+ All Categories
Home > Documents > SINGLE-STAGE EVALUATION OF HIGHLY-LOADED HIGH …SINGLE-STAGE EVALUATION OF HIGHLY-LOADED...

SINGLE-STAGE EVALUATION OF HIGHLY-LOADED HIGH …SINGLE-STAGE EVALUATION OF HIGHLY-LOADED...

Date post: 18-Jun-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
133
NASA CR-120802 PWA-4186 SINGLE-STAGE EVALUATION OF HIGHLY-LOADED HIGH-MACH-NUMBER COMPRESSOR STAGES IV. DATA AND PERFORMANCE OF HUB-SLIT-SUCTION STATOR November 1971 By G. D. Burger and G. Bogardus Pratt & Whitney Aircraft Division United Aircraft Corporation Prepared for National Aeronautics and Space Administration NASA Lewis Research Center Contract NAS3-10482 L. Reid, Program Manager Fluid System Components Division A. " N NOV197, , (ACCESSO 2(PAGES) C3 (NASA CR OR TMX OR AD NUMBER) THU (CODE) (CAIEGORY) *--E~l- https://ntrs.nasa.gov/search.jsp?R=19710028360 2020-06-25T13:30:32+00:00Z
Transcript
  • NASA CR-120802 PWA-4186

    SINGLE-STAGE EVALUATION OF HIGHLY-LOADED HIGH-MACH-NUMBER COMPRESSOR STAGES

    IV. DATA AND PERFORMANCE OF HUB-SLIT-SUCTION STATOR

    November 1971

    By G. D. Burger and G. Bogardus

    Pratt & Whitney Aircraft Division United Aircraft Corporation

    Prepared for National Aeronautics and Space Administration

    NASA Lewis Research Center Contract NAS3-10482

    L. Reid, Program Manager Fluid System Components Division

    A. " NNOV197, ,

    (ACCESSO

    2(PAGES)

    C3 (NASA CR OR TMX OR AD NUMBER)

    THU

    (CODE)

    (CAIEGORY)

    *--E~l-

    https://ntrs.nasa.gov/search.jsp?R=19710028360 2020-06-25T13:30:32+00:00Z

  • Requests for copies of this report should be referred to:

    National Aeronautics and Space Administration Scientific and Technical Information Facility P. 0. Box 33, College Park, Maryland 20740

  • 1. Report No. 2 Government Accession No 3. Recipient's Catalog No

    NASA CR-120802 1 4 Title and Subtitle 5 Report Date

    SINGLE-STAGE EVALUATION OF HIGHLY-LOADED HIGH-MACH- 10 November 1971 NUMBER COMPRESSOR STAGES 6. Performing Organization Code IV. DATA AND PERFORMANCE OF HUB-SLIT-SUCTION STATOR

    7- Author(s) 8 Performing Organization Report No

    G. D. Burger and G. Bogardus PWA-4186 10. Work Unit No

    9. Performing Organization Name and Address Pratt & Whitney Aircraft Division United Aircraft Corporation 11. Contract or Grant No

    400 Main Street NAS 3-10482 East Hartford, Connecticut 06108 13. Type of Report and Period Covered

    12 Sponsoring Agency Name and Address Contractor Report

    14. Sponsoring Agency CodeNational Aeronautics and Space Administration Washington, D.C. 20546

    6. Supplementary Notes

    Program Manager, L. Reid, Fluid System Components Division, NASA-Lewis Research Center, Cleveland, Ohio

    16. Abstract A single stage compressor with arotor tip speed of 1600 fps and 0.5 hub/tip ratio was used to

    demonstrate the effects of boundary layer suction through slits at the intersection of the stator suction surface and the hub wall. No efficiency benefit was obtained at design speed; 1.5 percentage points improvement was obtained at part speed. Maximum design speed stage efficiency of 82.7 percent was obtained at a pressure ratio of 1.935. Accounting for rotor work on the flow bled through the stator hub slit decreases this efficiency 0.5 percent.

    17 Key Words (Suggested by Author(s)) 12 Drstribution Statement

    Boundary layer suction Unclassified - unlimited

    Stator hub slit

    19. Security Classif. lof this report) 20 Security Classif. (of this page) 21. No. of Pages

    Unclassified Unclassified 133

    *For sale by the National Technical Information Service, Springfield, Virginia 22151

    22 Price*

    3.00

  • PRECEDING PAGE BLANK NOT FILMED

    FOREWORD

    The work described herein was done under NASA Contract NAS3-10482 by Pratt & Whitney Aircraft Division of United Aircraft Corporation, East Hartford, Connecticut. Mr. L. Reid, NASA - Lewis Research Center, Fluid System Components Division, was Project Manager. The work was performed during the period 7 January 1971 through 4 March 1971.

  • ?REiCMING PAGE BLANK NOT FILMED

    TABLE OF CONTENTS

    Page

    Foreword iii List of Illustrations vi List of Tables viii

    I. Summary I

    II. Introduction 3

    III. Apparatus and Procedures 4 A. Test Compressor 4 B. Instrumentation and Calibration 5 C. Test Procedure 5

    1. Shakedown Test 5 2. Performance Test 6

    D. Calculation Procedure 6

    IV. Results and Discussion 7 A. Shakedown Test Results 7 B. Performance Test Results 7

    1. Overall Performance 7 2. Blade-Element Data 9 3. Contour Plots of Stator Exit Traverse Data to

    a. Total Pressure Ratio 10 b. Total Temperature Ratio 10 c. Air-Flow Angle 11 d. Static Pressure Ratio 11 e. Meridional Velocity 11

    V. Remarks 12

    References 13 Appendix 1 Performance Parameters 69 Appendix 2 Symbols 73 Appendix 3 Blade-Element and Overall Performance with Stator

    Hub Slit Suction 77 Appendix 4 Blade-Element and Overall Performance without Stator

    Hub Slit Suction 115 Distribution List 121

    V

  • LIST OF ILLUSTRATIONS

    Figure Title Page

    I Cross Section of Test Compressor 14

    2 Boundary Layer Suction Slits at Stator Hub 15

    3 Assembled MCA Rotor 16

    4 Schematic of Compressor Test Facility 16

    5 Typical Instrumentation 17

    6 Axial Station Number Designation and Location of Instrumentation 18

    7 Circumferential Location of Instrumentation, Viewed from Rear 19

    8 Oscillograph Trace of Typical Surge Cycle 20

    9 Stage Overall Performance 21

    10 Rotor Overall Performance 22

    11 Effect of Stator Leading Edge Probe Blockage at Design Speed 22

    12 Rotor Blade Element Performance with Stator Hub Slit Suction 23-31

    13 Stator Blade Element Performance with Stator Hub Slit Suction 32-40

    14 Effects of Stator Hub Slit Suction on Loss Coefficient 41-43

    15 Effects of Stator Hub Slit Suction on Gapwise Distributions of Total Pressure, Temperature, and Efficiency, 70 Percent Speed 44-45

    16 Effects of Stator Hub Slit Suction on Gapwise Distributions of Total Pressure, Temperature, and Efficiency, Design Speed 46-47

    17 Efficiency Comparison of Free Stream Total Pressure versus

    Free Stream Efficiency Calculation Methods 48

    18 Total Pressure Ratio 49-52

    19 Total Temperature Ratio 53-56

    20 Absolute Air Angle 57-60

    vi

  • LIST OF ILLUSTRATIONS (Cont'd)

    Figure Title Page

    21 Static Pressure Ratio 61-64

    22 Meridional Velocity 65-68

    vii

  • LIST OF TABLES

    Number Title Page

    1 Overall Performance Comparison with and without Slit Suction 1

    2 MCA Rotor and Stator Design Parameters 4

    3 Summary of Stall Weight Flows 8

    4 Identification of Blade-Element and Overall Performance Table Headings 77

    5 Blade Element and Overall Performance Design Data 78

    6 Blade Element and Overall Performance with Stator Hub Slit Suction, 100 Percent of Design Speed, Points 1-8 79-86

    7 Blade Element and Overall Performance with Stator Hub Slit Suction Free Stream Efficiency Method, 100 Percent of Design Speed, Points 1-5 87-91

    8 Blade Element and Overall Performance with Stator Hub Slit Suction, 95 Percent of Design Speed, Points 1-3 92-94

    9 Blade Element and Overall Performance with Stator Hub Slit Suction, 90 Percent of Design Speed, Points 1-6 95-100

    10 Blade Element and Overall Performance with Stator Hub Slit Suction, 85 Percent of Design Speed, Points 1-3 101-103

    11 Blade Element and Overall Performance with Stator Hub Slit Suction, 70 Percent of Design Speed, Points 1-5 104-108

    12 Blade Element and Overall Performance with Stator Hub Slit Suction, 50 Percent of Design Speed, Points 1-5 109-113

    13 Blade Element and Overall Performance without Stator Hub Slit Suction, 100 Percent of Design Speed, Points 1-3 114-116

    14 Blade Element and Overall Performance without Stator Hub Slit Suction, 70 Percent of Design Speed, Points 1-3 117-119

    viii

  • I. SUMMARY

    A compressor stage with a rotor tip speed of 1600 ft/sec, high blade loadings, and boundary layer suction through a slit in the corner formed by the stator suction surface and the hub wall was tested. Both rotor and stator blades had multiple circular arc (MCA) airfoil sections. The stator chord angle was set 4 degrees more axial than design, to increase incidence for the purpose of evaluating the effect of slit suction on stator flow range.

