+ All Categories
Home > Documents > Simulate LINC system in ADS

Simulate LINC system in ADS

Date post: 09-Feb-2016
Category:
Upload: tuvya
View: 41 times
Download: 0 times
Share this document with a friend
Description:
Simulate LINC system in ADS. Song Lin @ECE.UTK 03/30/2005. What is the LINC?. There are many linearization techniques. Feed-forward Pre-distortion LINC Linear amplification using nonlinear components (LINC) is a technique whereby a linear modulation - PowerPoint PPT Presentation
Popular Tags:
23
Simulate LINC system in ADS Song Lin @ECE.UTK 03/30/2005
Transcript
Page 1: Simulate LINC system in ADS

Simulate LINC system in ADS

Song Lin @ECE.UTK 03/30/2005

Page 2: Simulate LINC system in ADS

What is the LINC?There are many linearization techniques. 1. Feed-forward 2. Pre-distortion 3. LINC Linear amplification using nonlinear components (LINC) is a technique whereby a linear modulation signal is converted into two constant envelope

signals that are independently amplified by power-efficient Class D amplifiers and then combined using a hybrid coupler.

Page 3: Simulate LINC system in ADS

The use of power efficient amplifiers can provide significant improvement in the PAE of the overall system.

Fig1:Simplified block diagram for an outphasing power amplifier

Page 4: Simulate LINC system in ADS

Fig2:Separation of two component signals from the source signal

S1(t) and S2(t) are the modulated phase and constant amplitude signals

Page 5: Simulate LINC system in ADS

The problem we want to solve

1. The Class D Power amplifier. 2. The reconfigurable Combiner.3. The phase detector.4. The phase shifter.5. The amplitude detector.6. The DSP part.

Page 6: Simulate LINC system in ADS

ADS simulation LINC at system level

Vinput1

Vinput2 VoutPA

Vout

Vinput

Output of LINC Transmitter

Transformation toConstant Envelopes

VARVAR1

Delta_Phase=0.001Delta_Gain=0.001rmax=1.414 VPavs_in=15 _dBmSpacing=2 MHzRFfreq=850 MHz

EqnVar

CouplerSingleCOUP5Coupling=10. dB

231

CouplerSingleCOUP2Coupling=10. dB

231

CouplerSingleCOUP4Coupling=10. dB

231

CouplerSingleCOUP1Coupling=10. dB

231

PwrSplit3PWR2S21=1.S31=1.S41=1.

I_ProbeIout

TermTerm2

Z=50 OhmNum=1

PwrSplit2PWR1

P_nTonePORT2

P[2]=polar(dbmtow(Pavs_in),0)P[1]=polar(dbmtow(Pavs_in),0)Freq[2]=RFfreq-Spacing/2Freq[1]=RFfreq+Spacing/2Z=50 OhmNum=2

PhaseShiftSMLPS3Phase=90.

PhaseShiftSMLPS1Phase=-90.

SDD5PSDD5P1Cport[1]=

TermTerm1

Z=50 OhmNum=1

TermTerm5

Z=50 OhmNum=1

AmplifierAMP1S21=dbpolar(0.0,0)

TermTerm3

Z=50 OhmNum=1

TermTerm6

Z=50 OhmNum=1

AmplifierAMP2S21=dbpolar(0.0+Delta_Gain,0+Delta_Phase)

HarmonicBalanceHB1

Order[2]=7Order[1]=7Freq[2]=RFfreq+Spacing/2Freq[1]=RFfreq-Spacing/2

HARMONIC BALANCE

Page 7: Simulate LINC system in ADS

ADS simulation results (ideal)

846847

848

849850

851852

853854

845

855

-60-50-40-30-20-10

010

-70

20

freq, MHz

Powe

r (dB

m)

Frequency Spectrum at Input

846847848849850851852853854

845

855

-60-50-40-30-20-10

010

-70

20

freq, MHz

Powe

r (dB

m)

Frequency Spectrum after Transformation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0 1.0

-6

-4-202

4

6

-8

8

time, usec

Vinp

ut1_

timed

omai

n, V

Vinp

ut2_

timed

omai

n, V

Vout

put,

V

T ime Domain Response

846 847 848 849 850 851 852 853 854845 855

-60-50-40-30-20-10

0102030

-70

40

freq, MHz

Powe

r (dB

m)

Frequency Spectrum at Output

846 847 848 849 850 851 852 853 854845 855

-60-50-40-30-20-10

010

-70

20

freq, MHz

Powe

r (dB

m)

