+ All Categories
Home > Documents > Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney...

Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney...

Date post: 22-Jun-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
36
Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D. 1988 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Åström, K. J., & Bell, R. D. (1988). Simple Drum-Boiler Models. (Technical Reports TFRT-7402). Department of Automatic Control, Lund Institute of Technology (LTH). General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Transcript
Page 1: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

LUND UNIVERSITY

PO Box 117221 00 Lund+46 46-222 00 00

Simple Drum-Boiler Models

Åström, Karl Johan; Bell, Rodney D.

1988

Document Version:Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):Åström, K. J., & Bell, R. D. (1988). Simple Drum-Boiler Models. (Technical Reports TFRT-7402). Department ofAutomatic Control, Lund Institute of Technology (LTH).

General rightsUnless other specific re-use rights are stated the following general rights apply:Copyright and moral rights for the publications made accessible in the public portal are retained by the authorsand/or other copyright owners and it is a condition of accessing publications that users recognise and abide by thelegal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private studyor research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will removeaccess to the work immediately and investigate your claim.

Page 2: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

CODEN: LUTFD2/(TFRT-7402) / L-s I (1es8)

Simple Drum-Boiler Models

K J ÅströmR D Bell

Department of Automatic ControlLund Institute of Technology

October 1988

Page 3: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Department of Automatic ControlLund Institute of TechnologyP.O. Box 118

5-221 00 Lund Sweden

Docutncnt name

ReportDate of íssue

October 1988

Document Numbe¡CODEN: LUTFD2/(TFRI-7 402)/ 1-34l( 1e88)

Author(s)KJÅströmandRDBell

Supervisor

,Sponsoring o rgzni sat io n

Titlc and subtiúIe

Simple Drum-Boiler Models.

Abstræt

This paper describes a simple nonlinear models for a drum-boiler. The modelg are derived from fi.rst principles.They can be characterized by a few physical parameters thaü are easily obtained from construction data. Themodels also require steam tables for a limited operating range, which can be approximated by polynomials.The models have been validated against experimental data. A complete simulation program is provided.

Key words

Classification systctn and/or index tcrms (íî any)

Supplemcntary bìblíographical ínîormation

I5,9N and key title ISBN

Language

EnglishNu¡nbe¡ ofpages

34Recípient's notcs

S ccurity classífrcat ío n

The rcpott may bc o¡de¡ed îrom the Department of Automatic Cont¡ol or bortowed. tårough the tlnìvercíty Library 2, Box 7010,5-227 03 Lund, Sweden, Telex: 33248 lubbìs lund.

Page 4: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Paper presented onIFAC Symposi-um on Power Systems Modelling and ControlApplications, Brussels, Belgium, September 5-8, 1988.

Simple Drum-Boiler Models

K J ÄströmDepartment of -A,utomatic Cont¡ol

Lurd rnrtitute of Tech,ology5-221 00 Lu¡d

Sweden

R D BellSchool of M¡ther¡¡atics and physics

Macquarie UnìversityNorth Ryde New South Wales 2213

Aust¡alia

1. IntroductionThe¡e are -onJ¡ mod.els of drum-boile¡s i¡ the lite¡atu¡e. Seethe ¡efe¡eace ljst. The models desc¡ibed in thi¡ paper are d.e-¡ived f¡om first prhciples. They are cha¡acte¡ized by u fu. pu-¡amete¡s only which caq be obtained f¡om fust p.in.ipler, Chumodels a¡e validated by comparison with exte¡slve plant data.

.4, key feature of s d¡um-boiler is that there is a very eñcieute1e-rg¿ md mss transfq betweu all pute th¿t ¡¡e in cont¿ctwith the steam. The mechani¡m ,*poiriUtu ioiì¡!-¡"s¡ ¿¡o;"_fs¡ is þeiling and conden¡atiou. Â consequence of tl¡.is i¡ th¿tit is a very good approrirution to assume th¿t all w¡ter ste&ma¡d metal i¡ in thermat equilibrium- This me¿¡s that the total_Ae¡$y can be represented by a global energ¡r br'l¡¡ce. The v¿-lial,ity of thi¡ approrimatiou h¿¡ beea show-a-by -,.y mod.eling.' exe¡cises.

The paper is org¡.izsd as follows. Â fi¡st order mod.el is'. presented in Sectioa 2. This model j¡ obtained from a giobaleuerg¡r balance for the total plant. The model has one stste. va¡ìible which is chosen as the d¡um p¡essure. This model hasthe same structu¡e ¿s the model presented in Àst¡õm and Ek_luad (1972). The par¡meters are, however, obtained ùom fi¡stprhciples. To model the d¡r¡ar w¿te¡ level it is necessary to

. account fo¡ the ¡hri¡.k and swell phenomena. This is d.one inSection 3. ¡, thi¡d orde¡ model is obtained. This model hasd¡unr p¡es6rue, w¿te¡ volume and ¡teo- quality in the ¡iser¡-; as state va¡iables. The model "=hibits a compler beh¿viour ini spite of being of low o¡d.er. gimnt¿fie¡ of ,i"p ,urf o*u, ,"u' preseoted in Section 4.

