+ All Categories
Home > Documents > Significance of Microporosity to Reactive Transport Modeling at … · 2008. 4. 15. ·...

Significance of Microporosity to Reactive Transport Modeling at … · 2008. 4. 15. ·...

Date post: 03-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
31
Significance of Microporosity to Reactive Transport Modeling at DOE Sites James A. Davis U. S. Geological Survey Menlo Park, CA Collaborators: USGS: Gary Curtis, Kate Campbell, Deb Stoliker, Patricia Fox LBNL: Carl Steefel, Li Li, Ken Williams Johns Hopkins University: Joanne Stubbs, Dave Elbert, Linda Veblen, David Veblen PNNL: John Zachara, Phil Long, Steve Yabusaki
Transcript
  • Significance of Microporosity to Reactive

    Transport Modeling at DOE Sites

    James A. DavisU. S. Geological Survey

    Menlo Park, CA

    Collaborators:

    USGS: Gary Curtis, Kate Campbell, Deb Stoliker, Patricia Fox

    LBNL: Carl Steefel, Li Li, Ken Williams

    Johns Hopkins University: Joanne Stubbs, Dave Elbert,

    Linda Veblen, David Veblen

    PNNL: John Zachara, Phil Long, Steve Yabusaki

  • Uranium-Contaminated DOE Sites

    Naturita UMTRA Rifle UMTRA

    O

    U

    2.02Å2.40Å

    3.43Å

    O

    O

    O

    O

    O

    Fe

    C

    O

    O

    C

    O

    O

    Fe

    Fe

    2.88Å

    +

    Reactive Transport Modeling

    =

    Hanford 300 Area

  • Reactive transport models are commonly based on the

    continuum representation of porous media, in which the

    physical, chemical, and biological variables describing the

    system vary continuously in space.

    Reactive Transport Modeling: Continuum Models

    An REV has average values

    of physical, chemical, and

    microbiological variables

    REV1 REV2

  • River

    No-flow

    boundary

    Discretization of

    modeling domainREV

    An REV is “well mixed”.

    There are no sub-grid

    gradients, e.g., in physical

    structure, chemical

    concentrations, surface area,

    or biological properties.

    5-100 m

    2 km

  • Naturita

    UMTRA site:

    Alluvial

    Aquifer

    Sediment

    Texture

    50% cobbles,

    >6.4 cm;

    15%

  • Cobble

    Sand grain

    Silt grain

    Preferred

    Groundwater

    Flowpath

    Physical heterogeneity within REVPore

    Scale

    Faster flow

    Mass transfer

  • RTM simulations by L. Li and C. Steefel

    Layer of fine-grained

    sediment

    Effect of Subgrid Physical

    Heterogeneity with Local

    Chemical Equilibrium

    Slide 7

  • 5.5 6.0 6.5 7.0 7.5 8.0

    pH

    10

    9

    8

    7

    6

    5

    4p

    C

    UO22+

    UO2OH+

    UO2(CO3)34-

    UO2(CO3)22-

    (UO2)2CO3(OH)3-

    U(VI)tot = 1 x 10-6M; 430 ppm CO2

    5 mM NaNO3Ca2UO2(CO3)3

    o

    1.78 mM Ca(NO3)2

    UO2CO3o

    CaUO2(CO3)32-

    5.5 6.0 6.5 7.0 7.5

    pH

    10

    9

    8

    7

    6

    5

    4

    pC UO2

    2+

    UO2(CO3)34-

    UO2(CO3)22-

    (UO2)2CO3(OH)3-

    U(VI)tot = 1 x 10-6M; 2% CO2

    5 mM NaNO3Ca2UO2(CO3)3

    o

    1.78 mM Ca(NO3)2

    UO2CO3o

    Calciteprecipitation

    CaUO2(CO3)32-

    Fox, Davis, and Zachara, 2006, GCA

    Importance of

    Ca2UO2(CO3)30 aqueous

    species at all 3 DOE sites

    At 2% pCO2 typical of groundwater

    conditions at all 3 sites

    At equilibrium with 430 ppm CO2

    Naturita; Rifle: pH 7

    Hanford: pH 7.5-8

  • 0 5 10 15 20 25 30 35 40 45 50

    Time (hr)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % U

    (VI)

    ad

    so

    rbed

    Naturita uncontaminated

    U(VI)tot = 10-6M

    Ca(NO3)2 = 2.3 mM

    NaNO3 = 2 mM

    500 ppm CO2pH = 7.95

    sediment (250-500 um) = 77 m2/L

    0 5 10 15 20 25 30 35 40 45 50

    Time (hr)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % U

    (VI)

    ad

    so

    rbe

    d

    U(VI)tot = 10-6M

    430 ppm CO2

    Ca(NO3)2 = 8.9 mM

    NaNO3 = 5 mM

    pH = 7.3

    Fox, Davis, and Zachara, GCA, 70, 1379-1387, 2006

    Quartz = 8 m2/L Adsorption/desorption of U(VI)

    reaches equilibrium quickly in well-

    stirred batch reactors with non-

    porous single mineral phase with

    Ca2UO2(CO3)30 as the predominant

    aqueous species

    Adsorption/desorption of U(VI)

    approaches equilibrium slowly in

    well-stirred batch reactors with

    aquifer sediments from all 3 DOE

    sites with Ca2UO2(CO3)30 as the

    predominant aqueous species,

    taking weeks to months to reach a

    steady-state U(VI) concentration

    (Example: Naturita adsorption)