Frequency Spectrum after PA

Page 8: Simulate LINC system in ADS

ADS simulation (non-ideal)

vout3

vout4

vout2

vout1

v41

v11

v31

v2

u21 u22u11

u21

vout

u11

classdpaX2

classdpaX3

TranTran1

MaxTimeStep=0.1 nsecStopTime=280 nsec

TRANSIENT

VARVAR1

f1=850 MHzf0=2 MHz

EqnVar

VARVAR2pav=16

EqnVar

HarmonicBalanceHB1

Order[2]=7Order[1]=7Freq[2]=f1Freq[1]=f0

HARMONIC BALANCE

P_1TonePORT4

Freq=f1P=polar(dbmtow(pav),120)Z=50 OhmNum=4

P_1TonePORT2

Freq=f0P=polar(dbmtow(pav),120)Z=50 OhmNum=2

P_1TonePORT5

Freq=f0P=polar(dbmtow(pav),0)Z=50 OhmNum=5

P_1TonePORT3

Freq=f1P=polar(dbmtow(pav),0)Z=50 OhmNum=3

PhaseShiftSMLPS1

ZRef=50. OhmPhase=180

TermTerm1

Z=50 OhmNum=1PwrSplit2

PWR3

S31=0.707S21=0.707

PwrSplit2PWR2

S31=0.707S21=0.707

PwrSplit2PWR1

S31=0.707S21=0.707

Mixer2MIX1

ConvGain=dbpolar(0,0)SideBand=LOWER

Mixer2MIX2

ConvGain=dbpolar(0,0)SideBand=LOWER

Page 9: Simulate LINC system in ADS

ADS simulation non-ideal results

100 200 300 4000 500

-0.5

0.0

0.5

-1.0

1.0

time, nsec

vout

, V

100 200 300 4000 500

-200

-100

0

100

200

-300

300

time, nsec

vout

1, m

V100 200 300 4000 500

-0.5

0.0

0.5

-1.0

1.0

time, nsec

vout

2, V

100 200 300 4000 500

-200

-100

0

100

200

-300

300

time, nsec

vout

3, m

V

100 200 300 4000 500

-200

0

200

-400

400

time, nsecu2

2, m

V

100 200 300 4000 500

-200

0

200

-400

400

time, nsec

u12,

mV

100 200 300 4000 500

-200

0

200

-400

400

time, nsec

u11,

mV

100 200 300 4000 500

-200

0

200

-400

400

time, nsec

u21,

mV

100 200 300 4000 500

-200-100

0100200

-300

300

time, nsec

vout

3, m

V

Page 10: Simulate LINC system in ADS

The class D power amplifier Use the Load-Pull technology to match the output

port

vload

Vs_low Vs_high

Refer to the example design file: examples/RF_Board/LoadPull_prj/HB1Tone_LoadPull_eqns for details about how this simulation is run. Refer to the data display file"ReflectionCoefUtility" in the sameexample project for help in setting s11_rho and s11_center.

s11_rho is the radius and s11_center is thecenter of the circle.(But this is just a static drawing.)

One Tone Load Pull Simulation; output power and PAE found at each fundamental load impedance

Set Load and Source impedances atharmonic frequencies

Set these values:

Specify desired Fundamental Load Tuner coverage: s11_rho is the radius of the circle of reflection coefficients generated. However, the radius of the circle will be reduced if it would otherwise go outside the Smith Chart.s11_center is the center of the circle of generated reflection coefficientspts is the total number of reflection coefficients generatedZ0 is the system reference impedance

VARSTIMULUS

Vlow=-2.7Vhigh=4.8RFfreq=850 MHzPavs=23 _dBm

EqnVar

P_1TonePORT1

Freq=RFfreqP=dbmtow(Pavs)Z=50 OhmNum=1

VARVAR3Z_s_fund=10

EqnVar

S1P_EqnS1S[1,1]=LoadTunerZ[1]=Z0

VARVAR2

Z_s_5 =10* Z0 + j*0Z_s_4 =10* Z0 + j*0Z_s_3 =10* Z0 + j*0Z_s_2 =10* Z0 + j*0Z_l_5 =10* Z0 + j*0Z_l_4 =10* Z0 + j*0Z_l_3 =10*Z0 + j*0Z_l_2 =10*Z0 + j*0

EqnVar

ParamSweepSweep1

PARAMETER SWEEP

ClassDampX2

OutBiasInBiasOutputInput

VARImpedanceEquationsEqn

Var

HarmonicBalanceHB1

Order[1]=9Freq[1]=RFfreq

HARMONIC BALANCE

I_ProbeIload

VARSweepEquations

Z0=50pts=100s11_center =-0.65 +j*0.0s11_rho =0.35

EqnVar

V_DCSRC1Vdc=Vhigh

V_DCSRC2Vdc=Vlow

LL2

R=L=1 uH

LL1

R=L=1 uH

I_ProbeIs_low I_Probe

Is_high

Statz_ModelFLC301XP

Imelt=Trise=

Page 11: Simulate LINC system in ADS

Use S parameter to match the input port

DA_LEMatch1_matchadDA_LEMatch1

Zload=0.534-j*14.216Zin=50 OhmF=850 MHz

To simplify the design, I chose the narrow band system working around 850MHz. To design the wideband PA, there is another way to go for matching.

