S O

O

08oprd1060

N

+

SCl

OO

1 eq 3 eq

10% Pd(MeCN)2Cl2

2 eq K2CO3, 4 Å MS

dioxane, 120 °C, 6 h N

S

OO

79%

(does not work with

alkanesulfonyl chlorides)

09ja3466

N +

1 eq 3 eq

SCl

O O

Br

5% [Ru(p-cymene)Cl2]22 eq K2CO3

MeCN, 115 °C, 15 h S

O O

Br

N74%

11ja19298

Scheme 7.2 Examples of aromatic sulfonylations [7–11]. Further examples: [6, 12, 13].

7.1 Sulfonylation 193

7.1.2Typical Side Reactions

One reason for the poor yield of sulfonylations with sulfonyl halides is that thelatter often act as halogenating agents instead of sulfonylating agents (Scheme 7.3).In contrast to acyl anions, sulfinates (RSO2

−) are stable and good leaving groups,and often react as such (e.g., as leaving group in β-eliminations, RSO2X as syntheticequivalent of X+). Even the preparation of sulfonamides from sulfonyl chloridescan give low yields when conducted under anhydrous conditions. High yieldsof sulfonamides are usually obtained only under Schotten–Baumann conditions(in the presence of aqueous base). Hydrolysis of the sulfonyl halide is seldom aproblem, because sulfonyl halides, in particular arenesulfonyl chlorides, do notreadily react with water or aqueous bases.

NH

1 eq MeMgBr, 20 °C, 1 h

then 1 eq PhSO2Cl

THF, 20 °C, 3 h

75% NH

O

PhSO2ClKOH, H2O

C6H6

90%

N

SO2Ph

N

Cl

NH

O

S

O

Ph

87joc3404

Scheme 7.3 Oxidation of an indole with benzenesulfonyl chloride [14].

Acid-catalyzed aromatic sulfonylations with sulfonic acid derivatives arereversible, which can lead to the isomerization to more stable isomers, totranssulfonations, or to desulfonations (Scheme 7.4). Such reactions can besuppressed by reducing the reaction temperature and the amount and strength ofacid used.

Sulfonic acid derivatives can act as oxidants, and convert electron-rich arenesinto radical cations. Biaryls are the typical byproducts formed from intermediateradicals (Scheme 7.5). In the presence of transition metals, arenesulfonyl halidesand other derivatives of arenesulfonic acids can also act as arylating reagents [17].

Sulfuryl chloride (SO2Cl2) is not a convenient reagent for the preparation ofsulfonyl chlorides or sulfones, because this reagent is an even more powerfulchlorinating agent than arenesulfonyl chlorides (Scheme 7.6). Only if metallatedarenes are to be chlorosulfonylated under anhydrous conditions can sulfurylchloride be used as electrophile, but the yields tend to be low. The conversion ofarenes into arenesulfonyl halides works best with halosulfonic acids (HalSO3H). In

194 7 Electrophilic Formation of Aromatic C–S Bonds

S

OO

+

MeO

1.0 eq 3.0 eq

1.5 eq F3CSO3H

150 °C, 4 h

75%MeO

S

O O

85joc3334

F

+ SCl

O OS

O O

F

S

O O

F

1 eqexcess

(solvent)

1 eq GaCl360 °C, 24 h

+

73% 26%

06oprd334

Scheme 7.4 Isomerization of sulfones [15, 16].

N

Tf2O, CH2Cl20−20 °C

N

S CF3

OO

+N N

20% 60%

N

1.1 eq Tf2O

MeNO2

0−20 °C, 16 h+

N

1.0 eq 1.2 eq

N

S CF3

OO

88%

2 eq KOtBu

DMF−50 °C, 16 h

N

S

N

F3C O

O

SCF3

O

O

N

S

N

F3C O

O

81%

11ol4854

11ol4854

N

SCl

O O

+

10% PdCl2(MeCN)2

1 eq Ag2CO3

3 eq CuBr, MS 4 Å

dioxane, 160 °C, 12 h N

67%

1 eq 3 eq09ja3466

Scheme 7.5 Oxidations and arylations with sulfonic acid derivatives [10, 18].

