+ All Categories
Home > Documents > Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P....

Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P....

Date post: 12-Jan-2016
Category:
Upload: alexia-marshall
View: 214 times
Download: 1 times
Share this document with a friend
18
Simulation of Current Filaments in Photoconductive Semiconductor Switches ambour, H. P. Hjalmarson, F. J. Zutavern and A. Sandia National Laboratories* Charles W. Myles** Texas Tech University 15 th International IEEE Pulsed Power Conference June 16, 2005 * Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under contract DE-AC04-94AL85000. ** Supported in part by an AFOSR MURI Contract
Transcript
Page 1: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Simulation of Current Filaments in Photoconductive Semiconductor

Switches

K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Charles W. Myles**Texas Tech University

15th International IEEE Pulsed Power ConferenceJune 16, 2005

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under contract DE-AC04-94AL85000.** Supported in part by an AFOSR MURI Contract

Page 2: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Outline

Photoconductive Semiconductor Switches (PCSS's)

Lock-on

Collective Impact Ionization Theory

Monte Carlo Calculations

Continuum Calculations

Conclusions

Page 3: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

A PCSS

Page 4: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Lock-on

Characterized by a persistent or 'locked-on' electric field (~5 kV/cm) after laser turn off.

High conductivity state

Always accompanied by the formation of current filaments.

The lock-on field is much lower than the bulk breakdown field for GaAs.

Page 5: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Current Filaments

Page 6: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Bistable Switch

Page 7: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Carrier Distribution Function

Page 8: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Collective Impact Ionization Theory

Inside (high carrier density): the carrier-carrier scattering increases the efficiency of impact ionization for the hot carriers.

Outside (low carrier density): the electric field is too low to create carriers by impact ionization.

Explains highly conductive filaments sustained by a lock-on field lower than the breakdown field.

Page 9: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Monte Carlo Calculations

Determining the distribution function

Ensemble Monte Carlo

Maxwellian

Calculating the rate of change of particle number

kdrrrfdt

dndefectsAugeriiik

31 )(

Page 10: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Evolution to a Steady State Solution(no carrier-carrier scattering)

nnFRdt

dn),(0

Auger

defectsii

defectsAugerii

C

CFCFn

CnCFCnFR

)()(

)(),( 20

Page 11: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Steady State Solution(no carrier-carrier scattering)

Page 12: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Evolution to Steady State Solutions(carrier-carrier scattering included)

nnFRdt

dn),(

defectsAugeriiii

defectsAugerii

CnCnFCFC

CnCnFCnFR

2

10

20

)()(

),(),(

Page 13: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Steady State Solutions(carrier-carrier scattering)

Page 14: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

GaAs

Page 15: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

drtrJtrL

tI

tIRtV

RVtV

np

pDqp

nDqn

qnpnApnnpnBgtp

qnpnApnnpnBgtn

trtrptrn

p

pp

nn

nii

nii

)),(),((J1

)(

:currentcarrier Total

)()(V=tV(t)/

: resistance and tagesupply volpower a of in terms )( tageswitch vol for theequation line Load

)(q

-=

:field electric for theequation sPoisson'

)(

)(

:currents hole andelectron for equationsCurrent

/1)())((/

/1)())((/

:densitiescarrier ),(n intrinsic and ),,( holes ),,( electronsfor equations Continuity

n

00

00

p

n

22

22

i

E

EvJ

EvJ

J

J

Continuum Calculations

Page 16: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Continuum Results

Page 17: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

V0

(KV)

(sec)

VLO

(KV)

50 0 30

50 1x10-9 40

50 1x10-10 no lock-on

50 1x10-11 no lock-on

200 0 40

200 1x10-11 60

Continuum Results

Page 18: Simulation of Current Filaments in Photoconductive Semiconductor Switches K. Kambour, H. P. Hjalmarson, F. J. Zutavern and A. Mar Sandia National Laboratories*

Conclusions

Collective Impact ionization Theory (CIIT) predicts that lock-on will occur in GaAs at a field much less than the intrinsic breakdown field in GaAs, in qualitative agreement with experiment.

CIIT also predicts that the lock-on field will be independent of rise time and that the lock-on current will flow in stable current filaments in agreement with experiment.


Recommended