+ All Categories
Home > Documents > Simplified model of SO2 oxidation and KCl sulphation for...

Simplified model of SO2 oxidation and KCl sulphation for...

Date post: 17-Jun-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
27
Simplified model of SO 2 oxidation and KCl sulphation for CFD applications Peter Glarborg and Hao Wu
Transcript
Page 1: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

Simplified model of SO2 oxidation and KCl sulphation for CFD applications

Peter Glarborg and Hao Wu

Page 2: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Challenges in combustion of solid fuels

• Process efficiency • Pollutant emission control

– NOx

– SOx, HCl – Unburned, PAH – Soot, other aerosols – Heavy metals

• CO2 emission control – Fuel substitution – Carbon capture

Page 3: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Biomass fuels in Europe

• Woody biomass fuels: – Bark – Industrial wood chips – Sawdust – Forest wood chips – Waste wood – Pellets, briquettes

• Herbaceous biomass fuels: – Straw, cereals – Grasses (miscanthus, giant reed)

• Alternative biomass fuels: – Kernels, shells, olive stones, shea nuts

Frandsen, 2012

Page 4: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

KCl related issues in biomass combustion

KCl Ash deposition

Bed agglomeration

Corrosion

SCR deactivation

Page 5: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Potassium speciation in ash: concerns

5

Deposition Corrosion SCR deactivation

Fly ash quality

KCl XXX XXX XXX XXX K2SO4 XX X XXX K-silicates XX K-alumina-silicates

X

Page 6: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Combustion of straw on a grate

Department of Chemical Engineering

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800

MeasurementEmission limit

SO2 /

mg/

Nm

3

Time / min

Data from the Ensted Power Plant (Knudsen and Sander, 2004)

Page 7: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Grate-firing of biomass: fate of K, S, Cl

Page 8: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Sulfation of KCl

Proposed gas-phase sulfation mechanism: SO2+½O2 → SO3 (global, rate limiting) KCl + SO3 (+M)→ KSO3Cl (+M) (fast) KSO3Cl + H2O → KHSO4 + HCl (fast) KHSO4 + KCl → K2SO4 + HCl (fast) 2KCl+SO2+½O2+H2O→K2SO4+2HCl (net)

KSO3Cl

KHSO4

Reference reaction: NaOH+HCl → NaCl+H2O k298 ∼ 1014 cm3 mol-1 s-1

Silver et al. (1984) Glarborg and Marshall (2005)

K2SO4

Page 9: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

A mechanism for sulfation of KCl

Hindiyarti et al., 2007

Detailed reaction mechanism: 50 species, 200+ reactions

Page 10: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Flame experiments at Lund University

10

• Multi-jet (91) burner • Atm pressure flame • Hydrocarbon/oxygen/nitrogen • Add KCl w/wo SO2

• Measure temperature, KCl, HCl, SO2

Li et al. 2013

Page 11: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Temperature profiles

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10

Rayleigh

Thermocouple

Model

Tem

pera

ture

/ K

Height above burner / cm

Flame 1

Flame 3

Flame 5

Li et al. 2013

Page 12: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Effect of SO2 addition on post-flame KCl

12 Li et al. 2013

1030 K 1100 K

1300 K 1410 K

Without SO2

With SO2

Page 13: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

In-furnace KCl sulfation Gas-phase mechanism: SO2+Ox → SO3 KCl + SO3 (+M)→ KSO3Cl (+M) KSO3Cl + H2O → KHSO4 + HCl KHSO4 + KCl → K2SO4 + HCl K2SO4 → aerosol

Post-flame sulphation of KCl

Li et al. (2012)

Gas-solid reaction: 2KCl+SO2+½O2+H2O→K2SO4+2HCl (net)

Sengeløv et al. (2013)

Without SO2

With SO2

Page 15: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Objectives

• Develop a simplified model for gas-phase sulphation of KCl –Describe oxidation of SO2 to SO3

–Describe sulphation of KCl by SO3

–Describe homogeneous nucleation of K2SO4

• Questions: –Is it possible to reduce the detailed model (50 species,

200+ reactions – without fuel oxidation) to an operational size model?

–Where does the important chemistry occur? –Is superequilibrium of radicals important?

