+ All Categories
Home > Engineering > simulation and control in chemical enginnering

simulation and control in chemical enginnering

Date post: 10-Feb-2017
Category:
Upload: thanh-ly-pham
View: 357 times
Download: 4 times
Share this document with a friend
15
Group of Chemical Process Modeling, Control and Simulation University “Babeş-Bolyai” Cluj-Napoca, ROMANIA Faculty of Chemistry and Chemical Engineering Department of Chemical Engineering http://chem.ubbcluj.ro/~chemeng/HPteam.html http://chem.ubbcluj.ro
Transcript
Page 1: simulation and control in chemical enginnering

Group of Chemical Process Modeling,

Control and Simulation

University “Babeş-Bolyai” Cluj-Napoca, ROMANIAFaculty of Chemistry and Chemical Engineering

Department of Chemical Engineering

http://chem.ubbcluj.ro/~chemeng/HPteam.html

http://chem.ubbcluj.ro

Page 2: simulation and control in chemical enginnering

Group of Chemical Process Modeling,Control and Simulation

• Prof.dr.ing. Şerban AGACHI control engineer Head of Department, vice-rector of UBB

• Lect.dr.ing. Árpád IMRE-LUCACI chemical engineer

• Lect.dr.ing. Mircea CRISTEA control engineer

• Lect.dr.ing. Zoltán NAGY chemical engineer

• Assit.drd. Anamaria CORMOŞ chemist

Page 3: simulation and control in chemical enginnering

Research Projects• Modeling, Simulation and Advanced Control (Model Predictive) of Industrial

Electrolysers (Ion Exchange Membrane and Amalgam Process) • Controllability Analysis and Model Predictive Control of Chemical Reactors• Model Predictive Control of PVC batch reactors and Fluid Catalytic Cracking Units • Sensitivity studies of chemical processes• Process control and virtual instrumentation using LabVIEW environment• Modeling and Model Predictive Control of bioreactors• Adaptive control algorithms• Simulation of chemical processes using MATLAB, SIMULINK, FEMLAB, ASPEN,

CHEMCAD, HYSYS, PRO/II, • Direct digital control of chemical processes (CSTR, batch reactors)• System for energy management in chemical industry• Optimization of chemical processes (Pontryagin's maximum principle applied to fixed

bed methanol reactor, nonlinear programming applied to industrial electrolysers)• Multimedia applications in Computer Aided Education • Modeling and control of recovering ammonia in the Ash Soda process• Modeling and control of dryers in the ceramic industry• Neural Networks in chemical kinetics and chemical engineering• Environmental Pollution Mathematical Modeling and Simulation

Page 4: simulation and control in chemical enginnering

Main Projects1. Project supported by the World Bank and Romanian Government, No 70,

Theme: Computer Aided Chemical Engineering. Code 70. Director: Prof.Dr.Ing. Şerban Paul Agachi. Value: 294,750 USD.

2. Institutional Partnership Project supported by the Swiss National Science Foundation, in collaboration with Eidgenössische Technische Hochschule Zürich. No. 7 IP 62643. Computer Aided Process Engineering. Director: Prof.Dr.Ing.Şerban Paul Agachi. Romanian Coordinator: Lect.Dr.Ing. Cristea Vasile Mircea. Value: 48,000 CHF.

3. Project supported by the National Council of Scientific Research in High Education (CNCSIS), Theme 42, No. 349/2001. Dynamic Mathematical Model and Optimization of the Brine Electrolysis Process in Reactors with Ion Exchange Membrane. Optimization and optimal process control. Director: Lect.Dr.Ing. Imre Arpad. Value: 80,000,000 lei.

4. Project supported by the National Council of Scientific Research in High Education (CNCSIS), Theme B26, No. 7042/2001. Development and Practical Implementation of Model Predictive Techniques for the Distillation Column. Director: Lect.Dr.Ing. Nagy Zoltan. Value: 28,260,000 lei.

5. Project supported by the National Council of Scientific Research in High Education (CNCSIS), Theme 12, No. 57/2001. Development of Advanced Control Algorithms for Chemical Process Control. Director: Lect.Dr.Ing. Cristea Vasile Mircea. Value 45,000,000 lei.