7.2 Sulfinylation 195

MeO

1.05 eq SO2Cl21% AlCl3

PhCl, 20 °C, 22 h

MeO

Cl

95%

12oprd148

Cl

NH

O

2.1 eq BuLi

THF, −20 °C, 2 h

then 5 eq SO2Cl2−78 °C, 2 h, then 20 °C, 16 h

50% N

O

SCl

O

O

N

O

LiN

O

Li

09cej8283

Scheme 7.6 Reaction of arenes with sulfuryl chloride [20, 21].

the presence of iodine, though, even chlorosulfonic acid can act as a chlorinatingreagent [19].

7.2Sulfinylation

7.2.1General Aspects

Sulfoxides can be prepared by direct sulfinylation of unsubstituted arenes withsulfinic acid derivatives (Scheme 7.7), but numerous byproducts may result. Analternative to the direct sulfinylation (or sulfonylation) is sulfenylation followed byoxidation [8, 22].

7.2.2Typical Side Reactions

As shown in Schemes 7.7 and 7.8, sulfinylations are problematic because theresulting sulfinic acids and sulfoxides can react as electrophiles under the reactionconditions required for their preparation. Even poor nucleophiles (e.g., halides)can add to the cationic intermediates generated from sulfoxides and electrophiles.Aliphatic alcohols will usually be oxidized to aldehydes or ketones by sulfoxides inthe presence of electrophiles (Swern and Pfitzner–Moffatt oxidations).

Similar to sulfonylations, sulfinylations are reversible. Treatment of aromaticsulfoxides with acids or other catalysts can bring about rearrangement to more

196 7 Electrophilic Formation of Aromatic C–S Bonds

F

1.1 eq AlCl3HCl, excess SO2

CS2, 20 °C, 16 h, then NaOH, H2O

F

SONa

O

75%

35ja2166

MeO

+S

MeO

O2 eq 1 eq

1 eq AlCl3DCE, 25 °C, 15 h

S

O

MeO

53%

11joc4635

N

N

F3C Cl

Cl

CN

NH2

1.1 eq F3CSO2Na

1.5 eq Et3NHCl

6.5 eq PhMe, 1.2 eq SOCl2

5 °C, 0.5 h, then add pyrazole

50 °C, 6 hN

N

F3C Cl

Cl

CN

NH2

S

CF3

O

N

N

F3C Cl

Cl

CN

HN S

O

CF3

70%

US 2012309806

F3CS

ONa

Obenzene

TfOH, 20 °C, 24 h

50%

SF3C

OTf2O, 20 °C, 7 d S

CF3

SF3C

56%

TfO

06ang1279

OH

+ SPhCl

O AlCl3, CH2Cl2

90%

OH

SPh

OSOCl2

25 °C, 0.5 h

OH

SPh

Cl

78%

94joc3248

Scheme 7.7 Examples of aromatic sulfinylations [23–27].

7.2 Sulfinylation 197

1 eq F3CSO2K

2 eq (F3CSO2)2O

20 °C, 7 d

SCF3

SCF3

O

S

CF3

+ +

47% 7% 12%

09ejoc1390

O

SO

NH

0.1 eq NEt3PhMe, 111 °C, 24 h

SN

O

S

HN

O

S

N

O

+ +

69% 15% 10%

S N

O

− OH

94joc8076

Scheme 7.8 Decomposition reactions of sulfoxides [28, 29].

stable isomers (Scheme 7.9). Moreover, acids such as AlCl3 can cause the dispro-portionation of sulfoxides into sulfones and thioethers. Strong bases [30], OsO4

[31], or electrophiles (as in the Pummerer rearrangement) can also induce thedisproportionation of sulfoxides or the β-elimination of ArSO− [32]. Because of thishigh reactivity of sulfoxides, dimethyl sulfoxide (DMSO) is a hazardous solvent,ill-suited for most large-scale applications.