    Overall performance at design speed for data points with stator hub slit suction is compared to data without slit suction in Table 1. Two values of stage efficiency are given, the values in parenthesis were calculated using a procedure which accounts for the flow bled through the boundary layer suction slit. Comparison of data taken with and without slit suction showed that suction improved efficiency at maximum flow, part speed, but had little effect near stall. No significant increase in stage efficiency was obtained at design speed. Flow range from maximum flow to stall was not affected by slit suction. Slit suction reduced stator losses at 5, 10, and 15 percent span from the hub. Stator wakes were narrower and shallower with suction.

    TABLE 1

    OVERALL PERFORMANCE COMPARISON WITH AND WITHOUT SLIT SUCTION

    (DESIGN SPEED)

    Near-Stall Near-Stall Max Efficiency Max Efficiency Data Point Data Point

    Data Point Data Point Without With Parameter Without Suction With Suction Suction Suction

    Corrected Weight 181.03 179.58 173.09 173.58 Flow, lb/sec

    Rotor Pressure 1.906 1.935 2.003 2.033 Ratio

    Rotor Efficiency, 87.3 87.6 85.8 86.5 Percent

    Stage Pressure 1.842 1.871 1.908 1.937 Ratio

    Stage Efficiency, 82.3 82.7 79.2 79.9 Percent (82.2) (79.4)

  • Contour plots were prepared for pressure, temperature, velocity, and air angle at the statorexit instrumentation plane with stator hub slit-suction. Contour plots showed that stator losses were concentrated in corners where the stators intersected the endwalls, and'that these loss areas grew with increased back pressure. Increased back pressure caused more severe total pressure gradients in the wake region although wake width remained approximately constant.

    No stress limits were encountered during the test program. Rotating stall surveys showed that abrupt stalls occurred at all speeds with indications of rotating stall initiating a surge cycle.

    2

  • II. INTRODUCTION

    Recent results from research compressors have shown that compressor rotors can be designed to operate with high aerodynamic blade loading and/or high inlet relative Mach number and still achieve good efficiency (85 to 94 percent) with acceptable stall margin (12 to 15 percent). However, there is a severe penalty on stage efficiency due to high stator losses. The major portion of the high loss region occurs in the vicinity of the stator end-walls. Therefore, no appreciable overall gains in stage performance can be made without reducing the level of losses in the stator end-wall regions. In addition to high stator losses, in many cases the stall free range of the compressor stage is limited by stator stall. Slit-suction is one type of endwall treatment that has shown some degree of success in reducing stator end-wall losses in cascades (Reference 2) and single stage compressors (Reference 3).

    As part of Contract NAS3-10482, a stator end-wall treatment program was initiated to investigate the effectiveness of various types of end-wall treatments on reducing stator losses and increasing the stator stall free range of operation. The single stage compressor used in this investigation is the same as presented in Reference 1 with stator hub-slit-suction added. In order to evaluate the effect of end-wall treatment on stator range, the stator vanes were restaggered four degrees open (increased incidence) with respect to the design stagger. This compressor has a design rotor tip speed of 1600 ft/sec and demonstrated a rotor pressure ratio and efficiency of 2.0 and 89 percent respectively, and a stage pressure ratio and efficiency of 1.946 and 84.5 percent respectively.

    The purpose of this report is to present the results of stator hub slit-suction applied to a high Mach number highly loaded single stage compressor.

    3

  • III. APPARATUS AND PROCEDURE

    A. Test Compressor

    The compressor (Figure 1) is a highly-loaded, high-Mach-number, single stage with no inlet guide vanes, 30 MCA rotor blades and 44 MCA stator vanes. It is identical to the compressor of Reference 1 except for the addition of stator hub-slit-suction shown in Figure 2, and a stator restagger of four degrees to increase incidence so that the effects of slit suction on stator flow range could be evaluated. The rotor is the same one tested in Reference I except that blades tips were machined to remove results of tip abrasion, and leading edges were blended to remove nicks resulting from a bearing failure in a previous test. Extra material (0.030 inch) was added to the rotor shroud rub-strip to provide an acceptable blade tip clearance without changing the axial location of the rotor relative to the stator. Proximity measurements indicated that the rotor running clearance was 0.063 inch at design speed, compared with 0.050 inch in the test results reported in Reference 1. Rotor and stator design parameters are summarized in Table 2. The rotor assembly is shown in Figure 3. Complete design details are given in Reference 4.

    TABLE 2

    MCA ROTOR AND STATOR DESIGN PARAMETERS

    Rotor - Stations 8 and 9

    %Span Dia- 1 Dia 2 3*8 P*9 * 8ss 3*sh Solidity

    5 (hub) 17.47 19.77 48.97 1.87 55.40 45.74 2.276 10 18.47 20.41 49.59 9.63 56.02 46.76 2.173 15 19.47 21.05 50.44 16.51 56.59 47.76 2.080 30 22.31 22.96 53.77 29.73 57.87 50.53 1.855 50 25.79 25.52 56.40 42.30 59.30 54.68 1.638 70 28.95 28.08 59.08 50.53 61.07 59.17 1.476 85 31.29 29.99 61.63 54.11 62.96 63.01 1.379 90 31.88 30.63 62.53 55.10 63.65 64.18 1.355 95 (tip) 32.50 31.27 63.21 55.84 64.14 64.96 1.332

    Stator - Stations 10 and 11

    %Span Dia- 1 Dia- 2 f3 10 3"11 3o10ss 13sh Solidity

    5 (hub) 20.41 21.49 39.23 -16.41 42.15 34.47 2.010 10 21.01 21.96 38.27 -15.44 41.21 32.62 1.959 15 21.59 22.43 37.42 -14.89 40.36 30.94 1.911 30 23.31 23.90 35.44 -15.22 38.44 27.18 1.781 50 25.60 25.89 33.60 -16.04 36.72 24.01 1.632 70 27.82 27.90 32.45 -17.48 35.68 22.38 1.508 85 29.41 29.38 32.12 -19.91 35.44 22.82 1.430 90 29.91 29.86 32.15 -21.40 35.48 23.36 1.407 95 (tip) 30.38 30.29 32.33 -23.69 35.69 24.40 1.387

    NOTE: Symbol definitions appear in Appendix 2.

    4

  • The suction slit design was based on data reported in References 2 and 3 which showed that end-wall-region cascade losses were reduced significantly by extracting small amounts of flow through a slit at the intersection of the wall and blade suction surface. These data showed that most of the attainable benefit was obtained by extracting the corner flow passing through the area common to the boundary layer displacement thickness growth on the vane surface and the wall.

    The stator hub slit extends from 15 to 85 percent chord and is .025 inch wide. Design flow rate through the slits is 0.30 percent of compressor design flow. Slit suction design details are given in Reference 4.

    Suction for stator hub slits was provided by test facility exhaust pumps. The stator hub slit suction plenum is evacuated using four hollow struts just upstream, and in line with the rear bearing support struts. Suction flow through these struts is measured using a common calibrated flow measuring orifice (Figure 4). Other facility hardware was the same as described in Reference 1.

    B. Instrumentation and Calibration

    Static pressure in the plenum beneath the suction slits was measured by three pressure taps, and the plenum temperature was measured by three bare-wire thermocouples. Slit-suction flow rate was measured by a 3.297 inch sharp-edge orifice (Figure 4) within an estimated accuracy of ± .03 lb/sec flow. Hot film probes are used to detect rotating stall. Other instrumentation is described in Reference 1. Typical instrumentation is shown in Figure 5. Axial and circumferential locations of instrumentation are shown in Figures 6 and 7, respectively.

    C. Test Procedure

    All testing was conducted with uniform inlet flow. Stator hub slit suction was used for all tests unless otherwise noted.

    1. Shakedown Test

    Shakedown tests were conducted to establish the mechanical integrity of the compressor and to locate critical stress boundaries which could limit the operating range. Vibratory stresses were recorded during accelerations and decelerations from 50 to 105 percent of design speed with open throttle, part-throttle, and near stall throttle settings. All fixed instrumentation and wake rake traverse data were recorded at the beginning and end of each constant throttle acceleration to provide three data points at 50 percent and at 100 percent speed. At design speed, one performance data point was acquired which included traverse data at all stations to verify the hub-slit-suction flow rate and demonstrate the operation of data acquisition and reduction systems.

    Rotating stall surveys were conducted at 50, 70, 85, 90, 95, and 100 percent of design speed. Velocity fluctuations at the rotor inlet were indicated by a hot film

    5

  • probe with three sensors located at 25, 50, and 85 percents of span from the hub (Figure 5f). Readings from this probe along with selected rotor and stator strain gages, a speed signal, and a stator leading edge static pressure were recorded simultaneously as the throttle was closed from wide open to stall. Several surge pulses were recorded for each stall-transient survey.

