+ All Categories
Home > Documents > Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the...

Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the...

Date post: 19-Dec-2015
Category:
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
28
Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some of these electrons to free them. Then a “built-in” potential barrier in the cell acts on these electrons such that the electrons can be used to drive a current through an external circuit. Seek to understand more about how the cell works and how its performance can be optimized. Probably have a few questions at this point: 1) How is the electron “freed” and where does the electron go? 2) What is the potential barrier that acts on the free electrons? How is it formed? 3) When the potential barrier acts on the electrons, how do the electrons
Transcript
Page 1: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Silicon and the Photovoltaic Effect

Most basic description

Photons of light interact with the electrons in the silicon and impart enough energy in some of these electrons to free them. Then a “built-in” potential barrier in the cell acts on these electrons such that the electrons can be used to drive a current through an external circuit.

Seek to understand more about how the cell works and how its performance can be optimized. Probably have a few questions at this point:

1) How is the electron “freed” and where does the electron go?

2) What is the potential barrier that acts on the free electrons? How is it formed?

3) When the potential barrier acts on the electrons, how do the electrons then produce a current?

Page 2: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Understanding the silicon cell is a good groundwork for understanding many types of PV cells.

The answers to the questions above will actually lead us to a fuller understanding of the photovoltaic cell.

Lets answer question #2 first. (What is the potential barrier that acts on the freed electrons, and how is it formed?)

To answer this, look at the atomic structure of silicon?

From periodic table, know that silicon has __________ electrons and a total of __________ valence electrons (the outermost electrons).

Silicon makes what type of solid (molecular, ionic, network covalent, metallic)?

Page 3: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Thus silicon shares it four valence electrons one each with a neighboring silicon atom. (like carbon does in diamond). Each BASIC silicon unit in the solid then, forms a tetrahedral arrangement, containing five atoms (the one silicon atom plus the four others it shares electrons with.

Each atom in the silicon solid is held in place at a fixed distance and angle with respect to each of the atoms with which it shares an electron to make a bond. This regular, fixed formation of a solid’s atoms is known as a __________ __________.

Solids often can form from several differently shaped crystal lattices. For silicon, the atoms are located so as to form the vertices of a cube with single atoms centered at each of the faces of the cubic pattern. And the cubic arrangement repeats throughout the crystal. Figure

Page 4: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Light then can interact with the crystalline lattice.

Low energy infrared light can be absorbed by the material causing it to vibrate or twist but the vibrating atoms do not break loose.

Light of higher frequency and higher energy can strike an electron on an atom in the crystalline lattice and excite it to a higher energy level or if the light is energetic enough, the bound electron can be torn from its place in the crystal, leaving behind a silicon bond missing an electron. (Figure

This electron is free to move about the crystal and is said to be in the crystal’s conduction band, because free electrons are the means by which electricity flows. There is also a bond missing an electron and this is often called a hole.

Page 5: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

The electrons and holes freed from their positions in the crystal in this manner are said to be light generated electron-hole pairs. Both the freed electron AND the hole are free to move about the crystal. The hole moves in the following way:

An electron on a neighboring atom to the atomic position of the hole in the lattice can jump into the hole, leaving a hole then on that neighboring atom.

The same can happen again as an electron from a neighboring atom to the original one can jump to the hole and so on …

Figure

This happens fast and frequently-electrons from nearby bonds trading positions with holes, sending the holes in random and erratic patterns through the crystalline solid.

What is the effect of the temperature of the material? The more agitated the electrons and holes, the more they move.

Page 6: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

The generation of electrons and holes by light is the central process in the overall PV effect. Does this produce a current?

If there were no other mechanism involved in this type of solar cell, it would not be a solar cell. The electrons would just meander about the crystal randomly for a time and then lose their energy thermally as the return to valence positions.

MUST HAVE a built in Potential Barrier to exploit the electrons and holes produced by the light.

The Potential BarrierSet up such that there are opposite electric charges facing each other, on either side of a dividing line. This potential barrier must be able to separate the electrons and holes by sending the electrons to one side of the barrier and the holes to the opposite side of the barrier where they are less likely to rejoin each other. Also this separation creates a voltage difference between one side of the cell and the other side of the cell.

Figure

What is the purpose of this voltage difference? It can drive an electric current in an external circuit for the purpose of charging a battery, or running an electronic gadget, etc

Page 7: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

HOW can we make this separation occur?

This is the basis of all solar cells, and different types of solar cells accomplish this in different ways.

For SILICON solar cells, the charge separation and potential barrier is accomplished by Doping. In DOPING, impurities are introduced into a pure crystalline material usually altering the electrical properties of the material.

There is a Negative-Carrier Dopant and a Positive Carrier Dopant.

