+ All Categories
Home > Documents > Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Date post: 19-Feb-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
43
Slide 1 of 43 April 9, 2020 DYNAmore Express Webinar Series Simulating Thermal-Mechanical Coupled Processes with LS-DYNA Dr.-Ing. Thomas Klรถppel DYNAmore GmbH, Stuttgart, Germany April 9, 2020 DYNAmore Express - Thermal-Mechanical Coupled Processes - New Coupling Schemes, Boundary Conditions, Contact Algorithms and Materials -
Transcript
Page 1: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 1 of 43April 9, 2020

DYNAmore Express Webinar Series

Simulating Thermal-Mechanical Coupled

Processes with LS-DYNA

Dr.-Ing. Thomas Klรถppel

DYNAmore GmbH, Stuttgart, Germany

April 9, 2020

DYNAmore Express - Thermal-Mechanical Coupled Processes

- New Coupling Schemes, Boundary Conditions, Contact Algorithms and Materials -

Page 2: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 2 of 43April 9, 2020

โ–  State of the art digital process chain contains

โ–  (Hot) forming and press hardening simulations

โ–  Clamping simulations

โ–  Mechanical assembly steps, i.e. clinching, roller hemming, โ€ฆ

โ–  Thermal assembly steps, i.e. resistance spot welds, laser welds, line weld (MIG, MAG), โ€ฆ

โ–  Springback analysis

โ–  Closed virtual process chain within LS-DYNA by data transfer from one stage to the next

โ–  Assembly of whole side-panel of a car

โ–  Hundreds of spot-welds, dozens of parts and multiple level of assemblies

โ–  Tailored simulation strategies for each of the individual steps

โ–  As efficient as possible for each process, but without neglecting the critical effects

โ–  Keep track of material properties that might change significantly during process (e.g. phase evolution)

Motivation โ€“ Assembly Simulation

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 3: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 3 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  Coupling Strategies

โ–  Boundary Conditions II

โ–  Material Modelling

โ–  Thermal Contact Algorithms

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 4: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 4 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  *BOUNDARY_FLUX_TRAJECTORY

โ–  *BOUNDARY_TEMPERATURE_RSW

โ–  Coupling Strategies

โ–  Boundary Conditions II

โ–  Material Modelling

โ–  Thermal Contact Algorithms

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 5: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 5 of 43April 9, 2020

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  defines a volumetric heat source

โ–  motion along a trajectory (nodal path)

โ–  prescribed velocity, possibly as function of time

โ–  user can choose from a list of equiv. heat sources

โ–  Works in thermal-only and coupled analyses

Modelling line welding processes

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 6: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 6 of 43April 9, 2020

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  defines a volumetric heat source

โ–  motion along a trajectory (nodal path)

โ–  prescribed velocity, possibly as function of time

โ–  user can choose from a list of equiv. heat sources

โ–  Works in thermal-only and coupled analyses

โ–  Applicable to solids and thermal thick shells

โ–  Different possibilities to define aiming direction

Modelling line welding processes

DYNAmore Express - Thermal-Mechanical Coupled Processes

Heat source orthogonal to weld seam surface

(segment set)

Page 7: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 7 of 43April 9, 2020

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  defines a volumetric heat source

โ–  motion along a trajectory (nodal path)

โ–  prescribed velocity, possibly as function of time

โ–  user can choose from a list of equiv. heat sources

โ–  Works in thermal-only and coupled analyses

โ–  Applicable to solids and thermal thick shells

โ–  Different possibilities to define aiming direction

Modelling line welding processes

DYNAmore Express - Thermal-Mechanical Coupled Processes

nodes provided by user

virtual nodes

Heat source orthogonal to weld seam surface

(segment set)

Page 8: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 8 of 43April 9, 2020

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  defines a volumetric heat source

โ–  motion along a trajectory (nodal path)

โ–  prescribed velocity, possibly as function of time

โ–  user can choose from a list of equiv. heat sources

โ–  Works in thermal-only and coupled analyses

โ–  Applicable to solids and thermal thick shells

โ–  Different possibilities to define aiming direction

โ–  Additional rotation and translation (load curves)