    2. Performance Test

    Performance data with stator hub slit suction were obtained at 50, 70, 85, 90, 95, and 100 percent of design speed for a total of 30 points.' In addition stall flows were measured for all speeds. Traverse data were taken at nine diameters at the rotor-inlet and stator-exit for 26 of the data points. For the remaining four data points, boundary layer surveys were conducted at fifteen radial positions for all probes. Stator-inlet probes were traversed for these four points, in addition to the rotor inlet and stator exit probes. One combination probe (shown in Figure 5c), at the stator exit was tangentially traversed across a stator blade gap at fifteen radial locations to supplement the wake rake data. Three of the boundary layer survey points were acquired at design speed, part throttle, peak efficiency, and near stall. The fourth point was acquired at 70 percent speed, near stall flow.

    Six additional performance data points, three at 70 and three at 100 percent of design speed were taken, without stator hub-slit-suction to isolate the effects of suction on performance. All radial traverse data were obtained for these six performance points including stator inlet traverses. Stall flow was measured at 100 percent speed without slit suction.

    D. Calculation Procedure

    The calculation procedure was the same as discussed in Reference 1 for uniform inlet flow conditions with an additional adjusted efficiency calculation which accounts for the stator hub-slit-suction flow.

    Adjusted efficiency was defined as the ratio (ideal work/actual work) where ideal work was calculated for only the flow which reached the compressor exit, and actual work as the sum of work done on the bleed flow in addition to work done on compressor exit flow. The actual work term does not account for the work required by the facility exhausters. The equation of this adjusted adiabatic efficiency is given in Appendix 1. Adjusted efficiency values are tabulated for each data point in Appendix 3.

    For the boundary layer survey points, overall performance and blade element calculations were made using the wake rake data and contour plots of various stator aerodynamic parameters were generated from combination probe measurements. Velocities were calculated from combination probe measurements of total and static pressure, total temperature, and air angle in the following manner: 1) Measurements of total and static pressure were used, with a probe calibration, to determine Mach numbers; 2) Total temperature measurements were corrected for Mach number and pressure level effects and used with Mach number to calculate absolute velocities; 3) Measured air angles were corrected for Mach number effects and used to resolve meridional and tangential velocity components.

    6

  • IV. RESULTS AND DISCUSSION

    A. Shakedown Test Results

    Levels of vibratory stresses on the blades and vanes were recorded during accelerations and decelerations between 50 and 105 percent of design speed with wide open throttle, and near stall throttle settings. All observed blade and vane vibratory stress levels were within acceptable limits.

    Surge occurred at all speeds. This was determined from continuous recordings of signals from a three-sensor hot film probe at the rotor inlet, from strain gages, and from static pressures located along the flow-path walls. At high speeds, these measurements showed large fluctuations in velocity simultaneous with high vibratory stresses in rotor and stator blades, and static pressure variations. Periodic fluctuations in velocity indicated that rotating stall occurred at the beginning of the surge cycle.

    An oscillograph trace at 90 percent speed (Figure 8) shows a representative velocity pattern for all stalls. Velocities at midspan and hub decreased at surge whereas tip velocities increased. The period of the surge-pulse was approximately 0.13 seconds. The recovery period between surge pulses varied with speed, ranging from 1.05 seconds at design speed down to 0.11 seconds at 50 percent speed. At 50 percent speed, static pressure variation, velocity fluctuations, and vibratory stresses were small.

    As flow was reduced at a given speed, rotor and stator vibratory stresses increased sinmultaneously, so that it was not clear which blade row stalled first.

    B. Performance Test Results

    1. Overall Performance

    Overall performance of the rotor and stage with and without stator hub-slit-suction is presented in Figures 9 and 10. The stall line was established by extrapolating the characteristic speed lines to measured stall airflows, shown as slashed symbols on the figures. Stall flows are tabulated in Table 3. A maximum stage efficiency of 82.7 percent was achieved at design speed with slit suction at a pressure ratio of 1.871 and a corrected weight flow of 179.6 lb/sec. This efficiency drops to 82.2 percent when it is adjusted for the work done by the rotor on the hub-slit-suction flow. The same peak efficiency was recorded without slit suction. Efficiencies which have been adjusted to account for suction flow are shown in the upper efficiency scale in Figure 9. Rotor efficiency for the same data point with slit suction is 87.6 percent at a pressure ratio of 1.935. This rotor'efficiency is 1.5 percentage.points lower than the maximum rotor efficiency obtained at design. speed in the test of Reference 1. The difference may be attributed to any or all of the five changes in apparatus between this test and that of Reference 1; i.e. (1) increased rotor tip clearance, (2) decreased rotor inlet annulus area due to rotor tip fill, (3) the restaggered stator, (4) blended out nicks in slightly damaged rotor blades (Figure 3), and (5) upstream effects of stator hub slit suction.

    7

  • TABLE 3

    SUMMARY OF STALL WEIGHT FLOWS

    Percent With Stator Design Speed Hub-Slit-Suction

    50 74.2

    70 109.8

    85 138.8

    90 150.2

    95 161.3

    100 173.3

    Maximum adjusted stage efficiency with stator hub-slit-suction was 85.8 percent and occurred at 50 percent of design speed. For 70, 85, 90,and 95 percent design speed the maximum adjusted stage efficiency was approximately 84.5 percent. Anet adjusted stage efficiency benefit of 1.5 percent was obtained with hub-slitsuction at 70 percent speed for the maximum flow condition, but no effect was seen at other speeds.

    The lower pressure ratio seen near stall at design speed without stator hub-slitsuction (Figure 9) is probably due to blockage effects caused by stator leading edge transverse probes. These probes were not traversed during hub-slit-suction tests except for the boundary layer points. Evidence of traverse probe blockage at design speed is shown in Figure 11. Spanwise profiles of pressure ratio for two points with slit suction and no stator leading edge probes are compared to two points with stator leading edge probes, one with slit suction and one without slit suction. Spanwise pressure ratios agree well for the two points which include stator leading edge probe traverses except at the root where slit suction improvement is expected. These same points show a lower pressure in the tip region when compared to the points without stator leading edge probe traverses. This probe blockage effect on pressure ratio was not seen at 70 percent speed, where the stator inlet Mach number did not exceed 0.76.

    Overall stator recovery (P /P10 ) listed for points with and without slit suction in Poo

    Appendices 3 and 4 as O) gives a direct measure of the effect of stator hub-slit-LOCAL

    suction. Slit suction increased stator recovery for the peak efficiency point at design speed from .968 to .974. It must be remembered that this recovery increase with suction is gained at the expense of approximately a half percent in stage efficiency to account for the work done on the bleed flow.

    8

  • Rotor performance for this test differed considerably from that achieved in the test of Reference 1. Maximum efficiency at design speed was 1.5 percentage points lower for this test as mentioned previously while pressure ratio was generally lower except near stall. At lower speeds, pressure ratios were slightly higher for this test at higher flows although near stall values were the same. Efficiency values were 0 to 5 percentage points higher at lower speeds for this test. Gains were largest at maximum flow points with no significant change near stall. Part of the difference may be due to measured wake rake total pressure readings which showed one rake consistently higher than the other although no reason could be found to dispute the data.

    2. Blade Element Performance

    Blade element total pressure loss coefficient, diffusion factor, and deviation versus incidence angle are presented for both rotor and stator in Figures 12 and 13 for the performance test with slit suction. These data are tabulated in Appendix 3. Although overall performance benefits obtained by the addition of stator hubslit-suction were small, suction did reduce losses at 5, 10, and 15 percent of span from the hub for both 70 and 100 percent speeds. Figure 14 presents plots of stator blade element diffusion factor and total pressure loss coefficient versus incidence angle at these three spans for test points with and without slit suction. At 5 percent span from the hub, slit suction reduced the losses over the entire incidence range for 70 and 100 percent design speed. At 70 percent design speed the losses were reduced approximately 23 percent at the near stall incidence angle and 50 percent at the maximum flow incidence angle. At 100 percent design speed the losses were reduced approximately 18 percent at the near stall incidence angle and 29 percent at the maximum flow incidence angle. This effect diminishes outward from the hub until the effects are insignificant outboard of 15 percent span from the hub. Complete blade-element performance data for points without stator hub-slit-suction are tabulated in Appendix 4.

    Gapwise distributions of stator exit total pressure, temperature, and adiabatic efficiency clearly show a narrower and shallower wake with slit suction. Figure 15 presents distribution at 5 percent span from the hub for open throttle and near stall data points at 70 percent speed showing that the effect of suction is much stronger at the maximum flow condition than at the near stall point. At design speed (Figure 16) the effect is of the same magnitude as at 70 percent speed near stall regardless of throttle setting. Slit suction effects on the total pressure and temperature wake distributions disappear above 15 percent of span from the hub. The increase in temperature in the wake region without suction may be caused by a redistribution of flow through the stator as a result of higher stator hub losses causing the stator to operate at a higher inlet pressure in the hub region. This would back pressure the rotor hub causing an increase in energy at the rotor hub. Another explanation is that enough high temperature air is being bled through the stator slits with suction to cause a lower temperature reading at the hub. The temperature ratio of the flow in the suction slit plenum is approximately .01 higher than the temperature ratio at 5 percent span from the hub at design speed.

    9

  • This is the magnitude of the change seen in gapwise pressure profiles between suction and non-suction data points.