:j

,{bsú¡actThis paper desc¡ibe¡ a rimple no¡lincar models for a d.rum-boi-le¡. The models ¡¡e de¡ived f¡om first principles. They canbe. ch¡¡¿cterized by a few physical par^-etls that are easily ob-tained f¡om construction data. The model¡ also require steamtables. for a li'nited operating range, which can be apiroximatedby polynomids. The models h¿ve been y¿lidated ugui*t .-pur-imental data. Ä complete ¡imr¡-lation p¡ogra¡n is pr-ovideil.

2. Ä First Order Model '

Because of the efEcient he¿t a¡d m¡s¡ t¡ansfe¡ duc ¡s þ6iting andconde¡.sation all parts of the rystcn which a¡e il contact withthe ste"m will be i¡ the¡m¿l equilibria. ft is the¡efo¡e natu¡al todesc¡ihe tbe plaut with global -^.s and eaergy balaoces ès wasdone ir .Ast¡öm and El¡lu¡d (1g22). The global energr b^loncecan be w¡itten æ

d.¡¡l,e,h'V,t* p-hnV**mcrT)= P { q¡-h¡- - q,h, (1)

whce g denotes specific denrit¡ ¡ u¡¡h"llh¡ 7 volume and. gmas¡ 0.ow. The iaöces r, u and /u refere to steam, water and.feedwater respectively. The total mass of the metal tubes is m,the specific heat is ç and the average metal temperatu¡e is ?.

The iaput power from the fuel is denoted by p. The total steamvolume i¡ given by

Vt=Vdttø-V-+ a^V (2)

where I/¿*- is the dru::o volme, I/- the volu:ne of w¿te¡ i¡the drum, I/, the riser volum.e md c- the average stem-watsvolume ratio. The total w¿ter voh:me is

Vu = V- * V¿ + (1 - o^)V, (3)

The right hand side of equation (1) represeuts the energy flowto the system from fuel and feedwate¡ and the energy llow fromthe system via the steam- Siace all parts ¿¡s in t[s¡ñ:l squiliþ-ria the state of the system can be represented by one ,r,a,¡iable

which we choose as the steam p¡essu¡e. Using steam tables thevariables Qt, Q-, h, and À. can then be expressed. as fu¡ctioroof steam p¡essue. ginil¡rly ? can be expressed as a functionof presaure by assu_m.iag that ? is equal to the satuation tem-perature of ¡te¡m which correrponds to p.

This model rep¡esents the dynamics clue to input powerwell. When the feedwater f.ow or the steam flow is changed itis, however, ¡ì.ecessa¡y to also take i¡to account that the wate¡¡nd ¡te¿m m¿s¡e¡ a¡e also changing, This can be ¿ccou¡ted forwith a giobal massbalance.

d.lîIe,v,' + p-Vø) = q¡- - Ç, (4)

The dyn"-i6¡ which desc¡ibe how the dnm ptessure is infu-enced by input power, feedwate¡ flow and steam flow is rvellcaptured by equations (t) al'd (a).

The de¡ivative of the total water volme (dØ_t/dt) can be

-eliminated between equations (t) and (+). I{jtiplicatián of (+)

by lr- and subtracti:rg from (1) gives

n.ft G,v,ò + fn,v.,ff + Q-v-,+ * *,#f=p-Ç!_(h.-h¡_)_uh"

(s)

The conderoation enthalpy h" = h, - It- has also been int¡o_d-uced. lfthe boiler is provided with a good level control systemthe total water volu¡ne (7-,) "¡d the total steam volu.me (7,r)do not change much. Ecluation (b) can then be simplifed to

dn

"rrà = P - q¡-(h-- h¡-)- q,h" (6)

where

"n = h"v,,ff + e,rr,dfr + p-v-d* + *",ff.A.part from steao table data it is thus suficient to klow totalsteam and wate¡ volumes aad total metal mass. The model (6)is identical to the model in Àsrröm and Eklund (1972). ño:tice howeve¡ th¡t in this cæe the pa¡ameters are obtained f¡omcomtruction data. Also notice that the term

c.= -*¡n,",,*+ e-v-,** *",#l

Page 5: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

can be interpreted æ the total condensation f.ow. ft is observedthat the teløs ilh,ldp artd dh_ldp are key quantitier in pre-dictiag the energ¡r and m¿ss transfe¡ between steam and w¿te¡.These terms also appeared in the d¡um-boile¡ model of Mo¡tonand Price (1977).

&m a(.,()d( = : I"' a(c,()dþ,oî1

J"1

Ef 1""'a(z)dz ( 11)

(15)

Fo¡ somp control t¿skc e.g. drum level cont¡ol it is necessaryto model the dy¡"miçs of the drum level. This is mo¡e difficultbecause of the sh¡i¡l ¡nd ¡well efect. To describe this ii isrecessuy to accor¡lxt fo¡ the d.istribution of ¡te¿m and wate¡and the t¡anqfer ofm¿ss and energy between steam and w¿ter.