N

CN

SO

N

CN

S

OTFA, CH2Cl2

20 °C, 2 h

97%

89jmc1202

Scheme 7.9 Acid-mediated rearrangement of a sulfoxide [33]. Further examples: [34].

The preparation of sulfinic acid chlorides or sulfoxides from thionyl chloridehas been reported [35], but must be done carefully. In addition to the problems

198 7 Electrophilic Formation of Aromatic C–S Bonds

MeO

10 eq SOCl22% catalyst60 °C, 1 h

MeO

SCl

O

+

MeO

S

OMe14%99%

40%traces

03sl631

catalyst:Sc(OTf)3

BiCl3

N

O

excess SOCl2DME, 80 °C, 2 h

95%

N

Cl

S

O

OH Cl

O

Cl

O

oil, 210 °C, 0.5 hN

ClHCl

90%

76joc3406

HN

O

NO

NMe2 excess SOCl280 °C, 1.5 h

67%

N

Cl

NO

NMe2

O

N

Cl

NO

NMe2

S

Cl

O01joc612

MeO

MeON

O

O

OHO O

excess SOCl220 °C, 4 h

79%

MeO

MeON

O

OO

O

78joc3781

CO2H

F3C

2.3 eq SOCl20.14 eq pyridine

135−145 °C, 12 h

F3C SCOCl

Cl

23%

11ja3764

Scheme 7.10 Byproducts formed during reactions with thionyl chloride [36–40]. Furtherexamples: [41].

7.3 Sulfenylation 199

mentioned above, various functional groups are chlorinated, sulfinylated, dehy-drogenated, or otherwise oxidized by thionyl chloride, which can cause theformation of unexpected products (Scheme 7.10). Because of the many poten-tial side reactions of electrophilic sulfinylations, sulfinic acids are usually preparedby reduction of sulfonyl chlorides, and not by electrophilic sulfinylation withSOCl2 or SO2.

7.3Sulfenylation

7.3.1General Aspects

Arylthioethers can be prepared from electron-rich arenes and disulfides [33],thioethers, sulfenyl halides or sulfenyl amides (RS–NR2) [43], or esters (RS–OR)(Scheme 7.11). These reactions can be catalyzed by acids, oxidants [44], andcopper or palladium complexes. In the presence of strong acids, arenes react withsulfoxides to sulfonium salts, which can be dealkylated with various nucleophilesto yield thioethers [29, 45].

NH2

1 eq

7% AlCl3150 °C, 0.5 h

then add 1 eq MeSSMe150–170 °C, 10 h

NH2 NH2

SMe MeS

+

21% 48%89joc2985

OH O

NH

O

+

N N

NN

SCl

Ph

1 eq 1 eq

OH O

NH

O

S

N N

NN

Ph

CCl4, 77 °C, 16 h

77%

EP 0763526

Scheme 7.11 Electrophilic sulfenylation of arenes [42, 46–51]. Further examples: [52].

200 7 Electrophilic Formation of Aromatic C–S Bonds

N

MeSSMe, air1 eq Cu(OAc)2

DMSO, 130 °C, 24 h N

SMe+

N

SMeMeS

10–20%51%

06ja6790

OMe

OMeMeO

+S

SCO2Me

CO2Me0.2 eq CuI, O2

DMF, 120 °C, 24 h

1.3 eq 1.0 eq

OMe

OMeMeO

SCO2Me

71%

10joc6732

(only works with

trialkoxybenzenes)