  • 0 200 400 600 800 1000 1200 1400

    Time (hr)

    0.00

    0.04

    0.08

    0.12

    0.16

    0.20

    0.24D

    es

    orb

    ed

    U(V

    I),

    mic

    rom

    ol/

    L

    Hanford 300 Area contaminated

    sediment (sample SPP2-18)= 1530 m2/L

    Desorbable U(VI) = 2.4 x 10-7M

    Ca = 0.73 mM

    0.17% CO2

    pH = 8.1

    Desorption of U(VI) approaches

    equilibrium very slowly in well-

    stirred batch reactors with Hanford

    aquifer sediments (sample SPP2-18)

    (Bond, Davis, and Zachara, 2008)

    Flow interruption in column

    experiments with sample

    SPP2-18 show that the rate

    of U(VI) desorption is

    rate-limited

    (Qafoku et al, ES&T, 2005)

    Slide 10

  • Nanoporosity and surface areas of Hanford sample NPP1-16 (

  • Magnified Particle

    Scale Showing

    Intraparticle Pore

    - - - - - - - - - - - - -

    - - - - - - - - - - - - -

    - - - -

    - -

    - - -

    Temporally-variant bulk water

    concentrations,

    (H+, U(VI), Ca2+, HCO3-)b

    Iron oxide

    precipitateCalcite

    HCO3-

    HCO3-

    AlO O

    UO O

    Ca2UO2(CO3)30

    Local Chemical

    equilibrium

    Ca2UO2(CO3)30

    Surface Charge Diffusive flux

    Slide 12

  • Column Experiment: Pore Scale

    Diffusive flux

    Diffusion plus

    dispersion?

  • 0 200 400 600 800 1000 1200 1400

    Time (hr)

    0.00

    0.04

    0.08

    0.12

    0.16

    0.20

    0.24D

    es

    orb

    ed

    U(V

    I),

    mic

    rom

    ol/

    L

    Hanford 300 Area contaminated

    sediment (sample SPP2-18)= 1530 m2/L

    Desorbable U(VI) = 2.4 x 10-7M

    Ca = 0.73 mM

    0.17% CO2

    pH = 8.1

    Approximately 50% of U(VI) desorbs from intragranular porosity??

    Bond, Davis, and Zachara, 2008, Adsorption in Geomedia II

  • Advection, dispersion, and diffusion of tritium out

    of a column packed with Hanford sample NPP2-4

    c) Elution stage 2

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    1.5 2 2.5 3 3.5

    sf 1

    sf 2

    4 hrs

    C/Co

    Pore volumes

    b) Elution stage 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.5 1 1.5 2

    sf 1

    2 hrs

    d) Elution stage 3

    0

    0.001

    0.002

    0.003

    0.004

    0.005

    0.006

    3 3.5 4 4.5 5

    sf 2

    sf 3

    16 hrs

    e) Elution stage 4

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0.003

    4.5 5 5.5 6 6.5

    sf 3

    sf 4

    10.75 days

    f) Elution stage 5

    0

    0.0005

    0.001

    0.0015

    0.002

    0.0025

    0.003

    0.0035

    6 6.5 7 7.5 8 8.5

    sf 4

    sf 5

    30 min

    g) Elution stage 6

    0.E+00

    1.E-04

    2.E-04

    3.E-04

    4.E-04

    7.5 9.5 11.5

    sf 5

    sf 6

    7.66 days

    i) Elution stage 8

    0.0E+00

    4.0E-05

    8.0E-05

    1.2E-04

    1.6E-04

    2.0E-04

    14 15 16 17

    sf 7

    h) Elution stage 7

    0.E+00

    2.E-04

    4.E-04

    6.E-04

    8.E-04

    1.E-03

    12 12.5 13 13.5 14 14.5

    sf 6

    sf 7

    4 hrs

    Procedure: Pack

    sample in

    column; let sit for

    4 months in water

    with high HTO

    Solid curve shows

    model with HTO

    diffusion from

    two immobile

    zones with a total

    intragranular

    porosity of 1.05%

    Slide 14

  • Naturita sediment quartz grain coatings

    Relative abundances of Al and Fe in grain coatings (μm thickness)

    20 μm 20 μm

    Grain coatings: Another type of microporosity?

    Slide 15

  • Bright-field TEM images

    showing needle-like

    goethite (G) crystals

    immersed in illite/smectite

    clay matrix.