    Rotor performance was calculated using stator-exit free-stream total pressure obtained from the peak wake rake reading at each radial location. Design speed data were also reduced using the stator-exit free-stream efficiency method, as discussed in Reference 1, to determine rotor performance. Figure 17 shows the rotor overall efficiency comparison for the two methods at design speed and shows the spanwise efficiency distribution for the peak efficiency point at design speed. Blade-element performance of thetrotor and stator at design speed, using the freestream efficiency method is given in Table 7, Appendix 3. The free-stream efficiency method gave lower rotor hub efficiencies which resulted in slightly lower overall rotor efficiency for the same stage efficiency.

    3. Contour Plots of Stator Exit Traverse Data

    Tangential traverses were made at the stator exit for part throttle, maximum efficiency, and near stall points at design speed and at near stall for 90 percent speed with stator hub-slit-suction. Measurements of total and static pressure, total temperature, and absolute air angle were obtained at 4.3, 5.8, 7.0, 9.7, 12.2, 15, 30, 50, 74, 90, 94, 97, 98, and 99.5 percentages of passage height from the hub. A fifteenth radial position was intended closer to the inner case but was not obtained due to an incorrect probe. depth setting. - Tangential spacing gave 15 readings across a stator gap at 90 percent span and 11 readings at 4.3 percent span. These measurements were used to calculate velocity vectors, and to construct contour plots showing patterns of P/Pinlet, T/TinletI airflow angle, and Vm /\/0-7 at the stator-exit instrumentation plane. These contours are shown in Figures 18 through 22.

    a. Total Pressure Ratio

    Low pressure areas in the vicinity of the stator hub suction surface no longer exist as they did in Reference 5, possibly as a result of slit suction. Lowpressure areas in the tip region are still present.

    Areas of strong gapwise gradients exist near both walls, Figure 18, and progress toward midspan as back-pressure is increased. At midspan the wake width increases slightly and the pressure gradient in the wake region becomes stronger with increased back-pressure. High pressure regions near the intersection of the stator pressure surface and the hub wall may be due to rotor wake flow migration to the stator pressure surface, as explained in Reference 6. Rotor work changes, due to locally high back-pressure ahead of the stator, may also cause gapwise total pressure variations in addition to stator losses.

    b. Total Temperature Ratio

    Total temperature plots (Figure 19) show endwall gradients similar to the total pressure plots, indicating that rotor-wake separation or rotor back

    10

  • PRATT & WHITNEY AIRCRAFT

    pressure patterns cause gapwise variations in both parameters. Both hub and tip endwall regions have a .03 to .04 drop in temperature ratio from the stator pressure to suction surface at design speed regardless of back-pressure. Matching total pressure and temperature profiles led to the free stream efficiency method for calculating stator-inlet average total pressure, Reference I No consistent temperaturepattern is seen at midspan but gapwise gradients tend to occur in the wake region.

    C. Air-Flow Angle

    Gapwise variations in air-flow angle were measured in the wake region at all spans (Figure 20). Studies have shown that the small (±10 degrees) angle variations indicated by the probe at midspan and hub can be attributed primarily to the large total pressure gradients in the wake region because sidehole pressures on a wedge probe tend to turn it in the direction of the higher total pressure. Steeper angle variations in the tip endwall region indicate a vortex formation downstream of the intersection of the wall and stator blade.

    d. Static Pressure Ratio

    Gapwise gradients of static pressure were weak (Figure 21) although showing a wake pattern similar to the total pressure wake. Measured static rise across the wake is probably all due to the total pressure gradient forcing the probe to yaw and measure part of the velocity head with the side holes. Pressure increased with radius probably as a result of streamline curvature as the upstream hub convergence blends into a constant diameter wall.

    e. Meridional Velocity

    Meridional velocity contours (Figure 22) follow the patterns of the total pressure contours because static pressure variations are relatively small, and air angle does not vary enough to have a significant effect. Increasing backpressure enlarges the comer stall region near the tip but does not appear to thicken the wall boundary layer.

    11

  • V. REMARKS

    Stator hub-slit-suction caused a reduction in hub losses for this test out to 15 percent span from the hub, maximum effect occurring at 5 percent span from the hub. These local benefits were not enough to influence the total stator losses appreciably so that overall stage efficiency benefits were slight. No adjusted efficiency benefit was seen at design speed, while the maximum benefit was 1.5 percentage points at 70 percent speed, maximum flow conditions. Similar loss reductions were seen during the test of Reference 3 with slit suction although the influence reached to 30 percent span from the hub. Stator hub recovery had more effect on the efficiency of the compressor in the test of Reference 3 than in this test so that the overall benefit was about 1.5 percent in unadjusted stage efficiency at design speed.

    No stall line improvement was seen with slit suction in this test where results from hot film probes and strain gauges were inconclusive as to which blade now stalled first. It is believed that the stage stall isinitiated by rotor stall even though the stator was restaggered four degrees open (4 degree increase in stator incidence angle).

    The results of this test and those of References 3 and 7 show that hub-slit-suction effects are local and only benefit overall performance when the stator hub has very high losses. These local effects may be quite significant, however, in high bypass ratio engines where most of the flow into the engine comes from the high loss fan hub region.

    12

  • REFERENCES

    1. Sulam, D. H., Keenan, M. J., and Flynn, J. T., Single-Stage EvaluationofHighly-Loaded, High-Mach-NumberCompressorStages, Dataand Performan~eReport,MultipleCircular-ArcRotor,NASA CR-72694, PWA-3772, 1970.

    2. Peacock, R. E., Flow Controlin the Comers of Cascades,A. R. C. 27291, October 1965.

    3. Harley, K. G., and burdsall, E. A., High-LoadingLow-Speed Fan Study, Dataand PerformanceReport, Unslotted Blades and Vanes, NASA CR-72667,,PWA-3653, 1969.

    4. Monsarrat, N., Keenan, M. J., and Tramm, P. C., DesignReport, Single-S tage Evaluation ofHighly-Loaded,High-Mach-NumberCompressorStages, NASA CR-77562, PWA-3546, 1969.

    5. Burger, G. D., and Keenan, M. J., Single-Stage EvaluationofHighly Loaded, High-Mach-Number CompressorStages, Dataand PerformanceReport,Tandem Rotor,NASA CR-72772, PWA-3954, 1971.

    6. Keerebrock, J. L. and Mikolajczak, A. A., Intra-StatorTransportofRotor Wakes and Its Effect on CompressorPerformance,American Society of Mechanical Engineers, Paper No. 70-GT-39, 1970.

    7. Harley, K. G., Harris, J., and Burdsall, E. A., High-LoadingLow-Speed FanStudy, Data andPerformanceReport, Slotted Blades and Vanes and Rotor Tip Treatment,CR72895, PWA-3899.

    13

  • MAIN RIG SUPPORT ROLLER BEARING TO DRIVE ENGINE CASE

    DRIVE SHAFT TO DRIVE ENGINE GEARBOX

    THRUSTS

    ONT BEARING---,

    SPPORT 30 ROTOR --BLADES

    VANES

    4 STATOR HUB SLIT PLENUM MANIFOLDS

    Figure 1 Cross Section of Test Compressor

  • STATOR OUTER CASE

    STATOR INNER

    SLTBLE AIRFLOWO.01T"WIDE

    Figure 2 Boundary Layer Suction Slits at Stator Hub (XPN-16602)

    15

  • Figure 3 Assembled MCA Rotor (XPN 16597)

    VALVE (24 INCH DIA) -'- a I-r - - VALVE (12 INCH DIA)

    CALIBRATED ORIFICE

    VALVE 16FT DIAlDRIVE ENGINE

    EXHAUST STACK

    COMPRESSOR TO EXIHAUSTERSDISCHARGE EXHAUSTr HUB.SLIT.SUCTION STCK FLOW SUPPLY

    "J - 42-INCH DIA PIPE, BYPASS PIPE BYP SS IPEPILENU MACH" A R 7 FEET LONG

    90)INCH DIA C FCAIBRATEDNOZZLE

    FLOW STRAIGHTENER SCREEN

    TURBINE DRIVE ENGINE GEARBOX TES COMPRESSR

    TOROIDAL COLLECTOR

    Figure 4 Schematic of Compressor Test Facility

    16

  • XP-99889 XPN-1815 (a) (b)

    RADIAL TRAVERSABLE TOTAL PRESSURE

    RAKE RAKE TEMPERATURE

    \

    XP-1928S XP-99893 (f)

    HOT TRAVERSABLE FILM DISK PROBE PROBE

    (e)

    XP-99886 XPN-660 (C) (d)

    TOTAL COMBINATION PRESSURE PROBE RAKE

    XP-19286

    Figure 5 Typical Instrumentation

    17

  • STATION NO. 0

    STATION NO. 1

    -24

    NO. 1.1 -20

    -16 NO. 2

    -12 NO. 3

    -b NO. 4

    U)

    X -4 C-z NO. 5

    0-NO. 6

    CPLANE LU,-I NO. 7

    wROTOR.7 - NO.8 a

    Xc 8IC

    NO. 9

    12 - NO: 1

    NO. 11S C - T NO. 12

    16 -o> -o NO. 1STATOR

    NO 13.1 NO. 1420 r

    C 9

    24 'O.N 15

    28

    12 16 20 24 28 32 36 38

    DIAMETER - INCHES

    PLENUM CHAMBER SCREEN

    INSTRUMENTATION PLANE

    INSTRUMENTATION

    ROTOR LEADING EDGE(SLANT STATION)