The negative carrier dopant introduces an impurity into an otherwise pure silicon crystal that has one more valence electron than a silicon atom! What atoms would work for this?Group V atoms such as N, P, As etc., all have 5 valence electrons.

The P atom (for instance) when introduced into the Si would occupy the same position in the crystal as a normal Si atom, supplying an electron for each of Si’s four bonds. BUT the phosphorus atom has one extra valence electron and thus:

There is one electron that does not have a bond to share, and this electron would be relatively free. Figure

Page 8: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

At room temp., there should be sufficient thermal energy for this extra electron to “enter the conduction band and “shake-loose” from the phosphorus atom, even though it would leave behind a positively charged phosphorus impurity atom.

This electron that has “shaken-loose” from the impurity atom has no hole associated with it.

Overall the crystal is neutral, since there are just as many “shaken-loose” electrons as there are positively charged phosphorus ions from which the electrons have shaken loose.

BUT the crystals electrical properties would have been drastically altered. HOW?

Band Theory Diagram

Dopants that have one extra electron are called donors because they donate an electron to the crystal. Such a donor-doped crystal is known as an n-type because it has free negative charges.

Page 9: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Is this enough by itself to create a barrier, the answer is no!

Need to also have the opposite charge as well. A Positive Carrier Dopant Material

What do you suppose that will be?

Atom with one fewer valence electron than silicon!

An atom with three valence electrons, boron, aluminum, etc. can form an appropriately altered semiconductor material in silicon. When this sits in the crystal lattice in place of a Si atom, then what happens?

One of the bonds to a Si atom would effectively be missing an electron, and there would be a HOLE!

So holes move in the way mentioned previously and act like free positive charges moving through the crystal lattice. As the hole moves, it leaves behind a negatively charged center. Overall then the lattice is neutral, since there are just as many holes moving as there are negatively charged boron ions from which the holes have moved.

Page 10: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Dopants that have one less electron than Si are called ________ because they accept an electron to fill a hole in the crystal

These acceptor-doped crystals are known as: p-type because it has freely moving holes which act like positive charges.

In a p-type material, the positive charges are the so called majority (charge) carriers as they are much more abundant than any free electrons. The electrons are the minority carriers in a p-type material.

In an n-type material, the negative charges are the majority carriers, and the minority carriers are the holes.

So now we have altered material with donor and acceptor dopant materials. By joining these two materials together, we can create an overall material which has an excess of freed electrons on one side and an excess of moving holes on the other side.

The line dividing the n-type from the p-type silicon establishes the position of a potential barrier essential to the operation of a solar cell. When the n and p materials are in contact, free electrons in the n-type material are adjacent to the many holes in the p-type material. The free electrons at the junction will jump into the p-type material filling the holes, also valence band electrons from the n-type material can jump into the holes in the p-type material.

Page 11: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

So negative charges move from the n-type to the p-type side making the n-doped side have a POSITIVE CHARGE.

And positive charges move from the p-type to the n-type side making the p-doped side have a NEGATIVE CHARGE.

This sets up the POTENTIAL BARRIER at the interface between the n-doped and p-doped materials as the carriers that form the junction lose their freedom of movement as they are trapped by the holes or filled by extra electrons.

In fact the barrier potential opposes the crossing of majority charge carriers, but not the minority carriers.

Free electrons on the p-type side of which there are few, (ie. minority carrier) are driven by the potential junction to the opposite n-type side (which is positively charged).

Page 12: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Thus although a charge imbalance exists at the junction there are very few free electrons on the p-type silicon side to be pulled back to the n-type side, and very few free holes on the n-type side that can be transferred back to the p-type material.

SO, the charge imbalance is fixed in place.

How far away from the interface between the n-doped and p-doped material does this charge imbalance exist?

The first charges that cross the junction essentially set up an electric force field that opposes the further flow of free carriers; more carriers, more electric field, harder for later charges to cross the barrier.

Eventually an equilibrium is established where no more electrons or holes switch sides, leaving behind a fixed potential barrier, a junction barrier.

But under no illumination, there are so few minority carriers on their respective sides that their movement is negligible, and in fact the little movement that occurs is balanced by the few majority carriers that have enough thermal energy to cross the barrier.

Page 13: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Potential Barrier BenefitsSuppose light strikes the solar cell and the light is absorbed by the Si and it is enough energy to free an electron from a bond in the Si crystal. Suppose an electron-hole pair results from this absorption on the p-type side of the cell. The electron generated has only a relatively short time of life because it is likely to combine with one of the numerous holes on the p-type side.

BUT solar cells are designed so that in all probability, the electron will meander around the crystal encountering the junction before is has the chance to combine with a hole.

If the free electron is makes it to the field of the junction potential, the electron is accelerated across the barrier by the charge imbalance present at the junction.