15

Page 16: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Representing chemistry in CFD

•Full reaction mechanism

•Skeletal mechanism

•Analytically reduced mechanism

•Global mechanism

16

Accuracy Complexity

Page 17: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Effect of cooling rate on SO3 formation - predictions with full mechanism

17

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

SO3 equilibrium

Cooling rate 100 K/sCooling rate 200 K/sCooling rate 400 K/sCooling rate 800 K/s

SO3 m

ole

fract

ion

Temperature / KInlet composition: 500 ppm SO2, 4% O2, 10% H2O, 5% CO2; balance N2

Page 18: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Skeletal mechanism for SO3 formation

18

Minimum reaction subset that provides a satisfactory description of the relevant chemistry

Page 19: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Radical concentrations during cooling

19

0

5 10-5

0,0001

0,00015

100012001400160018002000

EquilibriumCooling rate 100 K/sCooling rate 200 K/sCooling rate 400 K/sCooling rate 800 K/s

O m

ole

fract

ion

Temperature / K

0

0,0005

0,001

0,0015

0,002

100012001400160018002000

EquilibriumCooling rate 100 K/sCooling rate 200 K/sCooling rate 400 K/sCooling rate 800 K/s

OH

mol

e fra

ctio

n

Temperature / K

Inlet composition: 500 ppm SO2, 4% O2, 10% H2O, 5% CO2; balance N2

Radical partial equilibrium largely maintained during cooling

Page 20: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Prediction of SO3 formation

20

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

EquilibriumFull mechanismSkeletal mechanismReduced mechanism

SO3 m

ole

fract

ion

Temperature / K

Skeletal mechanism: • Detailed H2/O2 subset • Skeletal SOx subset

Page 21: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Prediction of SO3 formation

21

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

EquilibriumFull mechanismSkeletal mechanismReduced mechanism

SO3 m

ole

fract

ion

Temperature / K

Reduced mechanism: • Assume HOSO2 in steady state • Assume O in partial equil. O2+M = O+O+M • Assume OH in partial equil. H2O+½O2 = OH+OH • Rates of formation: ωSO2 = – ω1 – ω3 – ω4

ωSO3 = ω1 + ω3 + ω4

Page 22: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Effect of cooling rate on sulphation rate - predictions with full mechanism

22

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

SO3 equilibrium

Cooling rate 100 K/sCooling rate 200 K/sCooling rate 400 K/sCooling rate 800 K/s

Mol

e fra

ctio

n

Temperature / K

SO3

K2SO

4

K2SO

4(s)

Inlet composition: 500 ppm SO2, 50 ppm KCl 4% O2, 10% H2O, 5% CO2; balance N2

Page 23: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Skeletal mechanism

23

Page 24: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Predictions of sulphation - performance of skeletal mechanism

24

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

Full mechanismSkeletal mechanism

Mol

e fra

ctio

n

Temperature / K

SO3

K2SO

4

K2SO

4(s)

Page 25: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Analytically reduced model

Simplifying assumptions: • Assume H2SO4 in steady state • Assume O in partial equilibrium

(O2+M = O+O+M) • Assume OH in partial equilibrium

(H2O+½O2 = OH+OH) • Replace the fast gas-phase alkali

sulphation steps by one global reaction (G):

SO3+2KCl+H2O → K2SO4+2HCl

Model: • Components: SO2, SO3, KCl, K2SO4, K2SO4(c) • Rates of formation: ωSO2 = – ω1 – ω3 – ω4

ωSO3 = ω1 + ω3 + ω4 - ωG ωKCl = – ωG ωK2SO4 = ωG – ωNUCLEATION ωK2SO4(c) = ωNUCLEATION

25

Page 26: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Predictions of sulphation - performance of reduced mechanism

26

0

5 10-6

1 10-5

1,5 10-5

2 10-5

2,5 10-5

8001000120014001600180020002200

Full mechanismReduced mechanism

Mol

e fra

ctio

n

Temperature / K

SO3

K2SO

4

K2SO

4(s)

KHSO4+K

2SO

4

Page 27: Simplified model of SO2 oxidation and KCl sulphation for ...task32.ieabioenergy.com/wp-content/uploads/2017/03/09_glarborg.pdf · 2 oxidation and KCl sulphation for CFD applications

DTU Chemiccal Engineering, Technical University of Denmark

Conclusions

• A simplified model for gas-phase sulphation of KCl in the post-flame region has been developed

–Oxidation of SO2 to SO3

• O/H radicals in partial equilibrium • HOSO2 in steady-state

–Sulphation of KCl by SO3

• One-step global reaction for sulphation • One-step global reaction for homogeneous

nucleation of K2SO4 • Provides a good estimate of the Cl/S ratio in the

condensed alkali salts • Needs refinement to predict concentration profiles

(time / temperature)

27


Recommended