N

EtO2C

2 eq K2S2O8

4 eq CuF2

DMSO, 125 °C, 72 h N

EtO2C

+N

EtO2C

SMe SMe

SMe66% 9%

89% conversion

10ol1644

NH

CO2Et +

HS OMe

1.0 eq 1.2 eq

1.2 eq NCSCH2Cl2

−78 °C to 0 °C, 1 h

NH

CO2Et

S

OMe

76%

04ol819

NH

NH OMe

O 1.2 eq F3CSNHPh

2.5 eq TsOH

CH2Cl2, 12 h

NH

N

NH

NH OMe

O

S

H

CF3

OMe

O

SCF3

+

temperature:50 °C20 °C

95%

96% (> 20 : 1)

12joc7538

(1 : 1)

Scheme 7.11 (Continued)

7.3.2Typical Side Reactions

During sulfenylations with disulfides, thiols are formed as byproducts. These arestrongly nucleophilic and can cause unwanted substitution reactions, includingthe dealkylation of thioethers. Further side reactions include multiple sulfenylationand halogenation of the arene (Scheme 7.12).

References 201

F

F

F

F

F

+S

S

0.3 eq CuBr

2 eq tBuOLi

DMSO, 60 °C, 4 h

5 eq 1 eq

85%

F

F

S

F

F

S

12ejoc1953

N

N NH

Ph5 eq MeSSMe

10% CuI, air

DMF, 110 °C, 60 h N

N NH

Ph SMe

N

N NH

Ph SMe

SMe+

71% 15%

13obmc5189

Scheme 7.12 Side reactions during electrophilic aromatic sulfenylations [53, 54].

References

1. Tanaka, M. and Souma, Y. (1992)Sulfonation of aromatic compoundsin HSO3F–SbF5. J. Org. Chem., 57,3738–3740.

2. Davidson, A., Moffat, D.F.C., Day, F.A.,and Donald, A.D.G. (2008) HDACinhibitors. WO Patent 2008040934.

3. Valgeirsson, J., Nielsen, E.Ø., Peters,D., Mathiesen, C., Kristensen, A.S., andMadsen, U. (2004) Bioisosteric modi-fications of 2-arylureidobenzoic acids:selective noncompetitive antagonists forthe homomeric kainate receptor subtypeGluR5. J. Med. Chem., 47, 6948–6957.

4. Novello, F.C., Bell, S.C., Abrams, E.L.A.,Ziegler, C., and Sprague, J.M. (1960)Diuretics: aminobenzenedisulfonamides.J. Org. Chem., 25, 965–970.

5. Girard, Y., Atkinson, J.G., Belanger,P.C., Fuentes, J.J., Rokach, J., Rooney,C.S., Remy, D.C., and Hunt, C.A. (1983)Synthesis, chemistry, and photochemicalsubstitutions of 6,11-dihydro-5H-pyrrolo[2,1-b][3]benzazepin-11-ones.J. Org. Chem., 48, 3220–3234.

6. Peyronneau, M., Boisdon, M.-T.,Roques, N., Mazieres, S., and Le Roux,C. (2004) Total synergistic effectbetween triflic acid and bismuth(III)or antimony(III) chlorides in catalysis ofthe methanesulfonylation of arenes. Eur.J. Org. Chem., 2004, 4636–4640.

7. Field, L. and Settlage, P.H. (1954)Alkanesulfonic acid anhydrides. J. Am.Chem. Soc., 76, 1222–1225.

8. Parker, J.S., Bower, J.F., Murray, P.M.,Patel, B., and Talavera, P. (2008)Kepner–Tregoe decision analysis asa tool to aid route selection. Part 3.Application to a back-up series of com-pounds in the PDK project. Org. ProcessRes. Dev., 12, 1060–1077.

9. Gopalsamy, A., Shi, M., Stauffer, B.,Bahat, R., Billiard, J., Ponce-de-Leon,H., Seestaller-Wehr, L., Fukayama, S.,Mangine, A., Moran, R., Krishnamurthy,G., and Bodine, P. (2008) Identifica-tion of diarylsulfone sulfonamidesas secreted frizzled related protein-1(sFRP-1) antagonist. J. Med. Chem., 51,7670–7672.

