+ All Categories
Home > Documents > Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy...

Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy...

Date post: 05-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
42
1 Simulations and understanding large-scale dynamos Issues with global models Possibility of smaller scales Consequences of this Magnetic flux concentrations Unusual dynamo effects Axel Brandenburg (Nordita, Stockholm CU Boulder)
Transcript
Page 1: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

1

Simulations and understanding

large-scale dynamos

• Issues with global models

• Possibility of smaller scales

• Consequences of this

• Magnetic flux concentrations

• Unusual dynamo effects

Axel Brandenburg

(Nordita, Stockholm CU Boulder)

Page 2: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

2

Global models suggest

• Distributed dynamo action

– Difference to flux transport dynamos

– Would require smaller turb. diff.

ht=urms/3kf=urmsl/3

• Surface flux from upper layers

– Difference to deeply rooted tube picture

– Surface flux reamplification needed

– NEMPI: works best for large kfHp

• Mostly cylindrical W-contours

– Anti-solar differential rotation

Page 3: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Hanasoge

Page 4: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Do we need to rethink?

• In mixing length theory: l=Hp only hypothesis

– cf. Nick Featherstone’s talk

• Simulations: subgrid scale diffusion, viscosity

• Envisage reasons for (i) smaller scale flows

and/or (ii) deeper parts subadiabatic?

• But depth of convection zone still 200 Mm

Page 5: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Spruit97 A changing paradigm

Page 6: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Entropy rain

Page 7: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Stein & Nordlund (1998) simulations

Filamentary, nonlocal shown: entropy fluctuations pos neg

Page 8: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Tau approximation

upii

sjj

Ncsgu

NSus

/

supijjiiii NcsgSuususu

t

F

/2

i

su

FN

Closure

hypothesis

Page 9: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Deardorff1

Page 10: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Deardorff2

Page 11: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Physical meaning?

lnln/ 1 pcs p

z

S pert coasting…

0 0 , 0 suus zz

Page 12: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Physical meaning?

lnln/ 1 pcs p

z

S

pert

0 0 ,0 suus zz

Page 13: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Why should only the top be unstable

constrad dz

dTKF

const3

16 3

TKe.g. if const

dz

dT

Power law baT 0

nTT ab

13

Polytropic index n

Page 14: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Deeper parts intrinsically stable

nTT ab

13

Polytropic index n

Kramers opacity

(interior): a=1, b=-7/2

n=3.25

Entropy gradient positive (stable) for n > 3/2

Page 15: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Solar opacities

n << -1 n = 3.25

Page 16: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Hydrostatic

reference

solutions

Thickness only

~1Mm

111 KrH

Double Kramers-like

Page 17: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Early work in the 1930s

Page 18: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Original mixing length model

surface interior

unstable

stable

stable

weakly

unstable

Su rms31

conv Fassume

Page 19: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

New solutions

with Deardorff flux

)( adconv F

Dadconv )( F

Entropy gradient

old

new

pd

Td

ln

ln

pp HdzcSd /)(/)/( ad

arXiv:1504.03189v2

Page 20: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

20

Consequences of small scales

• Larger kf less turb. Diffusion: ht=urms/3kf

• Applications to dynamos: stronger, less turb diffusive

– Helps flux transport dynamos

• Two other important effect:

– Lambda effect differential rotation (Co smaller, Ta larger)

– Baroclinic term stronger?

– Negative effective magnetic pressure spots

Page 21: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

21

Flux emergence in global simulations

Nelson, Brown, Brun,

Miesch, Toomre (2014)

Page 22: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

22

3 scenarios

• Rising flux tubes?

• Hierachical convection?

• Self-organization as part

of the dynamo

g.B u.B g.W u.w A.B

Page 23: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Sunspot decay

23

Page 24: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Self-assembly of a magnetic spot • Minimalistic model

• 2 ingredients:

– Stratification & turbulence

• Extensions

– Coupled to dynamo

– Compete with rotation

– Radiation/ionization

24

Page 25: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

25

A possible mechanism

2

2122

312

212

312

21 BBUBUB

const

ijijijjiji BBUU

Breakdown of quasi-linear theory

ReM here based on forcing k

Here 15 eddies per box scale

ReM=70 means 70x15x2p=7000

based on box scale

Brandenburg et al (2011,ApJ 740, L50)

Page 26: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

26

Negative effective magnetic pressure instability

• Gas+turbulent+magnetic pressure; in pressure equil.