    ROTOR TRAILING EDGE (SLANTSTATION)STATOR LEADING EDGE

    TRAILING EDGE

    INSTRUMENTATION PLANE

    INSTRUMENTATION PLANE

    Figure 6 Axial Station Number Designation and Location of Instrumentation

    18

  • O °

    21.7 ° 0

    4 62.8e6

    87

    . 7

    STATION NO. STATION 10 SYMBOLS

    STAIo PO.WAL1STTIC

    332.296.5.2 °

    282.270--

    341.67 ° 24.5e

    069.97

    7.53 o 85.920

    56.4

    85,92 °

    0*

    30 0

    60

    *

    "

    TT FIXED TEMPERATURE RAKE

    DISK TRA VERSE PROBE

    PTWAKE RAKE

    PT FIXED WAKE

    D ISRA E R

    26&"920

    2505°0', 2.9

    -

    21045ISU0204 .5 16 .33,

    102,270

    152.37 °

    12

    COMBINATION PROBE

    HOT FILM MASS FLOW SENSOR

    PsTT SUCTION

    PLENUM

    STATION 12 STATION 13.1 STATION 16

    Figure 7 Circumferential Location of Instrumentation, Viewed from Rear

  • SURGE CYCLE

    SURGE PULSE

    > w

    PERIOD OF ROTATING STALL

    -I >

    >w

    LwUJ -

    I STATIC PRESSURE 'ONE PER

    0.01 SEC. DIRECTION OF INCREASING TIME

    Figure 8 Oscillograph Trace of Typical Surge Cycle

    S .4 j

  • 90 ......... .. . o .. o... . .. . .. .... o o.... o . . . . .• . . .• . . . o o . * .

    .. ..t..o.... +::.: ::--~~ .. . . .............. . .. .o

    .... .. o o - o. .. . .o ...... .. .....

    . ........ ... o.. . .o , .. . • .. . . . o o o . . . , o . . . . •70 V .. .... ..... .V7 .. ... o: ,.o: o..!+o.+•. . ..•. o90 v

    o . . .•... .. ...o .... . .. •. .. . .. o . . o .. o ... .. o.. .o ~ . LoUo o~ .. . o ... .. . . ... . ... .. . . .o. . .o .

    z80

    L,

    • .•o ~ o. .. o o .. .. ... .. .. • .. .. . ... ... . • o •o ....

    .o. . • o .... .. o • • , ,o ,.. ... ..•o• .....

    .... ..... ..70 ++o • . • o . ..o.. . . .. •: : - - : .. . ... . . .... . . . o oo •o

    ................. .. ......... o..... .....

    . ..... . . . . o . .o+. ........ . . .. . . . o. .... ....... ... .. . .. ........ .

    o--o -o--* -o+ ~~. . o .. o . o . . ...o- . ... •..... . ... . ...SYMBOLS-.IT.OPEN SLITSUCTION :............ ... .-... -.o. .. .... . • o o o oo. . . . . .o .......

    o o~ ..o • .. . . .. . ... . ..... • + , .... . . : o . o o .o.SYMBOLS. oSLIT.SUCTION ..... . .....•..CLOSED NO o ••. * • . . .... ° . .. ... . .; : . + • . . : • .... . 2...o............................

    CC 1.6 ... ... ...... .. o . .. o o.o.. . + . . o . .... .;.... ;;.

    . 0...o .. o~~~ •o + o~.... ........~~~ .. o• o..

    .. o~ ~ ~ . ~~. . .. o •. ...... ......o .....

    .. ::. . ': :: .. i : E'i ii ': :. . 0 .'i.i~.i.i :i i'i i~ :: .. V.+

    0L .. .., .. . ... . . ~ . + ~ . , o . .o • . . . . .•.. .. .o . . "°••'°'°~~~~~ ~~~~~ . ... i'... .. °..... o..oo.,.o.o..o •. 1: .. o .........o o .+.o ..,. ... .. .. ..... . oo...o..

    ... , .. ......o o , o , .o . o+ ...... .+ +. . ? ! : *!.... D.W .IGT L ... o o o L.oCO . .C . W. o ........ i.." ~. ..

    • ,---o. . .o....... ,.....o....o...o...o

    ... .. o. o. •.•....o . .o .• . .. .. . o ...... .. . . . . . . .1 .

    ... .. . . . .. .. ..r ...' ...... .. . . ...... . .... ....... .... .... .... ..... . . . ..... . . ... .................... .....,...............709 1 3 5 7 9

    Co0:ORRECTALLLIMIGTIN LO roo,°6.. .- ::-:/oo,•..;

    ,-•--o----- guore Stg ... O.... Performanc .

    , °o °. ... ... o.. ... o ... , . o... 0 ,. .2 1.°..

    1.21

    http:SYMBOLS-.IT

  • 2C. .,..... a . . .. .. . . .. . .o .. ... ... ..... .o...... o• o +

    : .: : -: .... .. . ..... ... ... .o.. = . . ..... . ..o . .. .oo. . . ! - :

    ..... .... ........ ...8.0.. .... . . . ..

    -~~ .... . ..... ... ~ ~ ~ ....... ,.. .....

    ...E. SYMOLS-WITH SLIT.SUCTI......... ...

    . 1. :.... . ........................ .... . ,.. ...... ... .....

    ,• +. ~~.o.. ......,. .o. .. .. . . • . ..~.o.. .. .. . o

    2 . . . . . . .......... . . . . . ...... ......" " ... . . .....

    2.0 .... ................. , o.. .. , • , +. • , o. .. ,, .. ..........

    .. . ...... . • .. . . .•.... .. 0 . o , ~ . ....~~~~~~......o . .. . . •. . •• . 1 go%

    CLSE 10004-JSLTUCIN ... -... .. ..... .- .. .---.. ..1 6 . . . . ....... .

    ...... ... . ..... ...... + . + 0..o ... . go.

    . ..... . .. .. .. . ..... . . . .o . . *. . .... . ,

    . , . , .. ~ ~~.... . . ~ , 0...

    o .... ... ,o .

    o............... o ......... ........ *

    .. ., .. . o... .o . . o . , o . ,.

    ~ . o . , o .7., %.o. .. . . ...••.. . ...

    Cr

    ::1.2 ... ..... ...o ., .. •,an . .. ......... . + ...... •

    •~. o.~ . ..5 %.o .. o. . . o....o....o o. . . o . . . .......o ........................ ... +.~ . .......

    ... . . .. ..... .. . ............. ........... .. .......... 0.... . . . .. , , o . . .. . ... ... . .. ...... .. .. , G.. ., :: : ,.: ,:

    ... . . ................... o +. . .. .. ..o.. + o...... .... ...

    .6..... . . . ...

    ...':; ;"::' ';m : .............. "::.... ..;. . . . . "''"" '" : :::' ....... ::: ... .... . ...... "P;i;;i;:........,...........

    .. .. • . .. . . .. . . . ...... . . .... . .0:." BLEEDU................... ... • :1 ::NO,,i

    70 90 110 130 150 170 190 LL' ... ... .. °.. ' . .. o . . . . . . ,..... ... ,::: . 0

    CORRECTED HEIGHT FLOW -Wvu71 67 LB/E1. . . . . . . . . . . . .. ........ .. . ... . . .:. ....... .

    1- ,1.:,Figure 10 Rotor.. .Overall.. Performance. .. .. ..1. ... . . o .. ,... . .2.0..

    Cl) ...... .... ::o:::CORR. FLOW RATE LES/SEC: o... ..................... ... .... ........ ,..,.....,,........... ........ ,..,..........,.o,,•. ....°.o..... ........................... o...o......,.o.,......... o

    6/) 0 10 2, o o5o6o0o . 0 . 0 HUB 10 , ., . ,.P. . 177.0 6 0 70 70 90 100 0 9 0 40Po TIP

    F u 0oo.oco.°o,,ooo0,StatorLe0ading E P c a esIoooo0oIoo0ooff of0 e 0gno0eHUBECTD PERCENTLWSPAN LS/E TIP

    Figue11Effetro Stto Leadin Ede PoeBlocageatDsgSpe

    2........ o ..... ................................. •.•.....................................22 ....... " " '" " " " , "o' .' o "O R F O A EL SS C

  • ... ... .. .. 20

    i ] . .... . .. -18

    ........16S14 . ....o..... .. i ' : ....... ! ........ .. ..

    )_ l: :.- : :. . : ! ]"" . - - 5%SP-AN ""

    %oDESIGN SPEED MACH NO. RANGE

    100 .938-966 6 95 .885-.922

    90 .828 -- 869 85 .782-.818

    X 70 .624-.6644 i 50 .436 - .467

    2 .. . . . ... .. . . s . . . .2 : . . . .

    0.6.................. ": .................. . ... ..........................i' ........ ....

    o 0.5 . 3

    ...) .... .. ..... ;. . . . . . . . . ; X.- ...... . . ... . h .... . .... . ... .... z 04

    o XLi. 0.3

    . . .. ...... . . . .. .. . ..... ............