The steam-mter d.ist¡ibution varies along the ¡iser¡. parti&ldiffe¡ential equstioD¡ a¡e needecl to desc¡ibe this properly. Tokeep a finite áimsrrsiqnrl model we will assume that ihe shapeof the di¡tribution i¡ l¡own, The ¡¡sumed shape ir ba¡ed oneolving the partial dillereutial equrtionr in the rterdy rtato.This gives a line¿r di¡tribution of the ¡team-w¿te¡ mas¡ ratioalong the ¡i¡e¡s, lVe will the¡efo¡e assune th¿t the ¡atio r¡¿ries

c({)=a,{ 0SdS1 (?)

where f is a normalized lengt¡ s66¡¡linate along the risers and ¡iis the stese-w¿te¡ m¿ss ¡atio at the ¡iser outlet. The t¡aqsfe¡ ofm¿se and euergr between ste¿m and water by condeas¿tion andevaporation is a key elemeut þ t[g ¡û6de[ing. I{len 66dallingstem and water reparately the transfer mut be accounted. forexplicitly. This ca¡. be avoided by writing joiat balance equa_tio¡s fo¡ wate¡ and steÂE- The global -o"s balance fo¡ the ¡ise¡section is

d. d.. dt(e,o^W) + ¿(e-(t - e^)W) = Qac- j¡ (8)

' whe¡e ç is the-total m¿ss flow out of the risera. The globai. **gX bala¡ce for the rise¡ ¡ection i¡

d

fr(e,n,o^V) + flk-n-y - ø^)V) =P* q¿"h--s,q.h,- (1- o,)g,å- = (9)

Plq¿"h--z,q,h"-q,h-

. The flow out of the risus (g,) can be eliminated by multiplyingequation (8) by -(Ir-1c,lr") and ¿d¡ting to equation (S). Hencã

d, ,1

îî(p,h'o-V) - (lr- + æ,h.) fr(p,a^U,)¿

+ dtþ-h-(l - d-)V,) - (/r- + z,/¿")

d,;t(P.(1 -"-)%) - P-x',h"q¿"

.:::' This ca¡r be simplified to

,r; h.(1- ù*fu,o^V) + n-(t - "^)Vd!¡î,1

,. - z,h"frk-O - o^)V)* n,o^Voþ|" " -,,0"0*

(10)

Ì:

Drurn Level

To calculate ¡[g d¡r,E level it is necessary to know the avcagesteam-w¿te¡ volune ratio i¡ the ¡ise¡s (a-). We have

z = --3:c.-p,a¡ p_(l - z)

Solving this equation for a we get

c=a(a)= ,rQ-' "e'*(P-- e,)¿

Assr¡:o.e that the steam-wôte¡ ûås¡ ratio is linear along the ¡ise¡as erp¡essed by equatioa (?). The Bve¡age Eteaqr-water volu¡¡e¡atio i¡ the ¡ise¡s is

= e- l, - , n' , ¿n(t + e- - e,z-llo. - o. L- (p- - p.)o, ''' \^ ' B. "/l

'We can now obtain the followiag eqution fo¡ the d¡um level

,.=r-*;^n (12)

whe¡e ,{ ie the v¡et surf¿ce of the d¡r::n. This equation tellr thatthe d¡um level is composed of two terrru, the total amourt ofwatc in the drum, aad the d-isplacement due to changes of thesteam-wate¡ ratio in the ¡isers. The model has the same basicform es the water level model i¡ Bell and :4.¡t¡öm (1g7g). Thismodel was, however, developed heuristically and not from fi¡stprinciplee.

Downcomer Flow

The flow through the downcome¡s (g¿) can be obtained f¡oma momeú.tum' balance, In natu¡al ci¡cul¿tion boile¡s the flowis d¡iver by the difereuce between the dencities of wate¡ andsteam. Â momentum balance gives

a^V(p-- ù=lrxqre (13)

whe¡e È is a f¡iction coeflìcient. The ¡iser flow g, can be calcu_lated from equation (8). We get

d. de¡ = e¿¿- î¡\p,a^v,) - d¿

(p-(1 - "^)V.) (14)

3. Shrink and Swell

4. Simulations

whe¡e

The equations derived in Section 3 will now be sumrnrized.The state equations a¡e given by (f), (l) and (8). The stateva¡iables a¡e chosen as d¡um plessu¡e p, wate¡ vol,,me in d¡u:nV- and average steam quality ¿t rise¡ outlet 2,. Equation (1),(a) and (8) can thm be w¡itten æ

dp dV... dz-et¡ * "rz7l * "tr7i = P ! q¡-h¡- - A,h,

dp . dV- d¿,e2t7ì + czz7ì t.rsTj- = q!- - q,

dp d¿-etã-l """i = P - q¿.2,h.

", = (#o,*',*)u,+ (frn-+ e-dþ)v*+dT,

^trZle;2=g-h--p,h,

e6= (p,h, - l-uòV#

ezL

czz= Qu- 8t

e;3: (p, - p-)v,

dp,dp

V.,ds-dp

V-¿+

do^)-.., = f1, - ùh"+ + p,*] "^vL ap dpJ

-l'-#- ".n.*lo - "àve33 = [(1 - æ,)p, + ", n-l h"Vd#

( 16)

Page 6: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

To execute the si¡nr¡lation equation (15) hae to be solved for thede¡iv-¿tives of the state v¿¡iables. The right hand side of (15)contain ilput y¿riables P, 91- and g,, aad fu¡ctions of the statevariables. Notice th¿t dowucome¡ flow g¿ is given by equation(13). À detailed description of the si:¡ulation is given ia. thecode in the Appendir.