10. Zhao, X., Dimitrijevic, E., and Dong,V.M. (2009) Palladium-catalyzed C–Hbond functionalization with arylsul-fonyl chlorides. J. Am. Chem. Soc., 131,3466–3467.

11. Saidi, O., Marafie, J., Ledger, A.E.W.,Liu, P.M., Mahon, M.F., Kociok-Kohn,G., Whittlesey, M.K., and Frost, C.G.(2011) Ruthenium-catalyzed meta sul-fonation of 2-phenylpyridines. J. Am.Chem. Soc., 133, 19298–19301.

12. Singh, R.P., Kamble, R.M., Chandra,K.L., Saravanan, P., and Singh, V.K.(2001) An efficient method for aromatic

202 7 Electrophilic Formation of Aromatic C–S Bonds

Friedel–Crafts alkylation, acylation, ben-zoylation, and sulfonylation reactions.Tetrahedron, 57, 241–247.

13. Shirley, D.A. and Lehto, E.A. (1957) Themetalation of 4-t-butyldiphenyl sulfonewith n-butyllithium. J. Am. Chem. Soc.,79, 3481–3485.

14. Wenkert, E., Moeller, P.D.R., Piettre,S.R., and McPhail, A.T. (1987) Unusualreactions of magnesium indolates withbenzenesulfonyl chloride. J. Org. Chem.,52, 3404–3409.

15. El-Khawagat, A.M. and Roberts, R.M.(1985) Transsulfonylations betweenaromatic sulfones and arenes. J. Org.Chem., 50, 3334–3336.

16. Fleck, T.J., Chen, J.J., Lu, C.V., andHanson, K.J. (2006) Isomerization-freesulfonylation and its application in thesynthesis of PHA-565272A. Org. ProcessRes. Dev., 10, 334–338.

17. Yu, X., Li, X., and Wan, B. (2012)Palladium-catalyzed desulfitative ary-lation of azoles with arylsulfonylhydrazides. Org. Biomol. Chem., 10,7479–7482.

18. Xu, X.-H., Liu, G.-K., Azuma, A.,Tokunaga, E., and Shibata, N. (2011)Synthesis of indole and biindolyl tri-flones: trifluoromethanesulfonylationof indoles with Tf2O/TTBP (2,4,6-tri-tert-butylpyridine) system. Org. Lett., 13,4854–4857.

19. Cremlyn, R.J.W. and Cronje, T. (1979)Chlorination of aromatic halides withchlorosulfonic acid. Phosphorus SulfurRel. Elem., 6, 495–504.

20. Allwein, S.P., Roemmele, R.C., Haley,J.J., Mowrey, D.R., Petrillo, D.E., Reif,J.J., Gingrich, D.E., and Bakale, R.P.(2012) Development and scale-up of anoptimized route to the ALK inhibitorCEP-28122. Org. Process Res. Dev., 16,148–155.

21. Bruyneel, F., Payen, O., Rescigno, A.,Tinant, B., and Marchand-Brynaert, J.(2009) Laccase-mediated synthesis ofnovel substituted phenoxazine chro-mophores featuring tuneable watersolubility. Chem. Eur. J., 15, 8283–8295.

22. Finikova, O.S., Cheprakov, A.V.,and Vinogradov, S.A. (2005) Syn-thesis and luminescence of solublemeso-unsubstituted tetrabenzo- and

tetranaphtho[2,3]porphyrins. J. Org.Chem., 70, 9562–9572.

23. Hann, R.M. (1935) Some derivativesof p-fluorophenyl sulfinic acid. J. Am.Chem. Soc., 57, 2166–2167.

24. Yuste, F., Hernandez Linares,A., Mastranzo, V.M., Ortiz, B.,Sanchez-Obregon, R., Fraile, A., andGarcıa Ruano, J.L. (2011) Methyl sulfi-nates as electrophiles in Friedel–Craftsreactions. Synthesis of aryl sulfoxides. J.Org. Chem., 76, 4635–4644.