    13 0.3

    O 0 2. . ..... ....... . U

    , 0 1 F .. . . . .: .- . .'.. ;. : . . . . . : - . . . .- .i . . . . . o, o " x ii i i ! . ....... ...

    - .-0.1 . - - - - . . .

    -2 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SUR'FACE, Is, DEGREES

    Figure 12a Rotor Blade Element Performance With Stator Hub Slit Suction, 5Percent Span From Hub

    23

  • 18

    16 . .. ....... ... ".. ..... .....

    c 14 -'...... . ". ... . .... .. ................. ... ... .

    o 12

    10J

    10% SPAN """% DESIGN

    0 8 .. . SPEED MACH NO. RANGE

    SO 100 .988-1.016 O 6 -" . - - 8 95 .933-.970

    > 90 .874-.914

    4 -• - - 0

    X 8570

    .824-.860.659 -.698 ..

    S . . . 50 .462 .492 ....................... .... ............................ ............ ........ ..

    2 : 06 . -..

    06

    0.5 -" - - I - . ._.., _" : .-I - S--: " :." "

    ...:. .i.- ... .. . , .......D .. .. .OA

    enu *. *

    0.2 - . . ........... .. ........ . ....03*0.

    03 0A

    L.-. :... .. '

    od, 0 l±Ja ,......... : ..... .:. .... .

    -0.1 -2 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SURFACE, IS,DEGREES

    Figure 12b Rotor Blade Element Performance With Stator Hub Slit Suction, 10 Percent Span From Hub

    24

  • 20

    18

    16 Cn

    cc0 14 ,"... .. .X - - : ..... .:...x- - . . . " . . .. .. ... .

    w 12

    .. ...... ...... .. ... .... .... ... ..... ..................................

    Ct 101 - . 15% SPAN O .. . ...... . % DESIGN

    SPEED MACH NO. RANGE;:--' 8 :

    5°'LU . I............. . - " ' ' -'

    w . . 0 100 1.034-1.063

    95 .977-1.0136 "-6 90 .915- .954

    . . 86 .863- .897 4.X> 70 .691-730

    : 50 .484-.514 .. . .. ... .... .... ..... ... . ..........;....... .. ........... . .

    21

    06

    C.. .. . .. .

    I 0.4 *

    0

    ! .:.: .' .i ".... ..~.. . ........--... .i . 2 - . . ...... ...""".'".. 0.2 0.21: f,

    . .. ......... . .

    - - .. ...... .. . ....... .. .-.........03 . ... . .. .. .... .

    LU0 . 0.1

    U-Lu0

    0 1

    . .. ... ... ... .. ... ... ... .. .... . ...... .... . ....... .... ........

    -0.1 6 8 10-2 0 2 4

    INCIDENCE ANGLE, SUCTION SURFACE, Is, DEGREES

    Figure 12c Rotor Blade Element Performance With Stator Hub Slit Suction, 15 Percent Span From Hub

    25

  • --- - --- -

    20 ."... ......... ..*.... .. ."...... ........

    30% SPAN 18 %DESIGN

    ... .. SPEED MACH NO. RANGE ..... ....

    16 100 1.153-1.189 u .... .... ........ 95 1.090 - 1.131

    - .90 1.021 -1.062 OL 14 0 85 .963-.999 o ... . X 70 .774-.812

    o : 50 .543-571

    0.. .. ..* eLc 10

    .,

    4< Z. --. . .. .. ... . ..-. . .

    6

    4

    " E- . ... . " . - , " ....... "". ...... ' " +" "- '.. ...... .. . . • . . . ; - . - . .. .. - " .""... 21

    06......... ....... + + + +:- + . .

    .."" ..... " - .. .. . . . ....-- .. .... . j -.. .

    •0.5 .

    L 0 . . ... ...

    IL

    0-3 .

    0 ..... .. "........-.-.....

    0.21

    OA -.m.. ... .. ...i ' •:.. ........-.............."

    HU. ......--.----. ....._........-..-..-................-..........

    U":. 0. . . . "- + + ' + + :

    Z3 0 '"..... . . .. + . . .. . ... . . .. .. .. . . , . . . . . . . . ; . . • . , .

    --)0.1.

    -2 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SURFACE, Is, DEGREES

    Figure 12d Rotor Blade Element Performance With Stator Hub Slit Suction, 30 Percent Span From Hub

    26

  • 20 '

    18 ' S:..... "'""..... :" '." .......' " .... --- ""50% "--D E IG SPAN

    * .%%DESIGN

    16 " SPEED MACH NO. RANGE

    LU 14 100 1.285-1.3315 1e.95 1.215 -1.262

    U ... ............... 90 1.139-1.186 . .: 85 1.076 -1.114

    12 "'X 70 .866- .904 S... ........... 50 .608-.636

    Z210 -.

    .... .

    8--x

    >~

    4

    21

    a .............;- ........ - > : i i , 0.6

    ,........----.... J0--oi.. - - )0.5 ..........

    0 ...,.......- -- . ... ..-..... " .. x* .-:. -- ...........

    LLo .* 4xt'

    . . D

    ...

    -0.3 "-X -

    0.21 U-"- • i -*

    0 4""...i " " " "i.......... . ..

    LI. 0.2. . .. ...............................

    U

    --0 . ..:. .. e.- :

    . . . . .

    -2 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SURFACE, Is,DEGREES

    Figure 12e Rotor Blade Element Performance With Stator Hub Slit Suction, 50 Percent Span From Hub

    27

  • 20

    18

    16

    . .

    ..... ...... .. .......... .... . i i : :

    ... ....... 70% SPAN ,........vi............... 7 PA ....... .... . . "' " " " --

    %DESIGN

    SPEED MACH NO. RANGE wi ...-- ..... .. . . :. . .. .. .. . ..i--...... ... .

    VD 14 . .... 100 1.406 -1.448w 96 1.329- 1.373 .. ".".-........ ----..... -" .......... 901 45- 1.291:.......... ....... .:--........-- -.

    090 1.245-2185 1.178- 1.214

    12 , '"X 70 .949- .984 ...........- .-- .................... 50 .668- .694 ......0°:............................... .... .!:i... ...

    _0 8 .. . .

    B I> . .... . ...... .. .......... ..

    4. 4 " : [ :. [ :. . .

    21

    06

    0 .

    0..) ......... i......." .; .... ......:....... ..... .- ........ .. ...........i... . - .C: .. . . -- . : : U- ,5: - . i - - : [ . . . -- '

    204 x o ..:. .....:... . .....-- -- ... .. . . . ---- --- -..... " . ... .... . ... --.. --- ...

    L.03

    o . ...:... ...... ............. . ..... .......... ....

    0 . .*. . . . .

    0.4+04 ' . ' . . ... :u.:3;'::- .. . i -. .. -- ....-......-..... .

    0.2

    W02:o : i . . :

    13 03 - -.. ..- -= . " .... :

    ...... i . -. :

    : ,

    .. :

    .. " .

    . .... - " : !

    W . . . . . . . ..-.... ....... "- - i . ................... i...... ..... ....... ..........---. "----.--- .-.

    0 0

    -0.1 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SURFACE, Is,DEGREES

    Figure 12f Rotor Blade Element Performance With Stator Hub Slit Suction, 70 Percent

    Span From Hub

    28

  • . .20. . . .. .. . . . . . . . .... .. . .....

    18 ............. . . . 85% SPAN...

    * . %%DESIGN 16 - SPEED MACH NO. RANGE

    ... ..... ..... . ",.. .. ;"I...-:C./.... ; CoL 14 o 100 1.491 - 1.524

    1 95 1.409 - 1.447 ... .. ........ 90 1.319 -1.363

    o12 8b 1.248 -1.2812ol X 70 1.005-1.040 " ... .. . 50 .708- .733

    ;2 10z

    _... . .. . .. .

    I

    ....... .. .... . . ... .. .. .. . .. . . . . : ' ] i..i . ..........

    06

    > .

    22~ ................. ............. . ...%. ... . . ... ..

    C[A . ... - . .. ...f E3

    ~i40 0.0.6 0...............".---48

    6' 203 " 1

    04

    0.2j30.3

    Li. U-x .... .... ....

    0.21 f*

    130.

    -0.12

    -2 0 2 4 6810 INCIDENCE ANGLE, SUCTION SURFACE, Is, DEGREES

    Figure 12g Rotor Blade Element Performance With Stator Hub Slit Suction, 85 Percent Span From Hub

    29

  • 1. . . .. ,- + .... +.. +. . .•...... ..... . . ... ... . . ......... . . .. .. . . . + . •. . . +

    ...... 90% SPAN %DESIGN166 : . . MACH NO. RANGE-SPEED

    Lii

    o 100 1.517-1.547O 14 ii a 95 1.433 - 1.470 a 90 1.342 -1.385

    85 1.270 - 1.302 u 2 X 70 1.023 -1.057

    -. . 50 .721-.746

    00 . . . ..S. . .

    OX -4.X-

    . ];"6. . . .. ......... , S-+ ..... ......... .. .... .. ............ ....... .