(Remember the n-type silicon has a positive charge, the p-type a negative charge at the barrier.) And if the electron makes it to the n-type side, there are few holes there to trap -it and so it survives a longer time. Also it will not return to the p-type side because it would have to overcome the repulsion of the junction’s field.

The hole partner of the electron-hole pair, however, remains on the p-type side because it is repelled by the junction potential AND furthermore is it in danger of recombining?

No because there are already many holes on the p-type side.

Page 14: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Does a similar situation exist when the light is generated on the n-type side of the junction?

Here the freed electrons remain on the n-type side because they are repelled by the barrier, and the holes encounter the junction before they recombine and cross to the p-type side. Here the holes move around unhindered, and there are very few free electrons available to fill them.

Thus, the illumination and charge separation cause the presence of uncombined excess negative charges on the n-type side, and excess holes on the p-type side and a charge imbalance exists in the cell.

If the n-type side is connected to the p-type side of the cell by means of an external electric circuit, current flows through the circuit, why?

Reduces the charge imbalance that exists in the cell.Figure

Negative charges flow out of the electrode on the n-type side, through a load (light bulb, radio, etc.) and perform useful work on the load.

The light energy originally absorbed by the electrons is used up while the electrons power the external circuit.

Page 15: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

An EQUILIBRIUM can be maintained: the incident light continually creates more electron-hole pairs and more charge imbalance, and the imbalance is relieved by the current which gives up energy in performing work.

The work performed could also be the charging of a battery.

The amount of light incident on the cell creates a nearly proportional amount of current.

The amount of energy it takes to raise an electron to the conduction band is the amount of energy the light imparts to the electron. It is thus the Maximum that can be retrieved fro the electron in the external circuit.

Page 16: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Summary:

Conditions necessary for solar cell to produce electricity!

1) incident light to free the charge carriers

2) a barrier to accelerate the carriers across the junction and keep them at opposite ends of the cell

3) a charge imbalance to drive a current. through the circuit.

Solar Cell Efficiency

Most of the energy that reaches a cell in the form of light is lost before it can be converted. Again typical efficiencies are in the range of 10-15%

Page 17: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Major phenomena limiting cell efficiency are:

1. Reflection from the cells surface

2. Light that is not energetic enough

3. Light having extra energy beyond needed to put the electron in the conduction band.

4. Light-generated electrons and holes (empty bonds) that randomly encounter each other and recombine before they can contribute to the cell performance

5. Light generated electrons and holes that are brought together by surface and material defects in the cells.

6. Resistance to current flow.

7. Self shading resulting from top-surface electrical contacts.

8. Performance degradation at non-optimal (high or low) operating temps.

Page 18: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Reflection

Normal untreated silicon reflects 36% of the incident sunlight. With thin film coatings of silicon nitride or texturing this can be cut to 5%.

Light with too Little Energy

For silicon, the energy associated with the band gap is 1.1eV. This energy is specific to silicon. If light does not have this threshold of energy, then it will likely go right through the solar cell or it could be absorbed and cause vibrations in the atoms.

Light with too Much Energy

Here the light will free the electrons, but excess energy will cause atomic vibrations in the lattice and then heating occurs.Overall these inefficiencies result in about 55% of the energy from the original sunlight being wasted. How much more efficient would it be if the sun’s spectrum consisted of just one wavelength and that wavelength was matched exactly to the energy required to generate the electron-hole pairs.

Page 19: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Recombination of Electron-Hole Pairs

This is inadvertent recombination of electrons and holes before they can contribute to an electric current. Usually small losses because solar cells are designed to minimize this.

a) Direct Recombination – happens when an electron and a hole randomly meet. makes heat It is a problem only before the carriers are separated by light.

b) Indirect Recombination – occurs in many ways don’t just run into each other much more of a problem than direct recombination. dangling bonds, impurities, of fractures (defects)

Another mechanism is when a free charge carrier has a collision reducing its energy allowing it to fall into a bond. Related to intrinsic resistance, more resistance – more recombination, less current and voltage

The junction can also be a site of recombination. Fractures crossing the junction can exist giving charge carriers a path that effectively avoids the junction’s field.

On average it has been shown that electrons and holes are lost via recombination in about a hundredth of a second. Calculations show that the direct recombination of an electron and hole would take place in about 1 second. Thus indirect recombination is dominant, causing a hundred fold increase in the recombination rate.

Page 20: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

SurfacesSurfaces are also prone to dangling bonds, and allow collisions and are regions where electrons and holes have an opportunity to combine.

ResistanceResistance to flow of electrons occurs in any circuit. Ohms law R = V/I is not true for solar cells because recombination losses are not proportional to resistance.

Resistance is ever-present where the flow of current is accompanied by collisions between charge carriers and the material the charges are flowing through.