6. Project supported by the National Council of Scientific Research in High Education (CNCSIS), Themes 9/25, No. 1259/177, 2002/2003. Software for remote data acquisition and control, remote work and videoconference applied in chemical engineering research and education. Director: Lect.Dr.Ing. Cristea Vasile Mircea. Value 113,000,000 lei.

7. Project supported by the Ministry of Research and Education in the frame of Information Society Romanian Project, Project number 115/2003, Wireless monitoring system of industrial pollutant emissions. Director: Prof.Dr.Ing. Şerban Paul Agachi. Value: 900,000,000 lei.

Page 5: simulation and control in chemical enginnering

International scientific meetings attended in 1999-2003

• Artificial Intelligence in Industry, AIII'98, High Tatras, Slovakia, 1998• 13th International Congress of Chemical and Process Engineering CHISA'98, Prague, Czech

Republic, 1998• 2nd Conference on Process Integration, Modeling and Optimization for Energy Saving and

Pollution Reduction PRES'99, Budapest, Hungary, 1999• 5th International Conference on Computer Aided Engineering Education, CAEE'99, Sofia,

Bulgaria, 1999• XIth Romanian International Conference on Chemistry and Chemical Engineering, RICCE-11,

Bucharest, Romania, 1999• American Control Conference, ACC'2000, Chicago, Illinois, USA, 2000• 14th International Congress of Chemical and Process Engineering CHISA'2000, Prague, Czech

Republic, 2000• European Symposium on Computer Aided Process Engineering, ESCAPE-11, Denmark, 2001• 5th Italian Conference on Chemical and Process Engineering ICheaP-5 Congress, Florence,

Italy, 2001• 4th Conference on Process Integration, Modeling and Optimization for Energy Saving

and Pollution Reduction PRESS'01, Florence 20-23 May 2001• International Conference and Exhibition Filtech Europa 2001, Düsseldorf, Germany, 2001• European Symposium on Computer Aided Process Engineering, ESCAPE-12, Holland, 2002• European Symposium on Computer Aided Process Engineering, ESCAPE-13, Finland, 2003

Page 6: simulation and control in chemical enginnering

Laboratory equipmentHARDWARE

• Vapor-liquid equilibrium still (Siege  and Roeck Type, Normag Labor- und Verfahrenstechnik GmbH & Co., Hofheim am Taunus, Germany),

• Pilot plant for studying the absorption processes,• Pilot plant for three phase fluidization systems• Separation modules• Laboratory kit for chemical reaction engineering studies• Laboratory kit for momentum, heat and mass transfer studies• Independent data acquisition and control of the pilot plants by

special National Instruments data acquisition and control cards• Spectrophotometer Jasco V-530 UV-VIS, wave length 190-1000

nm, accuracy 0.1 nm, spectrophotometer accessories• Thermo balance MOM• Gas chromatograph & ITD (Axel Semrau & Finnigan MAT)• Reactor under pressure 100 bar• Filtration pilot equipment• Computers

SOFTWARE

• LabVIEW 6.0, • Matlab 6.5, • Simulink 3.0, • HYSYS, • ChemCAD 5.0, • Aspen Plus 12• Cosmos M

Designer, • Hazoptimizer.

Page 7: simulation and control in chemical enginnering

ILUDEST bubble cap tray column with the following characteristics:

The ILLUDEST distillation column from the Process Control Laboratory at UBB Cluj

• 30 practical plates;• operation volume 10 liters;• reboiler with quartz heating rod 2 kW;• column head with solenoid controlled reflux-withdrawal divider and condenser;

• distillate cooler (cooling agent – water);• feed heating system with quartz heating rod, 0.5 kW;• product receivers 5 liters capacity each, to store the feed mixture respectively to collect the bottom and head product;

• diaphragm pumps for feed and bottom product withdrawal;• 39 sampling valves on every tray, for feed, bottom, distillate flows.

•sensors: 18 temperature sensors places on every second tray, feed, reboiler and condenser; measurement of absolute pressure at top and differential pressure between the top and bottom, level probes, flow sensors, etc.

•actuators in the plant: solenoid valves, heating elements (described above) liquid and vacuum pumps

•Personal computer and accessories•19” “ILUDEST-MOS” unit as an interface between distillation plant and PC.