Modelling line welding processes

DYNAmore Express - Thermal-Mechanical Coupled Processes

โ€ฆ LCROT

โ€ฆ LCLAT

Influence of oscillations forโ€ฆ

โ€ฆ LCMOV

Page 9: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 9 of 43April 9, 2020

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY

โ–  defines a volumetric heat source

โ–  motion along a trajectory (nodal path)

โ–  prescribed velocity, possibly as function of time

โ–  user can choose from a list of equiv. heat sources

โ–  Works in thermal-only and coupled analyses

โ–  Applicable to solids and thermal thick shells

โ–  Different possibilities to define aiming direction

โ–  Additional rotation and translation (load curves)

โ–  Thermal dumping is possible

Modelling line welding processes

DYNAmore Express - Thermal-Mechanical Coupled Processes

temperature field, NCYC = 1 temperature field, NCYC = 10

Peak temperature = 15.8Peak temperature = 21.6

Page 10: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 10 of 43April 9, 2020

โ–  Local heating of a surface by a laser with a certain position and orientation

โ–  Material evaporates and topology of cut part changes

โ–  LS-DYNA implementation with *BOUNDARY_FLUX_TRAJECTORY

โ–  surface flux boundary conditions that follows a prescribed path (node set)

โ–  resulting surface heat distribution depends on base distribution and current orientation of laser and surface

โ–  element erosion based on maximum temperature

โ–  newly exposed segments are accounted for

Laser heating and laser cutting

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 11: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 11 of 43April 9, 2020

โ–  *BOUNDARY_FLUX_TRAJECTORY

โ–  nodal path not necessarily defined on the

cut part

โ–  tilting changes projection on the surface

โ–  change of intensity can be balanced

Laser heating and laser cutting

DYNAmore Express - Thermal-Mechanical Coupled Processes

ENFO=0

ENFO=1

V = V0

V = 2 V0

Page 12: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 12 of 43April 9, 2020

โ–  Standard modelling approaches for RSW

โ–  Use a detailed and coupled (EM, thermal, structure) simulation

โ–  Use an equivalent heat source and calibrate its power and shape

โ–  For large assemblies and hundreds of spot welds neither

approach is feasible!

โ–  *BOUNDARY_TEMPERATURE_RSW

โ–  Direct temperature definition (Dirichlet condition) for the weld nugget

and the heat affected zone for the thermal solver

โ–  Constraint condition only active during the welding

โ–  Very good prediction of deflections in large assemblies

โ–  A HAZ can be additionally accounted for

Resistance spot welding (RSW)

DYNAmore Express - Thermal-Mechanical Coupled Processes

OPTION = 0

OPTION = 1

Page 13: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 13 of 43April 9, 2020

โ–  Temperature in the weld nugget

โ–  prescribed at the center, boundary of nugget, and boundary of HAZ

โ–  quadratic approximation inside the nugget

โ–  linear approximation in the HAZ

โ–  Boundary condition active between BIRTH and DEATH times

โ–  Load curve input (LCIDT) for temperature scaling factor as

function of normalized time

Resistance spot welding (RSW)

DYNAmore Express - Thermal-Mechanical Coupled Processes

linear temp increase,

BIRTH=0.1, DEATH=0.9

peak temp. profile, horizontal

Page 14: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 14 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  Coupling Strategies

โ–  Standard Two-Way Coupling

โ–  One-Way Coupling with *LOAD_THERMAL_BINOUT

โ–  Boundary Conditions II

โ–  Material Modelling

โ–  Thermal Contact Algorithms

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 15: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 15 of 43April 9, 2020

โ–  Default strategy in LS-DYNA is a 2-way coupling

โ–  Staggered weak approach

โ–  Two solvers run in parallel and share data

โ–  Thermal time step is independent of the mechanical time step

โ–  Data transfer

Data Transfer and Simulation Principles

Mechanical Calculations

โ–  Based on current temperature, calculate:

โ–  Plastic work

โ–  Part contact gap thickness

โ–  Temperature dependent material

โ–  Thermal expansion

โ–  Update geometry

Thermal Calculations

โ–  Based on current geometry, calculate:

โ–  Heat from plastic work

โ–  Contact conductance from gap thickness and

contact pressure

โ–  Heat from interface friction

โ–  Update temperature

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 16: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 16 of 43April 9, 2020