Parametere

The model is cha¡sctetized by the rariablesV¿* drum volume

V ¡iser volume

V¿. downcomer volumem total metal m¿sgcp specific heat of metalå friction coefficient

¿nd the fi¡nctions e,(p), e-(p), Ir,(p), lr-(p), f,(p), h¡-(n)Í'hich a¡e obtai¡ed f¡om ste"- tables. Quadratic approxirna-tions to the gteam tablee are given in the program \isting ilr theA.ppendir.

Dquilibriurn Conditions

Equiïbrium conditio¡s a¡e obtained from (15). Hence

q!ú = lt, (17)

P = q,(h, - h¡-) (18)

P = q¿.,,h¿ (19)

The equilibrium l,"¿lue of the drum plessure caa be determinedfrom equation (fB) since h, arldþ¡- depend oa the pressu-re.

Dyna:øric Response

Responses to steps in fuel flow ¿rd steam ff.ow a¡e given in. Figures 1 and Figure 2. The simul¡tions illustrate the d¡.namic

:.i featu¡es th¿t a¡e captured by the model. Figure 1 shows the.r ¡espoDse to a etep çïange in fuel flow. The pressure respondsI Iile a pu.re integrator. The total amount of w¿ter in the dru.m

Drum pressure

7.6

02040Water volume

60 80

14.5

13.5

0204060Steam fract¡on mass

80

0.1

0.096

0.092

inc¡eæes because ste¿m is generated in the ¡ise¡s. The totalôrnor¡!.t of steam ir the risers i¡.c¡eases because of the inc¡easedsteam generation. The steam quality in volume ratios i¡creucsiaitially but it will later dec¡eæe because of the compressionelïect.

The drum level inc¡eases rapidly at fust but the ¡¡te ofi:rc¡e¿¡e dec¡e¡ses. The downcomcr fÌow matdres thc stcalnfractiou volume ratio. Thue i¡ an i¡stantaneous inc¡ease ofthe rige¡ flow at the beginning of the step. The ¡ise¡ llow willthen dec¡ease at the same rate ¿s the dow¡.come¡ llow. Figure 2

shows the response to I step change i:r steam fl.ow. The globaieffect is that the pressu¡e and the volume will respond ìike in-tegrato¡s, There will, however, be a swell effect because of theinitial enporation of steam.

5. Conclusions

This paper has presmted si:nple models for a d¡rm boiler sys-tem, The models capture the major dynamical behaviour. Theya¡e derived f¡om fi¡st principles and require only a few physicalparametere that a¡e easily obtained f¡om construction data andsteam t¿bles. The behaviou¡ h¿s been shown by simulating steplesportses to fuel ¿nd steam flow changes. Reasonable ¡esults a¡eobtained even fo¡ the difficult problems of predictiag ci¡culationBow and il¡u:¡. wate¡ level sh¡int and ¡well, The model can etr-ily be augmented by equationr for tu¡bi¡e ud electrical outputgiven in .Ä,st¡ðm a¡d Eklurd (1972, 19?5) o¡ Bell. and Àst¡öm(1979) to produce a simple model fo¡ a compiete boiler-tu¡birealternator system. A strong feature is that the model capturethe essence of the steam genuation in a heated pipe. It has alsobeen used successfully to model eteam generation in a nuclea¡piant. It can also be adapted to model once-through boilers.

1.54 Drum level

1.5

r.460201060

Downcomer & riser flow

EO

1540

1500

1460

0204060Steam fraction vo¡ume

80

0.432

0.428

0.424

'àiir; ,

i

020406080 020406080

Figure 1. Rcrpouo to À ¡tcP i! fud fow.

Page 7: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

7.5

7.1

Drum pressure

volume

0204060

020406080

level

20 40 60

Downcomer & riser fow

20 10 60

Steam fraction volume

1.46

t.42

1500

0.43s

0.425

80 0

0

0204060

0.093

0.091

mass

i 60 80

80

80

80020

Figure 2. Rcrponrc lo c ctcp il ¡tcu flow,

Á.ronrsox, P.M. aad S. N.l,x.l.xo¡x (19?4): ,,.A,n etralysir ardcomparisou ofce¡tain low-order boiler models," ISA 1974.

ÄsrBöM, K.J. and K. Exluno (19?2): ,,Ä simptiñednon-li¡.ear model of a d¡um-boile¡ turbine unit,' Int. J. Con-

i üro! 16, 145-169.

' AsrB.öM, K.J. and K. Ex¡uno (1925): ,,À aimple non_linear, d¡um-boäer model," Int, J. Coatrol, ZZ, 739-740.

. . Bwl, R.D. and K.B. L¡¡ (1924): uLir¡ear models fo¡ Lidd.ellPower Station," Report, School of Elect¡ical Engineering,University of N.S.W. Aust¡alia.