    2 o . . : :i ix

    I- 2 . i0 0.5~* a

    i

    o: : " i "*+L: i +).................. ... ...... " Xo04 +++++ . .+++_ +: . . . +× - ..- + + ... ... ..S.

    u. 0 3 --. " "" . -. ". .. - " - ' :3n '

    U- - , : : i ! i ; i + x: +

    0.2" : " : ""

    IS 03 ".. .....4 . . .. ....

    o 0.2 ... . . . . 0.

    o 0.1 . .. . . *--. . 0

    CO00 co

    . .- 0.1. . . .

    __0.1 * :

    -2 0 2 4 6 8 10

    INCIDENCE ANGLE, SUCTION SURFACE, Is, DEGREES

    Figure 12h Rotor Blade Element Performance With Stator Hub Slit Suction, 90 Percent Span From Hub

    30

  • 20

    18 - .-. . - "95% SPAN % DESIGN

    SPEED MACH NO. RANGE 03 1616 ....... . .-. +. ... . - .. - ........ " W . .. *o 100 1.541- 1.570 ... .

    :. 95 1.457 -1.491 w o 14 "-. .. . . . . . . . . -.. . 9085 1.364-1.4061.290 1.322

    o X 70 1.040- 1.072 u -.J

    12 , : , : ,:r-,_

    [3 5. 733-.757

    .... *. ....... . . . . ....... 2,.

    ... .-- - - - , - - , = ,

  • _____________

    ____

    : ,I - [" : -- -- D

    .S .G . ..............

    - : [~~~~~. -- =' 5%SPAN±

    : * I .%DESIGN- - MACH NO. RANGE -":-1SPEED: . 2C -t--j I :.-

    --. ! . L -_{__ .... " ....... _ __ 1w0 .892 950 __..... 2 0 0 95 869 - 26"18 . - ' :

    85 .802-.873 16 X 70 309-.759 -

    ... ....... 50 .484-.547

    --~--14

    ........ ... ........

    1

    .6.

    ..

    . ,, × . - . ..

    ., ..... .. .. . 4. . . ..

    -. . . . 7 - . .; ..-F . . - - F13

    0 - ---- F F a.. . . ....

    2 1.2 -- F

    0

    .2

    04 Span FromHu

    -ffl-L------.9..42-yjA7 I E C AN LE SU TO SU F C ,is E R EIN

    Fiur.3a Sat.Bld.Eeen...omac.Wt-.aorHb.lt.utin.5Prcn

    Spn rm u

    32 ..................

  • - -

    -2- -- - - - ---

    20 --. !-.. - - . .. ..- - .... - ....---.-.---- -

    1/ :SPAN - ___" _% DESIGN

    w -_SPEED MACH NO. RANGE

    --CD:----- --

    16 - 100 866-10

    0 95 .842- 887:....... 4 " 90 .302-854 85 .771- 831

    "X 70 .316-.728 L6 14

    . I .50 .462-522

    0 . - ------------- -:....... ..... < ----. .-.... > 10

    .6- • . ..........*:.. .. ........ .. ..

    - - -- IS.

    . . .. .......: . .. .. - - --.- - - - - - - ". . . . . .

    0

    o1 . ..: -- . .-- . ... ; - - :. --- ". . . . . .. . . - . . .. . . . ? ,

    .. .....................................-......

    ,,-2.. . . . .,. . : : . , . . . -... ... ,.

    o,=.2-- - - - -.-- -- 3.---% -, o..... ... ... .: .-------

    2 .2 -=I- - . - ED

    : I - ,. . ..0, . . . . . . . .................. .... ............

    6 -14 -12 -10 - -2 0 2 4 6 8 10 12 14 16

    INCIDENCE ANGLE, SUCTION SURFACE, is,DEGREES

    Figure 13b Stator Blade Element Performance With Stator Hub Slit Suction, 10 Percent Span From Hub

    33

  • - - - -

    22

    20 ---- --

    10i] : [ ] 15% SPAN

    " , . . . ... - %DESIGN 4-- SPEED MACH NO. RANGE

    lii . ... ;. . ..,... . . -. { 1 : : -. o[ 100 .832- 888

    1 0 95 806-.858s9 .773-820

    "" . F : ". " " :o 85 738- 797 14 I: : ---- 70 .321. 6974 "50 .443- 499

    < 2

    < 1 ,, : ' ; : ,... ~~~... ....." - . .. .... 2..... : ------- qC

    ... - '. I ... ... ox .6 - t-: . -

    0

    < 4

    .3 -, .. ... .

    -, __ _ . -•.- - .I -... ... ... ..--- - . - a. .- . .... . ..- - -. . . .

    • I : I - - . . . .o3 .. ............... : .... 2 .....:Z ... .. ... .. ..

    -o F

    ........................-.-O . . . .. . . ... . ... O.. ........... ..........

    . I. . . . .. . . . : . . __ _ _ _,0 . ........

    . ... . -.. .F... . ....... ... .:-..... ,

    I : I :t- :

    16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 t6

    INCIDENCE ANGLE, SUCTION SURFACE, is, DEGREES

    Figure 13c Stator Blade Element Performance With Stator Hub Slit Suction, 15 Percent Span From Hub

    34

  • -------- --

    ---

    22 - -- . 30% SPAN

    " % DESIGN

    20... ..... --.- -- .:A------ --- t------ MACH NO. RANGE-.SPEED

    o 100 .754- 823 18 --------- e 95 .71S- 799

    90 684 -. 766 S. -"... 85 .659-.738

    c9 1 8...-- - - -...-- - - ... X 70 330-628 ----------- - - - - - 50 AO0- 448

    14 w

    < 12

    o ~10 - --- ------------

    o - - . _ _.. .... - ----- ---8- - - . .: - - -, -.. ..- - - - -- - ... - --- - - ×- .- t,-e . : 0 0

    8:- - I D - [ . . . . . .

    .6- o -. - - .. .. . 'n-..... .....-.-----..- ----. ... . .. .

    o - .... ."-r -. - -.... .. ... . ------. ------------------ .. .. . .

    - , .. ....- , ..- - - ,- ,. - - - - .- .. - . . .. o) A - - - ----- --- _- -- a-e---------

    . . . . . .I, z0g II> .. . . ,, . . . . . . -!, . .

    .

    .. .. .. -X ... . _

    13 " : .. . . ..-. . . ...

    1- - - -.- -:1>

    a. -.- - - -oi ... ... . - .. - . -C. -, - m - - ... o~O --.. .......................... - :. ....

    0

    -1

    -16 -14 -12 -10 -8 -6 -4 -2 O9 2 4 6 8 10 12 14 16

    INCIDENCE ANGLE, SUCTION SURFACE, is,DEGREES

    Figure 13d Stator Blade Element Performance With Stator Hub Slit Suction, 30 Percent Span From Hub

    35

  • -- - - ------

    -- ------- ------

    ..... '.. - -........ ...

    ,DESIG 50% SPAN20 ... .... .% DESIGN"

    ..... -SPEED MACH NO. RANGE, LtU -- .18 .

    w : 0 100 .740-.780 95 .708-.752 90 673-.721 85 .639- 697

    i ..J ... ..... X 70 .330- 5.9 e 14 _____~ _ !_ __ _ _~ so .368-A14

    16 . . .

    5 :. .} . I I ,o 12- '" -

    F .- . * . ,

    j -: -8-T ----- - - p '-- > E3

    41

    o : i- I

  • --

    22.. . . ..... .---

    S - - - : 70% SPAN 20 • - .. ':-.....;............ - -----------, .DESIGN SPEE%DESG +-

    I SPEED MACH NO. RANGE. -.

    1 -t " a 100 .7I-15.733

    S.. .. a0 95 .698. 715 . 90 .664-.696

    ' 16 -. 85 .628-.671 - :

    l 4

    .. 0 _ L ,-L -

    ..... , _ _'

    ... .. - .

    . .

    . ..

    . .X .. .. . -....... . - *

    70 50. - - -

    323-560-- -.356-.391. . ....

    ...---...

    .-.

    2M 12 . - --- * .

    51 120 - [-- ' " . . . .. :- . .x... m .. . . . . 0 . .

    .. . ................ ..... ......................... r .......

    ~- . --- . --.. . . ..-. C :- 3 I

    .3 + I- .. . .. . I .; +.+ 8 -- -o .4,

    j. . . .. . . .. .. . . . .. .... ... '_... . . . . .

    .3 -

    I-: _ _ - : .

    . . . .......

    .2

    -T' ~~-E ') . . . ------- . , .+ t .1- .. .-- - -+.-----" .o" -. x - . ....- ,c~~

    0 4 .

    -16 -14 -12 -10 8 - 4 -2 0 2 4 6 8 10 12 ' 14 16

    INCIDENCE ANGLE, SUCTION SURFACE, is, DEGREES

    Figure 13f Stator Blade Element Performance With Stator Hub Slit Suction, 70 Percent Span From Hub

    37

  • --- -- - - - ------- ---

    22 I..... .... -- . " "_ _"_

    20 I --

    - - - -__18 _-

    ° ~~~~............."" > .....k "....

    .........

    - 14 _ _ _ _ _ _ _ _ _Q)

    12 $ xi: : , r z 12 " ;:." [ -]. .!85% SPAN O - i- %DESIGN

    10 SPEED MACH NO. RANGE.

    8 ... -. . . .. . . . " . . " 100 . -3-4.7 09-. 755" " S -l - - . . .... . .---------- - . _____.... . . ...________________e .707 .714 -

    S" . ....": .... . ..... . ".. .