The data acquisition and control system provided with the system comprises the following components:

Page 8: simulation and control in chemical enginnering

Mathematical models developedDynamic model of the Fluid Catalytic Cracking Unit

• Models for two main industrial units: the Model IV FCCU and the UOP FCCU.• Number of equations: 18 time dependent differential and 2 time and space dependent

differential equations.• Software implementation: Matlab&Simulink.• Model fitted with industrial data for the UOP FCCU.• Controllability analysis• Decentralized PID Control and Model Predictive Control.

Dynamic model of brine electrolysis in IEM reactors• Model of the industrial process for brine electrolysis in IEM reactors• Number of equations: 70 time dependent differential and 350 non-linear algebraic

equations.• Software implementation: Matlab&Simulink.• Model fitted with industrial data.• Process optimization.• Decentralized PID Control and Model Predictive Control.

Page 9: simulation and control in chemical enginnering

Mathematical models developedDynamic model of a binary distillation column

• Model for continuous separation of n-propanol/water mixture• Number of equations: 42 time dependent differential and 122 algebraic equations.• Software implementation: Matlab&Simulink, C++• Model fitted with experimental data• Simulation and Model Predictive Control.

Dynamic model of PVC reactor• Model for industrial batch process for polymerization of vinyl chloride• Number of equations: 10 ODE and 150 non-linear algebraic equations.• Software implementation: Matlab&Simulink.• Model fitted with industrial data.• Process optimization.• PID Control and Model Predictive Control.

Page 10: simulation and control in chemical enginnering

Mathematical models developedDynamic model of a continuous fermentation bioreactor

• Model of a yeast fermentation bioreactor• Number of equations: 8 time dependent differential and 20 algebraic equations • Software implementation: Matlab&Simulink, C++• Model fitted with experimental data• Simulation and Model Predictive Control..

Artificial Neural Network based dynamic model of a bioreactor

• Software implementation: Matlab• Model fitted with experimental data.• Nonlinear Model Predictive Control.

Page 11: simulation and control in chemical enginnering

Mathematical models developedDynamic model of the Drying Process of Electric Insulators

• Dynamic model of the Drying Process of Electric Insulators. • Number of equations: 6 time dependent differential equations and 5 algebraic equations. • Model fitted with industrial data for the drying chamber of electric insulators.• Software implementation: Matlab&Simulink.• Controllability analysis. • PID Control of the gases temperature and moisture content of the drying product.• Model Predictive Control of the gases temperature and moisture content of the drying

product. • Fuzzy Logic Control of the gases temperature and moisture content of the drying product. • Neural Networks Model Based Control of the gases temperature and moisture content of

the drying product.

Page 12: simulation and control in chemical enginnering

Mathematical models developed

Dynamic model of brine electrolysis in amalgam cathode reactor

• Number of equations: 154 time dependent differential equations and more than 500 non-linear algebraic non-linear equations

• Software implementation: Matlab&Simulink.• Decentralized PID Control and Model Predictive Control.

Dynamic model of the Rotary Calcium Soda Ash Production

• Number of equations: 7 time and space dependent differential equations and 2 algebraic equations

• Software implementation: Matlab&Simulink.• Controllability analysis. • PID & Model Predictive Control of the product sodium carbonate content

Page 13: simulation and control in chemical enginnering

Mathematical models developedMathematical model of river pollution

• Steady state and dynamic mechanistic model• Time and space dependent differential equations• Software implementation: Matlab&Femlab• Simulation of propagation along the rivers for water soluble pollutants

Dynamic and steady-state model for ethanol-watercontinuous distillation

• Software implementation: ChemCAD, HYSYS, Pro/II, AspenPlus, Aspen Dynamics• Design, control• Comparison of simulation results with real pilot plant data

Mathematical modeling and Simulation of Racemic Calcium Panthothenate Synthesis

• Steady state and dynamic models developed in ChemCAd, HySys, Aspen Plus, PRO/II - models fitted with industrial data

Page 14: simulation and control in chemical enginnering

Industrial Data Acquisition System

• Natural gas, water consumption and steam production monitoring for 6 networked industrial boilers

• Steam consumption management for 20 industrial consumers

• Provides water, natural gas and steam flow, both instant and integrated values on different time intervals

• Generates graphic charts and printable reports with the measured values

• 96 transducers for temperature, pressure and flow measurements for gas, water and steam

• National Instruments SCXI components and LabView software development system

Steam production and management in a thermo-electric station

Page 15: simulation and control in chemical enginnering

Industrial Data Acquisition System


Recommended