. Bnrr, R.D., N.W. R¡Bs ¿nd K.B. LDE (1922): "Models of-. large boile¡-tu¡bine plaat,, .tll.C Syap. on Aúo. Cont. &- ì P¡ofecúio.u of Electúc Power Sysúer:os, 469-425...:BEL[_, 1,.D., N.W. Rnps and T. Doxp (197g): sNontinear

; and li.ne¿r model¡ of a 500 MW boile¡-tu¡úi¡e system,', I l"!9.!, School of Electrieal Engineeriag, University ofr'' N.S.\ü. Aust¡¡Ii".

BELL, R.D. and K.J. .A.srnö¡¡ (1929): .,A, low o¡de¡ no¡li¡-ear dynamic model fo¡ drum-boile¡-tu¡biae alternator units,',TFm 7162, Department of ¡{,utom¿tic Controi, Lund Insti_tute ofTechlolog¡r, Luld, Sweden.

Brrr, R.D. and K.J. Äsrnö¡r¡ (1gg7): ,,Simplified modelsof boile¡-trubine unite,' Report, Department of .A,utom¿ticCoatrol, Lu¡d Tn¡titute of Technolog¡r, Lund., Sweden,

BnnrowrTz, L.D. (Ed.) (1974): proceediags of tåe se.o::inar onboiler øod.eling, The Mit¡e Corp, Bedforã, MÂ.

Brortue, W.G. a¡d P.M. ANDEEsox, "Äpplication of alow-o¡de¡ boile¡ model to t¡a¡sient stability stud.ies,', IEEE?b¿¡s, .,lut. Conú¿.

BuBcon, W.A. (1928): "Evalu¿tion and comparison of th¡eelow o¡der models of d¡un boiler steam power plaate,,, M.Sc.thesis, Massachusetts Tñ.titute of Tecl,,ologr, MÄ, US.A..

CETEN, K.L., E.I. Eacrx, C. L¡xc and A. LEE (1958):"Dynamic en^lysis of a boiler," ?lars. .4,SME, g0.

o11Y"ol I(. (1968): qli¡ga¡, Drstþañ¡tical model¡ of the(Eum-cow¡comer-riser loop_of a dru.m-boilerr,, TFRT 3005,Departruent of Âutom¿tic Co¡trol f,uoJ fr"'tit"i-"f tu"l-nolory, Lund, Sr¡eden.

Exr,uxo, K. (1971): "Linea¡ drum-boiler-tubine modelr,,'TFRT 1001, Department of Äutomatic Control, Lr¡¡d l¡sti-tute ofTec}nology, Lund, Sweden.

Iilrncnr, C.J. a¡rd C.U. P,tnx (1g23): ,,par.-ete¡ identiÂca-tion ¿nd ve¡i.frc¡tiou of low-o¡de¡ boiler models," -DEE T¡ansAut. Contr..

IEEE Cou¡.¡¡r'rEE, eDJmamic models for steam- and hydro-tu¡bines in power system studies,u .EE-E ?¡ans. .4,ut. Conú¡..

Kw,tN, H.\M. and J.II. .A,Nopnssor,¡ (1920): ".A. rratheq¡aticalmodel of a 200 MVr' boiler," lat. Journal of Control, L2,977-€98.

McDor.lr,o, J. P., G.I{. Kwlrxy and J.H. Srenn (1971):"Á. nonlineu model for reheat boile¡-tubile generationsystems," Prcc. JACC, 227-236.

Monrox, A.J. aud P.H. Pucp (i9ZZ): ,.The controllabilityof ¡team output, pressure and wate¡ level in d¡um boilers,;,Proc. I. Mech. Eng., 75-84.

Ntcnolsox, P.T. (1983): ,,Boiler-tu¡bine modelling and. simu-lation," M.E. thesis, University of N.S.W., .A,ust¡alja.

Rnns, N.W., R.D. Bnlr and K.B. LEE (1924): .'lr,{6dsllingmd control studies of a 500 MW generating plant,,' Report,School of Ðlectrical Engineeriag, University of N.S..W.,.¡\us t¡ali¡.

TttoMpsoN, F.T. (196a): ,,,4' dynamic model fo¡ cont¡ol ofa d¡um type boila system," ph.D. Thesis, University ofPittsburg.