25. Sukopp, M., Kuhn, O., Groning, C.,Keil, M., and Longlet, J.J. (2012) Pro-cess for the sulfinylation of a pyrazolederivative. US Patent 2012309806.

26. Magnier, E., Blazejewski, J.-C., Tordeux,M., and Wakselman, C. (2006) Straight-forward one-pot synthesis of trifluo-romethyl sulfonium salts. Angew. Chem.Int. Ed., 45, 1279–1282.

27. Jung, M.E., Kim, C., and vondem Bussche, L. (1994) Vicarious nucle-ophilic aromatic substitution via trap-ping of an α-ketosulfonium ion gene-rated by Pummerer-type rearrangementof 2-(phenylsulfinyl)phenols: preparationof biaryls. J. Org. Chem., 59, 3248–3249.

28. Mace, Y., Raymondeau, B., Pradet,C., Blazejewski, J.-C., and Magnier,E. (2009) Benchmark and solvent-freepreparation of sulfonium salt based elec-trophilic trifluoromethylating reagents.Eur. J. Org. Chem., 2009, 1390–1397.

29. Bates, D.K. and Tafel, K.A. (1994)Sulfenylation using sulfoxides.Intramolecular cyclization of 2- and3-acylpyrroles. J. Org. Chem., 59,8076–8080.

30. Furukawa, N., Ogawa, S., Matsumura,K., and Fujihara, H. (1991) Extremelyfacile ligand-exchange and dispropor-tionation reactions of diaryl sulfoxides,selenoxides, and triarylphosphine oxideswith organolithium and Grignardreagents. J. Org. Chem., 56, 6341–6348.

31. Davis, H.R. and Sorensen, D.P. (1959)Disproportionation of organic sulfoxides.US Patent 2870215.

32. Forbes, D.C., Bettigeri, S.V., Al-Azzeh,N.N., Finnigan, B.P., and Kundukulama,J.A. (2009) Sulfenylation chemistryusing polymer-supported sulfides.Tetrahedron Lett., 50, 1855–1857.

References 203

33. Muchowski, J.M., Galeazzi, E.,Greenhouse, R., Guzman, A., Perez,V., Ackerman, N., Ballaron, S.A., Rovito,J.R., Tomolonis, A.J., Young, J.M., andRooks, W.H. (1989) Synthesis and anti-inflammatory and analgesic activityof 5-aroyl-6-(methylthio)-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylicacids and 1-methyl-4-(methylthio)-5-aroylpyrrole-2-acetic acids. J. Med.Chem., 32, 1202–1207.

34. Carmona, O., Greenhouse, R., Landeros,R., and Muchowski, J.M. (1980) Synthe-sis and rearrangement of 2-(arylsulfinyl)-and 2-(alkylsulfinyl)pyrroles. J. Org.Chem., 45, 5336–5339.

35. Reddy, B.M., Sreekanth, P.M., andLakshmanan, P. (2005) Sulfated zirconiaas an efficient catalyst for organic syn-thesis and transformation reactions. J.Mol. Catal. A, 237, 93–100.

36. Peyronneau, M., Roques, N., Mazieres,S., and Le Roux, C. (2003) CatalyticLewis acid activation of thionyl chlo-ride: application to the synthesis ofaryl sulfinyl chlorides catalyzed bybismuth(III) salts. Synlett, 631–634.

37. Ning, R.Y., Madan, P.B., Blount, J.F.,and Fryer, R.I. (1976) Structure andreactions of an unusual thionyl chlorideoxidation product. 9-Chloroacridinium2-chloro-l-(chlorosulfinyl)-2-oxoethylide.J. Org. Chem., 41, 3406–3409.

38. Feng, S., Panetta, C.A., and Graves,D.E. (2001) An unusual oxidationof a benzylic methylene group bythionyl chloride: a synthesis of 1,3-dihydro-2-[2-(dimethylamino)ethyl]-1,3-dioxopyrrolo[3,4-c]acridine derivatives. J.Org. Chem., 66, 612–616.