โ–  Hot forming

โ–  Constantly changing contact status

โ–  Heat transfer between blank and tools is pressure dependent

โ–  Heat generation from contact friction

โ–  Energy conversion from plastic work to heat

โ–  Laser cutting

โ–  Surface heat source (*BOUNDARY_FLUX_TRAJECTORY) moving

along a prescribed path

โ–  Propagation to newly exposed surfaces after element erosion

โ–  Element erosion is defined in mechanical solver

โ–  Constantly changing topology

2-way coupled Approach โ€“ Examples for possible Applications

DYNAmore Express - Thermal-Mechanical Coupled Processes

F

Page 17: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 17 of 43April 9, 2020

โ–  For some assembly stages the effect of structural deformation

onto the thermal simulation is negligible

โ–  Distortion and/or material phase evolution due the thermal distribution

are of interest to the user

โ–  Results of a thermal run serves as loading for structure simulation with *LOAD_THERMAL_D3PLOT

โ–  Evolution in time of temperature distribution linearly interpolated between the output time steps

โ–  Thermal thick shell feature is supported also for the structure-only simulation

โ–  Temperature results are read from the d3plot file of the thermal run

Challenges with this approach:

โ–  Complex input file format (d3plot) to be generated by a mapping tool

โ–  Meshes (models!) for both simulations have to coincide

โ–  Time scaling has to match as well

โ–  Implemented more flexible *LOAD_THERMAL_BINOUT to read data from one or more LSDA database(s)

Motivation for 1-way Coupling

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 18: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 18 of 43April 9, 2020

โ–  Aims and scope of the new keyword

โ–  Use flexible and open LSDA data format to define thermal loading of a structure

โ–  Required structure of LSDA files matches the TPRINT section in LS-DYNA binout file, so results from thermal and

from coupled LS-DYNA runs can be used without further modification

โ–  Only partial overlap between meshes should be required

โ–  Allow for a sequential thermal loading and for an easy modification of the sequence

*LOAD_THERMAL_BINOUT

1 2 3 4 5 6 7 8

Card 1 DEFTEMP

Card 2 Filename

Card 3 START TSF

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 19: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 19 of 43April 9, 2020

โ–  File name of thermal run given in keyword

โ–  Thermal thick shells are accounted for

โ–  Time step sizes do not have to match

*LOAD_THERMAL_BINOUT

DYNAmore Express - Thermal-Mechanical Coupled Processes

Welding Example:

Page 20: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 20 of 43April 9, 2020

โ–  File name of thermal run given in keyword

โ–  Thermal thick shells are accounted for

โ–  Time step sizes do not have to match

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Thermal run:

Page 21: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 21 of 43April 9, 2020

*LOAD_THERMAL_BINOUT

Thermo-Mechanical Coupling in LS-DYNA

Structure run with thermal loading:

Temperature von Mises stress

Page 22: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 22 of 43April 9, 2020

โ–  File name of the input is to be given in the keyword

โ–  Thermal thick shells are accounted for

โ–  Time step sizes do not have to match

โ–  Only partial overlap of the meshes is required

โ–  Data transfer based on user given ID of the nodes

โ–  Default temperature is used for those nodes of the

structure simulations that are not included in the

thermal run

*LOAD_THERMAL_BINOUT

DYNAmore Express - Thermal-Mechanical Coupled Processes

Thermal Run:

Page 23: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 23 of 43April 9, 2020

โ–  File name of the input is to be given in the keyword

โ–  Thermal thick shells are accounted for

โ–  Time step sizes do not have to match

โ–  Only partial overlap of the meshes is required

โ–  Data transfer based on user given ID of the nodes

โ–  Default temperature is used for those nodes of the

structure simulations that are not included in the

thermal run

*LOAD_THERMAL_BINOUT

DYNAmore Express - Thermal-Mechanical Coupled Processes

Mechanical Run:

Temperature

Page 24: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 24 of 43April 9, 2020

โ–  Multiple thermal runs can be read in

โ–  Each thermal run with time offset START

โ–  Compensation for a scaling in time with TSF

*LOAD_THERMAL_BINOUT

DYNAmore Express - Thermal-Mechanical Coupled Processes

Structure Run:

Temperature

Thermal Runs:

Page 25: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 25 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  Coupling Strategies

โ–  Boundary Conditions II

โ–  *LOAD_THERMAL_RSW

โ–  Material Modelling

โ–  Thermal Contact Algorithms

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 26: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 26 of 43April 9, 2020

โ–  Successfully tested one-way coupled approach:

โ–  *BOUNDARY_TEMPERATURE_RSW as boundary condition in thermal-only simulation

โ–  *LOAD_THERMAL_BINOUT as loading condition in structure-only simulation

โ–  In early design phases this approach might be numerically too expensive

โ–  Further simplification

โ–  Skip the calculation of heat transfer altogether

โ–  Imprint the temperature field of the weld nugget directly as thermal load

โ–  Structure-only simulation

โ–  Adapt the HAZ, because there is no heat transfer into the surroundings

Resistance spot welding (RSW)

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 27: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 27 of 43April 9, 2020

Resistance spot welding (RSW)

DYNAmore Express - Thermal-

Mechanical Coupled Processes

โ–  Keyword *LOAD_THERMAL_RSW implemented

โ–  Temperature profile in the weld nugget same as in the

temperature boundary condition

โ–  Prescribed at the center, boundary of nugget, and boundary of HAZ

โ–  Quadratic approximation inside the nugget

โ–  Linear approximation in the HAZ

โ–  Default temperature to be defined

โ–  Assumed outside the HAZ

โ–  Used before birth and after death of loading condition

โ–  No heat transfer into surroundings

โ–  Sharp edges in temperature distribution

peak temp. profile, horizontal

linear temp increase,

BIRTH=0.1, DEATH=0.9

Page 28: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 28 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  Coupling Strategies

โ–  Boundary Conditions II

โ–  Material Modelling

โ–  *MAT_CWM / *MAT_270

โ–  *MAT_THERMAL_CWM / *MAT_T07

โ–  *MAT_GERNALIZED_PHASE_CHANGE / *MAT_254

โ–  Thermal Contact Algorithms

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 29: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 29 of 43April 9, 2020

โ–  Material has two diferent states

โ–  Elements are initialy โ€Ghostโ€ or โ€Silentโ€ until activated at a specific temp.

โ–  Low stiffness

โ–  Negligible thermal expansion

โ–  After activation, material with temperature dependend

โ–  Mechanical properties of the base material

โ–  Von-Mises plasticity with mixed isotropic/kinematic hardening

โ–  Thermal expansion

โ–  Anneal at specific temperature

โ–  Reset of plastic strain data

โ–  Perfect plasticity without accumulation of plastic strains

*MAT_270 โ€“ Ghosting approach for welding

DYNAmore Express - Thermal-Mechanical Coupled Processes

activation

temperatures

annealing

Page 30: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 30 of 43April 9, 2020

โ–  Material has three different states

โ–  Material has a birth time

โ–  Elements are born as โ€Ghostโ€ or โ€Silentโ€ until activated at a specific temp.

โ–  For all three states, specific heat and thermal conductivity are to be defined

โ–  The formulation allows to simulate multiple weld paths and additive manufacturing processes

*MAT_T07 โ€“ Ghosting approach for welding

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 31: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 31 of 43April 9, 2020

โ–  up to 24 individual phases (= 552 possible phase change scenarios)

โ–  phase changes in heating, cooling or in a temperature window

โ–  user can chose from a list of phase change models for each scenario

โ–  basic mechanical features:

โ–  elasto-plastic material with a von-Mises plasticity model

โ–  temperature and strain-rate effects

โ–  transformation induced strains and plasticity

โ–  thermal expansion

โ–  any mechanical quantity ๐›ผ is determined by a rule of mixtures based on the current phase fractions ๐‘ฅ๐‘– and

the quantity ๐›ผ๐‘– of phase ๐‘–:

*MAT_254 โ€“ Overview

DYNAmore Express - Thermal-Mechanical Coupled Processes

๐›ผ = ฯƒ๐‘–=124 ๐‘ฅ๐‘–๐›ผ๐‘–

Page 32: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 32 of 43April 9, 2020

โ–  elaborate features:

โ–  latent heat algorithm

โ–  calculation and output of additional pre-defined post-processing histories

โ–  calculation and output of additional user-defined history values

โ–  refers to *DEFINE_FUNCTION keyword

โ–  Possible input:

time, user-defined histories, phase concentrations, temperature, peak temperature, temperature rate, stress

state, plastic strain data

โ–  enhanced annealing option by evolution equation for plastic strain depending on time and temperature

*MAT_254 โ€“ Overview

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 33: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 33 of 43April 9, 2020

โ–  microstructural phase evolution

โ–  up to 24 individual phases

โ–  parametrization of the phase transformation to be given in a

matrix-like structures (*DEFINE_TABLE_2D/3D)

โ–  matrix input for

โ–  phase transformation law (2D)

โ–  start and end temperatures (2D)

โ–  transformation constants (2D)

โ–  temperature (rate) dependent parameters (3D)

โ–  parameters depending on eqv plastic strain (3D)

*MAT_254 โ€“ Phase transformation

DYNAmore Express - Thermal-Mechanical Coupled Processes

1 2 3 4 5 6 7 8

Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5

Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5

Page 34: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 34 of 43April 9, 2020

โ–  Available phase transformation laws

โ–  Koistinen-Marburger

โ–  generalized Johnson-Mehl-Avrami-Kolmogorov (JMAK)

โ–  Akerstrom (only cooling, *MAT_244)

โ–  Oddy (only heating, *MAT_244)

โ–  Phase Recovery I (only heating, Titanium)

โ–  Phase Recovery II (only heating, Titanium)

โ–  Parabolic Dissolution I (only heating, Titanium)

โ–  Parabolic Dissolution II (only heating, Titanium)

โ–  incomplete Koistinen-Marburger (only cooling, Titanium)

*MAT_254 โ€“ Phase transformation

DYNAmore Express - Thermal-Mechanical Coupled Processes

1 2 3 4 5 6 7 8

Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5

Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5

Page 35: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 35 of 43April 9, 2020

โ–  Johnson-Mehl-Avrami-Kolmogorov (JMAK):

โ–  Evolution equation:

๐‘‘๐‘ฅ๐‘๐‘‘๐‘ก

= ๐‘› ๐‘‡ ๐‘˜๐‘Ž๐‘๐‘ฅ๐‘Ž โˆ’ ๐‘˜๐‘Ž๐‘โ€ฒ ๐‘ฅ๐‘ ln

๐‘˜๐‘Ž๐‘ ๐‘ฅ๐‘Ž + ๐‘ฅ๐‘๐‘˜๐‘Ž๐‘๐‘ฅ๐‘Ž โˆ’ ๐‘˜๐‘Ž๐‘

โ€ฒ ๐‘ฅ๐‘

๐‘› ๐‘‡ โˆ’1.0๐‘›(๐‘‡)

โ–  incremental form (isothermal case)

*MAT_254 โ€“ Phase transformation

DYNAmore Express - Thermal-Mechanical Coupled Processes

1 2 3 4 5 6 7 8

Card 3 PTLAW PTSTR PTEND PTX1 PTX2 PTX3 PTX4 PTX5

Card 4 PTTAB1 PTTAB2 PTTAB3 PTTAB4 PTTAB5 PTTAB6

โ–  Parameter:

โ–  PTTAB1: ๐‘›(๐‘‡)

โ–  PTTAB2: ๐‘ฅ๐‘’๐‘ž(๐‘‡)

โ–  PTTAB3: ๐œ0(๐‘‡)

โ–  PTTAB4: ๐‘“( แˆถ๐‘‡)

โ–  PTTAB5: ๐‘“โ€ฒ( แˆถ๐‘‡)

โ–  PTTAB6: ๐›ผ(๐œ€๐‘)

๐‘˜๐‘Ž๐‘ =๐‘ฅ๐‘’๐‘ž ๐‘‡

๐œ ๐‘‡,๐œ€๐‘๐‘“ แˆถ๐‘‡ , ๐‘˜๐‘Ž๐‘

โ€ฒ =1.0โˆ’๐‘ฅ๐‘’๐‘ž ๐‘‡

๐œ ๐‘‡,๐œ€๐‘๐‘“โ€ฒ แˆถ๐‘‡ ,

๐œ ๐‘‡, ๐œ€๐‘ = ๐œ0 ๐‘‡ โ‹… ๐›ผ(๐œ€๐‘)