Appendix

6. References

:;.ì¡ti

COITTII{UOUS SYSTEM DBI'Hrrl{o¡Linear thlld otder Eode]. for dro-d.ovaconer-¡ise¡rr.tutho¡ K J ÀBtroE 87OBo5

INPUT pos qly tfv q6OUTPUI dl' ãESTÅTE p Ve xrDER dp dVv dxr

Page 8: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

rrPropertiea of stean s,¡d eato! Ln ¡atuletod stato

h8 = a01+(a11+a21*(p-10) )*(p-10)dhadP . all+2*t21*(P-10)401:2.728E6all: -1,79284a21: -924.O

rd = ¿92+(a12+a22*(p-10))r(p-10)drsdp = a12+2*a22*(p-10)a02:55.43a12: 7.136a22? 0.224

hÍ - a03+(a13+a23*(p-10) )*(p-10)dhvdp = a13+2ta23t (p-10)a03:1.408E6a13:4.565E4a23: -1010.0

rc - a04+(a14+a24*(p-10))*(p-10)drvdp = a14+2*e24*(p-10)404: 691.35a14: -1.867a24:0.081

. ts = a05+(a15+a25*(p-10))+(p-10)dtsdP = a15+2*425*(p-10)

. a05: 311.0,.. a15: 7.822' 'a25: -0.32

, "Propertieo of sst€¡ iu subc¡itic¡L Btate

1:: fi¡¿ = hr+(¿g6a.16*1p-10))r.(td-ts)

,., "dhaap = dhsdp+416r(td-ts)-(ao6+a16*(p-10))*dtsdprrcp = ¿Qg+¿16*(p-10)

. a06: 5900il a16: 250

t'¡d = rr+(a07+a17*(p-10))*(rd-t8)"drddp = dredp+at7* (td-ts) - (a07+a17* (p- 10) ) *dt8dprrdrddt = a07+a17r(p-10)rra07:2.4"a17:0.2

hfr = hs+(a06+a16*(p-10) )r (tts-ts)hc = hs-às}¡ = xr*hs+(l-xr)*hc

"Druro LeveL1s=V¡¡/ad.ru¡k-a:l*Vr/adrund1 - LËIs

r'Âverage Bt€ara quaJ"ity volu.me ¡atios2 - ts/(rr*(rv_ra))s3 ¡ 1+xr+(n/¡s-1)a.E = !c/ (rs-!6) * (1-82*h(s3) )d¡n¡rr = ¡r*82*(1¡.(s3)/(rr*(¡a_r"¡¡ _f / ú/rs)

"Cl,rcul-at{on flogsl r 2*(r¡¡-!s)*Yr*an/kqdc = sqrt(al)qr=qdc- (am*drsdp+ (1-a-n) *drcdp) *Vr*dp+ (rq-16)*Vr*dÐdr*dxr

riTotal conde¡sation f losqc = (rs*V8t*dhBdp+rqrvr¡trdhedp)*dp/hc

Icondon8atlon fLoe 1¡r tfselgqcr = (Ìs *an*V¡* dhs dp+rc* ( 1-m),t Vr* dhs dp) *dp,/hc

"Equatlona fo¡ dorivatlvoa of ðtà.to varlablo¡Vst.Vdruû-V¡¡+an*VrVrt.Vc+Vdc+(1-u)ivts11 - Vst*(hsrdrsdp rs*dhsdp)+Vvt+( þ!r* d¡:edp+¡r¡* d.hrdp)e12 . he*r$-h8*r8e13 . (h¡*re-b.!¡*rc) *Vt*dsEd-rb1 - pov*1ê6+qfc*Lf r¡-qs*ìå€21 = Vst*drsdp+Ys¡*dire¿p422 = ¡v-¡se23 = (rs-¡n)*Vr*dÐd-xb2 = qfs-q6e31 = ( (1-xr) *hc*d¡6dp+ts*dhsdp) *a-rn*Vr+( rv*dhvdp-xrr,hc*drsdp) r ( 1-a:n) *Vre32=0€33 = ( (l-xr) *ts+l<¡*rr) *hc*yr*d.andxb3 = po¡¡*1e6-qdc*xr*hc

"So1ve linea¡ equation for derivatives of 6tatavector pl - a2|/sILâ22t ê s22_eL2+pL€231 = €23_e13*p1b21 = b2_b1*p1

p2 = e31le11a3ZL = _at2tp2o331 = o33_e13*p2b31 = b3-b1*p2

p3 = e32t/e22Le332 = e331-e231*F\3b32 = b31-b2t*p3

dx¡ = b32le332dVv . (b21-e231*dx¡)/6221dp = (b1-e12*dVs-e13*d-xr)/e11

rrPara.Eet€ra

adru¡: 20vd¡un: 40vr: 37vdc: 19k:0.01

'rlnitiaLsp: 7.576Vc: 13 .521xr: 0 . 091263

EI{D

"Poc"q,f r¡tttf r¡

"qs

"dIt'am

"q"" g"r

Poûe¡ f¡on fuelFo€dsater flovF€€d!¡ater teDp€tatu¡eSteu f].os

Dru¡¡ leveIStea¡ quaLity volune ratioCoD.de!.aat€ flos (totsl)CondonBato flor (rl.aers)

Druro pressureDru¡ nater volu¡noStcar qual,fty at rlócr outlet

tHïlIkg/Iaegtks/

tDl

tkg/l}g/

alcl

sl

gl¡l

"PI'Vs

"xr

ll{Pal[n*u*u]

'';I.liìii

I

Page 9: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple Drum-Boiler Models

K. J. AströmDepartment of Automatic Control

Lund lnstitute of TechnologyS-22L 00 Lu nd

Sweden

R. D. BellSchool of Mathematics and physics

Macquarie UniversityNorth Ryde New South Wales 22Lg

Austra lia

1

Page 10: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple Drum-Boiler Models