    Davis et al., GCA, 68, 3621 (2004)

    Naturita sediment grain coatings

    U(VI) diffusive flux

  • Hanford uncontaminated vadose

    zone sample: C5001-67B

    Hanford contaminated vadose

    zone sample: NPP2-2

    20 μm

    20 μm

    Coating consists of micron-sized

    mineral fragments.

    Coating has much finer texture,

    with a fine-grained clay coating

    several microns thick at the outer

    ridge of the grain. Probably

    influenced by infiltration of low and

    high pH pond water containing high

    concentrations of Al and Si.

    Stubbs et al., 2008

  • metatorbernite

    coating

    Lithic fragment

    Hanford contaminated vadose

    zone sample: NPP2-2

    Metatorbernite precipitate [Cu(UO2)2(PO4)2·8H2O] is encapsulated within coatings on

    contaminated grains

    Stubbs et al., 2008Slide 18

  • 0 20 40 60 80 100 120 140 160 180 200

    Time (hr)

    0.00E+000

    1.50E-008

    3.00E-008

    4.50E-008

    U(V

    I) r

    ele

    as

    ed

    (m

    ole

    s/L

    )

    No grinding

    Grinding (mortar/pestle)

    Hanford sample NPP2-4

    250-500 μm size fraction

    Artificial groundwater; pH 7.5; HCO3- = 4 mM

    Hanford contaminated vadose

    zone sample: NPP2-4

  • Hanford contaminated vadose

    zone sample: NPP2-2

    Backscattering image of a 60 μm

    wide, fine-grained clay coating.

    Outer edge of coating contains

    very high concentrations of Zr

    and U, presumably from cladding

    waste. Electron microprobe WDS

    linescans show gradients in U

    concentration across the coating.

    Stubbs et al., 2008

  • Zones of Natural Bioreduction in

    Rifle Aquifer Sediments

    Slide 21

  • 50 g/L air-dried sediment

    Extractions performed in air; pH 9.4; 17.2 mM total carbonate

    U(V

    I) e

    xtr

    act

    ed (

    mo

    les/

    g)

    Time (hr)

    Sodium carbonate extractions of Rifle

    sediment samples (BKG-A and RABS)

  • Bi/carbonate – H2O

    2

    Bi/carbonate + 1% H2O

    2

    RABS total U = 1.76E-8 moles/g

    U(V

    I) e

    xtr

    act

    ed (

    mo

    les/

    g)

    Time (hr)

    Sodium carbonate extractions of RABS

    sediment sample with H2O2

    1% H2O2 added

    No H2O2 added

    Slide 23

  • Sodium carbonate extractions of BKG-A

    sediment sample with H2O2

    Time (hr)

    U(V

    I) e

    xtr

    act

    ed (

    mo

    les/

    g)

    1% H2O2 added

    No H2O2 added

  • - - - - - - - - - - - - - - - - - - -

    - - - -

    - -

    - - -

    Iron oxide

    precipitate

    Fe2+Al

    O O

    UO O

    Ca2UO2(CO3)30

    Ca2UO2(CO3)30

    Diffusive flux

    Acetate

    Fe2+Fe2+

    UO2(ppt)- - - - - - - - - - - - - - - - -

    Slide 25

    Acetate

    Nanoparticulate UO2(s)

  • 1020 1030 10351010 10251015

    Field remediationField research site

    Column studies

    Spectroscopy

    Batch studies

    Total Surface Sites in System(Fine-grained porous media,0.1 moles sites/m3)

    Experimental Upscaling

    No bulk spatial

    gradients in well-

    mixed reactor

    Chemical

    gradients at pore

    scale as f(flow)

    and along

    reaction fronts

    Subsurface

    heterogeneity; spatial

    and temporal gradients

  • Lichtner and Kang, Water Resources Research, 43, W12S15, 2007

    Multiscale Continuum Models

    Primary Continuum (3-dimensional)

    Sub-grid scale domains

    (1-dimensional)

  • One of the largest problems for single continuum RTM at the field

    scale is heterogeneities of physical, chemical, and biological properties

    at the sub-grid scale and the non-linear scale dependence of coupled

    processes. Intragranular pore space and mineral grain coatings may be

    an important physical regime for many U-contaminated sites.

    Conclusion

    Research Priorities:

    1) Multiscale continuum models (requires high performance computing)

    2) Multiscale experimental studies

    3) Methods for field characterization of significant parameters

    4) Improved but simplified conceptual models for coupled processes (e.g.,

    sorption and aqueous speciation)

    5) Better understanding of parameter and conceptual model uncertainties

  • Cobble

    Sand grain

    Silt grain

    Faster flow

    Groundwater sampling: What

    mixture of water is sampled?

    Slide 12

    Well

  • Batch/column Intermediate-scale studies Field-scale predictions

    Need for multiscale experiments!

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice


Recommended