Resistance losses occur in:a) the bulk of the base materialb) the narrow top surfacec) interface between the cell and the electrical contacts with the outside

Usually it is better to highly dope silicon to reduce resistance, but lattice damage and eventually there can be so many free carriers that the junction no longer exists.

Self ShadingThe electrical contacts should not be placed far away from the charge carriers. The result is a grid of conductive material contacting the silicon, spread over the top surface of the cell, and this grid shades the surface. Typical shading loss can be as high as 8%, but some cells have losss as high as 20% and as low as 3%.

Page 21: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Performance at non-optimal Temps.

Silicon is a good material for ambient terrestrial temperatures. At high temps., there is a significant drop off in efficiency.

High Temp. Losses

Physical effects related to temp are complex.

Figure

Two predominant causes for efficiency losses at high temp.

1) Lattice vibrations interfere with the free passage of charge carriers2) Junction begins to lose its ability to separate charges.

1) Occurs even at room temp. 2) Does not occur until about 300oC.

Page 22: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

At High Temps., huge numbers of electrons are jostled about and greatly outnumber the free electrons donated by the n-type dopant.

Simultaneously, holes are formed on the n-type side, left behind by the jostled free electrons.

The number of _______ _______ and holes becomes the same, and the n-doped silicon loses it n-type character.

A similar process happens on the p side and it loses its p character.

Then1) Thermally agitated charge carriers have so much energy, they cross over the junction in both directions, as if the barrier were not there.

2) Ultimately, the junction itself disappears, no longer an n and p-type side.

Efficiency diminishes to zero.

Remember that light energy beyond the bandgap causes heating, so it is imperative to either

Page 23: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Low Temp Losses

Two effects play a role,

1) As temp falls, thermal energy is less able to free charge carriers from either dopant atoms or intrinsic silicon Light generated charge carrier mobility drops.

2) At very low temp, so little energy that even dopants behave as if they were normal silicon atoms.n-type retains it extra electron, p-type its extra holes so junction dissapears.

Page 24: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Schottky Barrier Cells

This is a solar cell whose junction is induced whn a metal contact is applied to the surface of silicon that has been suitably doped. Due to the electronic properties of the Si and the metal, the charge carriers are distributed in side the surface similar to that of a p-n junction.

Figure

Light striking the Schottky barrier cell, made with n-type silicon, causes electron-hole pairs to be generated in the silicon.

Holes then migrate into the metal contact and electrons from the metal migrate into the silicon. This causes a current to flow.

Figure

Page 25: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Advantage: Eliminates Top Surface doped collector layer.

Problems: The semitransparent metal on top has higher resistance than is optimal since it so thin and thus additional contacts, a contact grid, must be applied . This causes shading effects.

Also, high temp. is often used to apply the contact grid, but this damages the thin metal of the Schottky barrier.

Additionally, slight fluctuations in the quality of the metal-silicon interface lead to much lower electricity-producing efficiencies.

They have poor long term reliability, and efficiencies are consistently lower than pn junction cells.

Page 26: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Two new variants of Schottky cell.

MIS (metal insulator semiconductor) cell

Silicon oxide (an insulator) was found to help, rather the efficiency of Schottky.a metal, silicon oxide, silicon structure with the insulator thickness less than 20 angstroms which allows the passage of current during illumination

SIS (semiconductor-insulator-semiconductor) cell

Places the thin transparent later of metal on the surface of the cell with a thicker layer of heavily doped, conductive transparent –semiconductor like indium tin oxide.

Top layer acts like the metal inducing the junction, but does not need a metal grid since its resistance is low enough.

MIS and SIS cells have similar problems to pure Schottky cells, with degradation.

Results have been more favorable on polycrystalline and amorphous silicon materials.

Page 27: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

Inversion Layer Cells

A layer of SiO deposited on SiO2 coated with p-type silicon induces a junction near the top of the p-type silicon.

Fig

Vapor SiO loses electrons as it solidifies, so SiO has a positive charge.The positive charge pulls the few free electrons in the p-type silicon to the interface between the Si and SiO2, causing that region to behave as if it were n-type Si.

The value of the insulating SiO2 layer is to prevent electrons from entering and neutralizing the SiO.

Layer just below the SiO2 becomes n-type and the bulk silicon is p-type, a pn junction is induced in the Si.

Page 28: Silicon and the Photovoltaic Effect Most basic description Photons of light interact with the electrons in the silicon and impart enough energy in some.

When illuminated, the junction separates electrons and holes just like regular pn junction.

The light generated electrons have enough energy to tunnel through the SiO2 and enter the metal contacts to the outside.

Advantage:

Simple to handle SiO and SiO2, induced junction is fault free, less doping means less lattice defects

The efficiencies reported are as high as 17%


Recommended