1. lntroduction

2, First Order Model

3. Shrink and Swell

4. S¡mulations

5. Experiments

6. Conclusions

Page 11: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

INTRODUCTION

Motivation

s¡mple physics based modetsfor system studies

Experi mental verificationlndustrial collaboration withSydkraft AB tVlalmö Sweden

ProgressSlow painstakingEklund lgOB

o

Aström Eklund 1972, 1g7SBell and Aström lg7gBell and Aström lggT

Page 12: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple Druln-Boiler Models

X " [ntroductn@n

2. First Order Model

3. Shrnnk and Sweilt

4" Srnmuilatn@ns

5" Experfimacnts

6" Gonc[usfions

Page 13: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Global Energy Balance

*ro'h,v,t * p-h-v-t * mcrT)

-P1-qf-hf--g"h"Total Steam Volume

Total Water Volume

V-t-V-*Va"+(1 - a,.)V,

Global Mass Balance

V"t : Vd.rurrl - V- * ernV,

(1)

(2)

(3)

(4)d

dt LP

Eliminate dV-tld,t between (1) and (4)

(prv"r) +d

'dth

,V"t*p-V-tl - Qf--g"

P "V"tdh"dt

*p-v-tþ*mcr#l

(5)

,

-P-gr-(h--hf-)-Q"h.

Page 14: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

hc #r rr,v",) * lo,v*# * p-v-tþ * mco

* r P-gf-(h--hf-)- g"h"

dTdt

Rewritten as(5)

(6)dn

"rtã-P-Qr-(h- hfu Q"h.)

€tt - h"Vrr* * p,\' dh"o,p

/'t6 * P-V-tdh-dp

, dT"+ mCD--'dp

Tota I condensation flow

q1

hc lo"v",# *

p-v-t# rmø#lc

3

Page 15: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

S¡mple Drun'l-Boiler Models

I " [ntroduetn@n

2" Fnrst @rder Nflodel

3. Shrink and Swell

4, Snnmu[atn@ns

5,, Expernnnents

6. Gonelusnons

Page 16: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

THE VOID MODEL

A distributed parameter system

Assuming a void distributiongives a lumped parameter model

The PDEs gives a steady statesolution with a linear steamwater mass ratio

Use static relation also fordynamics

Model explored for nuclearreactor models where elaboratesimulation models are available

Page 17: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

100VOID Prof ile cqlcu lot ion

25 s0

50

oO

00 75 100

HEIGHT

Page 18: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

#ro"a,nv,) + #ro-(1 - a,n)u,): ed. - 8,

Energy Balance

Mass Balance for Riser Section

dt(prh"or*Vr) (p-h-(l - a,n)W)

(8)

(e)

( 10)

dI-'dt- P * qa.h- - nrerh" - (1 - rr)g,h*

- Plq¿"h--rrQrh"-erh-

Eliminate Q, between (8) and (g)

#rr,h"&,nw)- ( h- * n,h.) *(p,o,nw)

d

d+ (p-h-(l - a,n)W - (h- * æ,h.)dt

d

dt(p-(L a,n)W) P fr rh.Qd,"

S im p lify to

h"(1 - r,) (p"o,n\)*p-(1 - a,n)W#d

dt

- rh"*ro-(1 - a,*)w) * p"a,nV#

4

P fr rh.Qd,.

Page 19: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Dru m Level

Average steam-water volume ratio

P"er p,e*p-(1 -")Solving with respect to a,

a, - a(r) -Pufr

P, * (P- - P,) rAssu me

r(€) : r,€ o<€r1Hence

1 1

Q'rn t,

t,P-

a(r,€)d€: * l, a(r,€)d(",€)

(,n 1+ P- P"

Pt

( 11)

(11)

( 12)

1útp

<Lya(æ)dr

")]P--P"1

Pt(p- rrp,)

(,V- + ernV,

A

5

Page 20: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Downcomer Flow

Momentum balance

Riser flow from (B)

d8r:8d.- dt

(p"o,n\) - #ro-(1 - a,,)V,)

a,nV,(p- - p") - ** ú" ( 13)

(14)

6

Page 21: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Summary

*ro'h,v"t * p-h-v-t * mcoT)

-P*qf-hl--Qrh,

d

ArLo'Vrt * P-V-tl - er- - e"

(1)

(4)

( 10)

( 15)

d dh*h"(1 - r,) dt(p,o,nÇ) * p- (1 - e,.)V,

dt

-rh 'dtP fi rh"Qd,.

Choos€ p, V-, a nd rr- as state varia bles.