๐‘ฅ๐‘ = ๐‘ฅ๐‘’๐‘ž ๐‘‡ ๐‘ฅ๐‘Ž + ๐‘ฅ๐‘ 1 โˆ’ ๐‘’โˆ’

๐‘ก๐œ ๐‘‡,๐œ€๐‘

๐‘› ๐‘‡

Page 36: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 36 of 43April 9, 2020

*MAT_254 โ€“ Phase transformation validation

DYNAmore Express - Thermal-Mechanical Coupled Processes

โ–  influence of parameter ๐‘›(๐‘‡) on isothermal transformation

๐‘› โ†‘

Page 37: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 37 of 43April 9, 2020

*MAT_254 โ€“ Phase transformation validation

DYNAmore Express - Thermal-Mechanical Coupled Processes

โ–  influence of parameter ๐‘ฅ๐‘’๐‘ž(๐‘‡) on isothermal transformation

๐‘ฅ๐‘’๐‘ž โ†‘

Page 38: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 38 of 43April 9, 2020

*MAT_254 โ€“ Phase transformation validation

DYNAmore Express - Thermal-Mechanical Coupled Processes

โ–  influence of parameter ๐œ(๐‘‡) on isothermal transformation

ฯ„ โ†‘

Page 39: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 39 of 43April 9, 2020

โ–  Boundary Conditions I

โ–  Coupling Strategies

โ–  Boundary Conditions II

โ–  Material Modelling

โ–  Thermal Contact Algorithms

โ–  _TIED_WELD option

โ–  thermal shell edge contacts

Content

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 40: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 40 of 43April 9, 2020

โ–  Motivation:

For welding processes without filler material, ghost approach

is not applicable

โ–  Basic features

โ–  Formulation can locally switch from sliding (un-welded) to tied (welded)

โ–  Switch is triggered by a temperature criterion

โ–  Welding only considered, if the gap between the contact partners are

below a certain limit

โ–  Heat transfer coefficient also changes with welding

โ–  MORTAR version available and recommended

โ–  Available for solids and shells

TIED_WELD contact formulations

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 41: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 41 of 43April 9, 2020

โ–  Situation so far:

โ–  heat transfer only available for surface to surface type contact formulations

โ–  for shell contacts only heat flux normal to shell surface implemented

โ–  Thermal thick shells allow for reconstruction of two

four-node surfaces at each shell edges for contact

Heat Transfer over Shell Edges in Contact

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 42: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 42 of 43April 9, 2020

โ–  Introduced tailored boundary conditions to comfortably simulate heat generation in welding processes

โ–  *BOUNDARY_THERMAL_WELD_TRAJECTORY for line welding

โ–  *BOUNDARY_FLUX_TRAJECTORY for laser heating and laser cutting

โ–  *BOUNDARY_TEMPERATURE_RSW / *LOAD_THERMAL_RSW for resistance spot welds

โ–  Presented new coupling keyword โ€˜LOAD_THERMAL_BINOUT

โ–  Flexible input in LSDA fromat

โ–  Input of multiple thermal runs with easy modification of the input order

โ–  Discussion on different material formulations for assembly simulations

โ–  *MAT_THERMAL_CWM as temporally and thermally activated thermal material

โ–  *MAT_CWM / *MAT_270 as thermally activated temperature dependent structure material

โ–  *MAT_254 as state-of-the-art material formulation for phase transformations (UHS, Al6xxxx, Ti6Al4V, โ€ฆ)

โ–  Brief summary of new features in the thermal contacts

โ–  TIED_WELD option to locally switch from sliding to tied contact

โ–  Heat transfer across shell edges can be accounted for

Summary

DYNAmore Express - Thermal-Mechanical Coupled Processes

Page 43: Simulating Thermal-Mechanical Coupled Processes with LS-DYNA

Slide 43 of 43April 9, 2020 DYNAmore Express - Thermal-Mechanical Coupled Processes

Thank you for your attention!

Questions: [email protected]


Recommended