Page 12: Simulate LINC system in ADS

The phase detector

vout

v2v22

v12

v11v21

v1u1

u2RR13R=50 Ohm

VARVAR1

Delay_Time=1/Fref secStop_Time=200 usecStep_Time=1/(10*Fref) secKv = 3.37 MHzLogic0=0.5Logic1=4.5Fref =250 kHzN_Step =10N0 = 161

EqnVar

VARVAR2phase2=45

EqnVar

VARVAR5

n=2phase1=180

EqnVar

TranTran2

MaxTimeStep=1 usecStopTime=20 usec

TRANSIENT

PhaseShiftSMLPS1

ZRef=50. OhmPhase=phase2

VSumSUM1

VtSineSRC4

Phase=0Damping=0Delay=0 nsecFreq=0.25 MHzAmplitude=1 VVdc=0 V

VtSineSRC2

Phase=phase1Damping=0Delay=n*4 usecFreq=0.25 MHzAmplitude=1 VVdc=0 V

VtSineSRC3

Phase=phase1Damping=0Delay=n*4 usecFreq=0.25 MHzAmplitude=1 VVdc=0 V

VtSineSRC1

Phase=0Damping=0Delay=0 nsecFreq=0.25 MHzAmplitude=1 VVdc=0 V

VSumSUM2

VARVAR4

Clpf1=6.86 nFRlpf2=1.856 KohmRlpf1=2.935 Kohm

EqnVar

RR12R=Rlpf1

CC4C=Clpf1

CC5C=Clpf1

RR10R=Rlpf2

RR11R=Rlpf2

OpAmpIdealAMP2

RRR4R=Rlpf1

ResetSwitchSWITCH1

t>0t=0

ResetSwitchSWITCH3

t>0

t=0

PhaseFreqDet2PFD2

J itter=0 psecDeadTime=0 psecVlow=Logic0Vhigh=Logic1

Page 13: Simulate LINC system in ADS

Use the MCU to control the comparing time, and then get the relationship of the phase different and the voltage. After getting the voltage, we can use the MCU to control the analogy phase shifter to balance the phase of the two branches

Page 14: Simulate LINC system in ADS

Phase shifter

VARVAR1

Ccap=750 pFL1=0.4 nHR2=3200 OhmCc=1 pFR1=3200 Ohm

EqnVar

S_ParamSP1

Step=Stop=1 GHzStart=0.5 GHz

S-PARAMETERS

Hybrid90HY B1

PhaseBal=0GainBal=0 dBLoss=0.1 dB

-900

IN ISO

S_ParamSP2

Step=Stop=0.1 GHzStart=0.03 GHz

S-PARAMETERS

CC3C=Cc

CC4C=Cc

RR5R=R1 Ohm

RR4R=R1 Ohm

V_DCSRC1Vdc=2 V

di_sms_bb833_19930908D4

di_sms_bb833_19930908D2

di_sms_bb833_19930908D1

di_sms_bb833_19930908D3

TermTerm1

Z=50 OhmNum=1

CC1C=Ccap

TermTerm2

Z=50 OhmNum=2

CC2C=Ccap

LL3

R=L=L1

LL2

R=L=L1

Page 15: Simulate LINC system in ADS

Wide band 90 degree lumped hybrid S_ParamSP1

Step=Stop=1 GHzStart=0.7 GHz

S-PARAMETERS

VARVAR1

C4=4.67 pFC3=4.97 pFC1=4.45 pFL5=14.04 nHL2=6.37 nHL1=6.617 nH

EqnVar

CC4C=C3

CC2C=C4

CC6C=C1

CC1C=C1

CC5C=C4

CC3C=C3

LL6

R=L=L5

LL5

R=L=L5

LL4

R=L=L1

LL3

R=L=L2

LL2

R=L=L2

LL1

R=L=L1

TermTerm1

Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2

TermTerm3

Z=50 OhmNum=3

TermTerm4

Z=50 OhmNum=4

Page 16: Simulate LINC system in ADS

Reconfigurable transformer

vmid

vin2

vin1vout

RR2R=5 Ohm VAR

VAR1

R1=100 Ohmn2=0.1n1=0.5

EqnVar

P_1TonePORT2

Freq=1 GHzP=polar(0.002,0)Z=50 OhmNum=2

TranTran1

MaxTimeStep=0.01 nsecStopTime=2.0 nsec

TRANSIENT

P_1TonePORT1

Freq=1 GHzP=polar(0.001,0)Z=50 OhmNum=1

TFTF3T=n2

TFTF1T=0.5

PhaseShiftSMLPS1

ZRef=50. OhmPhase=180.

I_ProbeI_Probe3

TFTF2T=n1

I_ProbeI_Probe2

RR1R=R1

I_ProbeI_Probe1

Page 17: Simulate LINC system in ADS

For the reconfigurable transformer, we still have a long way to go. I think we can use the switch to make the transmission line transformer to be reconfigurable. Although this kind of reconfigurable transformer can get very high efficiency but it has very poor isolation between the two input port. So we should find the best point to meet the requirement.

Page 18: Simulate LINC system in ADS

Several Technology to improve the LINC

Page 19: Simulate LINC system in ADS
Page 20: Simulate LINC system in ADS

ELINC

Page 21: Simulate LINC system in ADS
Page 22: Simulate LINC system in ADS

Next stage: Combine the feedback technology

and the ELINC technology. Figure out the reconfigurable

power combiner.

Page 23: Simulate LINC system in ADS

THANK YOU!


Recommended