Simu lation Model

(P*(1 - a,,)W) I p,a,nV,#

dv,, dtr_* et, dt * ett dt - P * qf -hÍ- - Q"h,

, dV- dr,t€zz dt iezs dt:QÍ.-e,dtr-

*ess d, -P-7¿.firh"

d

dp

"r, dt

dpezt

dt

dp€gt

7

dt

Page 22: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

€tt: (#h"*r"W)v"t

+ Wu*r-W)dT"V-t * mcodp

€tz : P-h- P "h,

€ts:(p"hr- p-h-)V,

€zt: +v"t*+v-ta'p d,p

€zz:P--P"

€zs: (p" - pòW*

hP"

( 16)

cgt : *,)h *P" arnV,dp

(1dh"

Ctdp

+ P- n,h"%1dpl (1 - a,")v,dh 'u)

dp

dørn

dr,

8

€gs

Page 23: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Para meters

Vd,rurn

wVa.

n1r

cp

k

drum volumeriser volu medowncomer volumetotal metal massspecific heat of metalfriction coefticient

I

Page 24: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple Drullt-Boiler Models

X " [ntroductnon

2, Fnrst @rder ftflodefl

3" Shrnnk and Swetl

4. Simulations

5,, Expernnnents

6. Gonelusnons

Page 25: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Step in Fuel Flow

Drum pressure

0204AWater volume

1.54

1.5

r.46

1540

Drum level

0 20 .10 60

Downcomer & riser flow

0204060Steam fraction volume

t.b

14.5

13.5

0.1

0.096

0.092

60 80

80

1500

1460

0.432

0.428

0.424

80

800204A60Steam fraction mass

020406080 020406080

Figrrrc 1. Rcs¡ronscs to a stc¡r in fi¡cl flow.

Page 26: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Step in Steam Flow

Drum pressure Drum level

0 20 40 60

Downcomer & riser flow

0204060Steam fraction volume

7.5

7.3

7.1

0.093

f

02040Water volume

0204060Steam fraction mass

60 '80

80

t.46

t.42

15

1500

1480

0.435

0.425

80

80I

0.091

02a406080

Figurc 2. ResPonse to a stcP

020406080

Page 27: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple Drum-Boiler Models

Í. Introductl@n

2, Fnrst @rder ftfiodet

3" Shrnnk and Swcili

4, Snnmuilatn@ns

5. Experiments

6" Gonclusnons

Page 28: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

EXPERIMENTS

P1 6-G1 6 at öresundsverket

steinmu ller boiler stal-Lavalturbine. Active power 160MVV.

controllers disconnected. pRBS

Iike perturbations introduced infuel flow, feedwaten flow andsteam valve at high and tow load

Page 29: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Fuel Flow Changes at Low Load

88.02.05 - 17.15:22 nr 1

hcopy meta

Drum pressure. 1=model, 2=plant

0 1000 2000Electrical output. 1 =model, 2=plant

0

0

Drum

1000

r level. 1=model, l=plant

1000

2000

2000

3000

iv\l

3000

1

3000

0.1

-0.1

I

Page 30: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Turbine Valve Changes at Low Load

Ih

8.02.05 - 1B:36:41 nr: 1

copy meta

9.5

8.5

0

0

0.1

-0.1

0

Drum pressure. 1=model, 2=plant

1000

Electrical output. 1 =fiodel, 2=plant

i000

Drum water level. 1=modê|, l=plant

1000

2000

2000

2000

3000

3000

3000

Page 31: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Feedwater Flow changes at Low Load

88.02.05 - 18:13:0S nr: 1ncopy meta

8.8

8.6

0

6

0

0.1

-o.1

0

Drum pressure. 1 =model, 2=plant

1000

Electrical output. 1=rrodel, 2= lant

1000

Drum water level. 1=model, !=plant

1000

2000

2000

2000

1--^-r_.

3000

3000

3000

Page 32: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Fuel Flow Changes at High Load

88.02.05 - 19:16:05 nr: 1hcopy meta

10.5

9,5

ô

Drum p ressure. 1=model ,2=plant

1000

Electrical output. 1=model, 2=plant

1000

Drum water level. 1=model, 2=plant

1000

I

2000

2000

2000

3000

3000

3000

13

0.1

-0.i

0

0

Page 33: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Turbine valve changes at High Load

88.02.05 - 20:41:54 nr: 1ncopy meta

Drum pressure. 1=modê|, 2=plant11

10.6

10.2

15

I

0.1

0

0

0

1000

Electrical output. 1 =model, 2=plant

1000

Drum water level. 1=model , !=plant

1000

2000

2000

2000

3000

3000

3000

i

-0.1

Page 34: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Feedwater Flow Changes at High Load

88.02.05 - 19:45:37 nr: 1hcopy meta

10.1

9.9

Drum p ressure. 1=model ,l=plant

1000

Electrical output. 1 =rflodel, 2=plant

I

1000

Drum water level. 1=model ant

1000

1

0

0

0

2000

2000

2000

3000

3000

3000

138

0.1

-0.1

Page 35: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

Simple DruJlt-Boiler Models

I " flmtroductnon

2" F¡rst @rder ftflodet

3" Shrnnk ano'l Swe[[

4, Snnnuilatn@ns

5" Expernnnents

6. Gonclusions

Page 36: Simple Drum-Boiler Models Åström, Karl Johan; Bell, Rodney D.lup.lub.lu.se/search/ws/files/48193027/TFRT_7402.pdf · 10 # PY ˘ -VOE Simple Drum-Boiler Models Åström, Karl Johan;

CONCLUSIONS

Promising results

Some details remain

Further experiments

Simplifications

Control design


Recommended