• B increases turbulence is suppressed

• turbulent pressure decreases

• Net effect?

Kleeorin, Rogachevskii, Ruzmaikin (1989, 1990)

Page 27: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Sunspot

formation

that sucks

27

Typical

downflow

speeds

Ma=0.2…0.3

Mean-field

simulation:

Neg pressure

parameterized

Brandenbur et al (2014)

Page 28: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Bi-polar regions in simulations with corona

28

Warn

ecke et al. (2

013, A

pJL

777, L

37)

Page 29: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Coronal loops?

Warnecke et al. (2013, ApJL 777, L37)

Page 30: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

First dynamo-generated bi-polar regions

30

Mitra et al. (2

01

4, arX

iv)

Page 31: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Still negative effective

magnetic pressure?

Or something new?

31

Mitra et al. (2014, arXiv)

Page 32: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

Global models

32

Jabb

ari

et a

l. (

20

15

, ar

Xiv

)

Page 33: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

33

New aspects in mean-field concept

buBUEJ

...t JBbu

...... 2

p21

s,,t BqBBqUUuu ijjiijjiji

Ohm’s law

Theory and simulations: a effect and turbulent diffusivity

Turbulent viscosity and other effects in momentum equation

Page 34: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

34

Calculate full ij and ij tensors

• Imposed-field method

– Convection (Brandenburg et al. 1990)

• Correlation method

– MRI accretion discs (Brandenburg & Sokoloff 2002)

– Galactic turbulence (Kowal et al. 2005, 2006)

• Test field method

– Stationary geodynamo (Schrinner et al. 2005, 2007)

JBUA ε

tbuε

jijjijj JB *

turbulent emf

effect and turbulent

magnetic diffusivity

Page 35: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

35

Calculate full ij and ij tensors

JBUA

t

JbuBUA

t

jbubuBubUa

t

pqpqpqpqpqpq

tjbubuBubU

a

Original equation (uncurled)

Mean-field equation

fluctuations

Response to arbitrary mean fields

Page 36: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

36

Test fields

0

sin

0

,

0

cos

0

0

0

sin

,

0

0

cos

2212

2111

kzkz

kzkz

BB

BB

pq

kjijk

pq

jij

pq

j BB ,

kzkkz

kzkkz

cossin

sincos

11311

21

1

11311

11

1

21

1

11

1

113

11

cossin

sincos

kzkz

kzkz

k

213223

113123

*

22

*

21

*

12

*

11

Example:

Page 37: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

37

Kinematic and t

independent of Rm (2…200)

1

frms31

0

rms31

0

ku

u

Sur et al. (2008, MNRAS)

1

frms

2

31

0

31

0

ku

u

Page 38: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

38

Nonlocality: convolution

• Multiplication convolution

• Babcock-Leighton effect is an example

• Sharp structures in mean-field dynamos artifacts

• Convolution in x-space multiplication in k

Page 39: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

39

The 4 Roberts flows

IV flow: negative eddy diffusivity dynamo

But positive diffusion at small scales

Devlen et al. (2013)

Page 40: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

40

Time-delay dynamo for

Roberts II and III flows

xzxzxt BBB 2

2kik decay

oscillatory

With time delay

xzxzxt BtBB 2)(

xzxtxzxt BBBB 2

Page 41: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

41

Time-delay dynamo for

Roberts II and III flows

Rheinhardt et al. (2014)

Growth when

xzxtxzxt BBBB 2

])(1[

)(Re

2

22

k

kk

2/

31

frms ku

Page 42: Simulations and understanding large-scale dynamos · Filamentary, nonlocal shown: entropy fluctuations pos neg . Tau approximation i i p u j j s u g s c N s u S N / i i i j j i p

42

Conclusions • Small scale deep convection

• Deep convective flux: Deardorff

• Thus marginally stable (not unstable)

• Such flows yield weaker turb diffusion

• Favor spot formation by NEMPI

• Dynamo effect from time delay


Recommended