39. Cushman, M. and Cheng, L. (1978)Stereoselective oxidation by thionylchloride leading to the indeno[1,2-c]isoquinoline system. J. Org. Chem., 43,3781–3783.

40. Cheng, K., Wang, X., and Yin, H.(2011) Small-molecule inhibitors ofthe TLR3/dsRNA complex. J. Am. Chem.Soc., 133, 3764–3767.

41. Higa, T. and Krubsack, A.J. (1975)Oxidations by thionyl chloride. VI.Mechanism of the reaction withcinnamic acids. J. Org. Chem., 40,3037–3045.

42. Gillis, H.M., Greene, L., and Thompson,A. (2009) Preparation of sulfenylpyrroles. Synlett, 112–116.

43. Ranken, P.F. and McKinnie, B.G. (1989)Alkylthio aromatic amines. J. Org.Chem., 54, 2985–2988.

44. Prasad, C.D., Balkrishna, S.J., Kumar,A., Bhakuni, B.S., Shrimali, K., Biswas,S., and Kumar, S. (2013) Transition-metal-free synthesis of unsymmetricaldiaryl chalcogenides from arenes anddiaryl dichalcogenides. J. Org. Chem., 78,1434–1443.

45. Ukai, S. and Hirose, K. (1968) DieReaktion der Phenolderivate mitSulfoxiden. IV. (einschlieβlich dervon Sulfiden und Wasserstoffper-oxid ausgehenden Reaktion). DieSynthese von 4-thiosubstituierten 1,2-Naphthochinonderivaten. Chem. Pharm.Bull., 16, 606–612.

46. Delprato, I. and Bertoldi, M. (1997)Process for preparation of 4-mercapto-1-naphthol compounds. EP Patent0763526.

47. Schlosser, K.M., Krasutsky, A.P.,Hamilton, H.W., Reed, J.E., andSexton, K. (2004) A highly efficientprocedure for 3-sulfenylation of indole-2-carboxylates. Org. Lett., 6, 819–821.

48. Yang, Y., Jiang, X., and Qing, F.-L.(2012) Sequential electrophilictrifluoromethanesulfanylation–cyclization of tryptaminederivatives: synthesis of C(3)-trifluoromethanesulfanylatedhexahydropyrrolo[2,3-b]indoles. J. Org.Chem., 77, 7538–7547.

49. Chen, X., Hao, X.-S., Goodhue, C.E.,and Yu, J.-Q. (2006) Cu(II)-catalyzedfunctionalizations of aryl C–H bondsusing O2 as an oxidant. J. Am. Chem.Soc., 128, 6790–6791.

50. Zhang, S., Qian, P., Zhang, M., Hu, M.,and Cheng, J. (2010) Copper-catalyzedthiolation of the di- or trimethoxyben-zene arene C–H bond with disulfides. J.Org. Chem., 75, 6732–6735.

51. Chu, L., Yue, X., and Qing, F.-L. (2010)Cu(II)-mediated methylthiolation of arylC–H bonds with DMSO. Org. Lett., 12,1644–1647.

52. Tran, L.D., Popov, I., and Daugulis, O.(2012) Copper-promoted sulfenylation of

204 7 Electrophilic Formation of Aromatic C–S Bonds

sp2 C–H bonds. J. Am. Chem. Soc., 134,18237–18240.

53. Yu, C., Zhang, C., and Shi, X. (2012)Copper-catalyzed direct thiolation ofpentafluorobenzene with diaryl disul-fides or aryl thiols by C–H and C–Fbond activation. Eur. J. Org. Chem.,2012, 1953–1959.

54. Klecka, M., Pohl, R., Cejka, J.,and Hocek, M. (2013) Direct C–Hsulfenylation of purines and deaza-purines. Org. Biomol. Chem., 11,5189–5193.


Recommended