    .. . "" . . . . .. o

    9085

    .670-.691 635-.663" "

    ... - - . . X 70

    50 315-.548355- 381

    4 r - - - --

    6,I - L - C .5.. . .lB.. . . . . .

    O. . . . ........ :" Inu -

    U. [

    0~ A

    3 -. ...-

    o. 2 + I t i. ! I . : .. . . .. .. ....- . ,-U. 4

    .3

    1 "........... - - Y-. ......... - -: : .2 .:

    .2 .. ...0(--.D,. . -"_ _ -

    -

    -16 -14 -12 -10 " "4 "2 0 2- - 4 6 8 1012 14 I

    INCIDENCE ANGLE,SUCTION SURFACE, i.DEGREES

    Figure 13g Stator Blade Element Performance With Stator Hub Slit Suction, 85 Percent Span From Hub

    38

  • --- - --22

    -0 . . . . . . . . . .I , - - :

    -20 -

    I., . - , 1 ,4" 3 - , - 7X.I i - : . . ... . . ... ... ,--. . -" .

    . :. ... .... : 16 4 ×, .. .. ..... . n... . .--- -

    0 % DESIGN

    -2 I SPEED MACH NO. RANGE10

    . E0 12. . 100 N0 .691-.748

    S95 .693-.08 i. . . : '' 00.665-.677

    085 .629 -. 647 *

    X 70 .313-.529 * 6 _- ________ " " 50 .357..364

    4

    .. . . . . . - ' .. .. .. .-, .", " I .. ?

    .4 u. . - ,- fl O

    X- 0 .. .4-J---_ -.... .. ..... ................... .

    30 ---- - . . . . .

    0.

    .1 £0

    -16 -14 -12 -10 .8 -6 -4 -2 0 2 4 6 8 10 12 14 16

    INCIDENCE ANGLE, SUCTION SURFACE, i., DEGREES

    Figure 13h Stator Blade Element Performance With Stator Hub Slit Suction, 90 Percent Span From Hub

    39

  • - - - - - -

    . -. . ,.. . ,. . .. . . . .- .I

    -. _ ,22 : _

    -I .SX r . . . . 20 - . :-...*...- 0 - -.. . - "

    :"X. ...................w, " " ~~~~~~~....... :. ' .. ...-- • -- -,. . . . . .,- -:- - --: . .. . ,- I I-- . .

    V 16

    ~ 14 4- --- -- -- -95% SPAN

    " " "! " " % DESIGN "12 SPEED MACH NO. RANGE

    M 100 .670-.734

    a 95 .666- 696 0 10- I - 90 649- 657

    ... . ........ ;0 85 617- 626X 70 .311- 506 -;. . .. 50 340. 353

    oi .. . -i

    41

    .6 -

    t . .. . .. . . - . *.... . . . -8

    " o

    It 4 ... " .. - [ -- : - -- - - ... .. :. ... -

    ...... ...........-" I I , . "-0 .. :

    .3

    "- . . .- - ".I. . .< . .- -

    I~~ . . ~

    ..... ..... 0.......13. T..............-......

    I I t

    . . . " " . .. . . . 0" . . . . .. 0, . . . : ' .

    --J .

    4 6 8 10 12 14 16-16 -14 -12 -10 - -6 4 -2 0 2

    INCIDENCE ANGLE, SUCTION SURFACE, is,DEGREES

    Figure 13i Stator Blade Element Performance With Stator Hub Slit Suction, 95 Percent Span From Hub

    40

  • 16 .....

    ..... .::.~.W:......:...... .....

    z....12.. . .. . . .. ... ... .......... . . . .. . . . . . . . .. .. o 14..

    LDIE .6 ...

    ... I.~~ E ~ ~ ~ ~ ~. .: .. 0.... I........... .... ........~ NS ~ D. ...... ~ DE .. .. ? 0 7 0 ? ?? .. .. .. ...o? ..... .... . . . . .. . . ......... .. .... . ...? a

    O .Y L . .... ...::~':O.....E B.. S...C N ... ... ..... . ... ......~ ~ .OSLTS ... .......... ..... o+...... ..... .......CLSDS.BL .-.~ CO

    o%0 D ESI NSIEGN

    ......... . ..... ...................................

    o .:OPENSYMBOLS -SLIT SUCTION....... o- :::CLOSED SYMBOLS - NO SLIT SUCTION:;: 00o....0~~b~ ...

    :.:* .. :.............. . ....... ... .... . . ............ . .... ........... LI .ooo ~o o.oo.ooo.o • • •o o.o o• .oo.o. o--... - o . o• •* . . .... o.. ......... ...... ........ ............... . ... ".

    .4. ..... . .

    :...... ......... . . .. .. .. . ..... :........ ......... !........ - .... .... .............

    . ...... ....... .......................

    . ................ .......- - " " " o.............o.....??--'?0 ... . .. ...0 .... . . . . . .. o* 70 . . ... .............o . . ':' : :

    ............ ........ ......-. 3........ . ..... !- ......

    .................

    .............w.....-..................... a

    u .2 . . . ..... ......... .........

    3 :::::.......:::2u ::: W..::::~: . ..............: .. o......:.. ........... )... ....... . . . . . . .

    .3..............................................13~~~~~~ .......................... ..................................0

    .... 0.....

    .............. .........

    ..... .0 ..... 4 8?.2...... -12-......... ... ....................., -a :....

    INCIDENCE ANGLE, SUCTION SURFACE, i., DEGREES

    Figre 14a Effects of Stator Hub Slit Suction, 5 Percent Span from the Hub -Stator Blade Element Performance

    41

    http:CLSDS.BL

  • 14 ........" 'ii i '" ).. ..............

    -- - ,o - o

    .... o..... .. ... . 00..00..0. 0 0 .. . .00 .. 0 .. ..0 . ......0 - .....

    :.. . . . . . . . . ..o .......o ....... . . ... .... o ......... :: -: -.: - -:. . o.*.. ... .-........ . .'C .........

    Wo . .. o o oo .................... ... ........................... oo.oooo.oo00 oo0 °

    ... .. .... .... .- ° 10 .. ................... ... 0........ .. . ... .... .. ............ ...... ....... .............

    : . .................... . ..........

    .. o. .. ... a.

    ........o..... ...... .....o. ° . . . , . .. '" " "" * : .°...... o.".".o.".

    ................ ................................... ..... . ..... ........... ......................................................... o 8O7.... :......... ...-.-..-...-.................- "..'.......................

    S.......................... ........................ ....................... 0 .. °°.,o o.o°.'~oooe° °o.*'°.° 0 .6 E1100..o....

    0 :::OPENSYMBOLS-SIT.UCTION C) ... .. NO SLIT SUCTION.~ ~~~~~~o . o...o;CLOSED SYMBOLS - . .. . . . .00oo.oooo0... ° . . . . o.... ..o . ....... . ..

    .. .-... .. ..o*.. . .o. . . . . . 0 . . . . . . o. . . . . o . o . o . . . o . .

    o................. o.... .. o . ....... o ........... ...

    .. . . o . . . o .

    ............. ............... ........ ...,..0..o.. .e... o... ...o....... ... . , o . ~ * o o .

    2............. o... ..... .......... .... o......

    ......... ......................0...............................................

    . .o .. ....- -° . .'. . ° . ° ° . ° - ° * - - . . .* ° -- - ° - -- °

    .. .. ...... ................................... o... . ......... Uj2

    2................................ ....... ..... ....

    .... 000.0.0000o0000 .. o000 .00 o000 .o0.000000000000.0000 .o .. o.000000o.ooo.o..o..o.ocyr.. 0 ......S .....................................................:2o t .. 2....... ............................. : o......... ...... o......... .......... ..... ......

    0j.................. .........................................................

    -12 -8 -4 0 4 8

    INCIDENCE ANGLE, SUCTION SURFACE,* is, DEGREES

    Figure 14b Effects of Stator Hub Slit Suction, 10 Percent Span from the Hub -Stator Blade Element Performance

    42

  • 12

    ...... ' .. . ..........."... ' ° ..... 0000 ': 000000............ 000°00 000.000 W120 a.I 0000000 ° 0° 0 * 00000000.000 000~ 00000000000 °00

    . .~~. ° . ... .... •... . .. . *...... ...... ... ..... _j. . °. . . . °. . . . 0.

    -.... ... ..... .. . ...o.... o.... ...

    ::Q.%ODESIGN70. ,.o PED;.:'*...... :.............. on :... . - . ........ ...... .- ....... ..... . . .......,-o-... ......... ............

    : !: -: '. ::['i.:.::-:OPEN SYMBOLS-SLITSUCTION - "-"::![[!!.

    CLOSED SYMBOLS - . .......... ....8.............................. NO SLIT SUCTION............ ....... I...........................

    010..... . . . . . . . . . .~~................

    ... .. .. . . . .. . . . ......... ...........

    ..........................

    ......... o. ......... o....

    ...............cc.

    .. ...6 A...................... ..... .... . . .......................2.... .. ........

    .......... oo . . ... . . . . . .. . .. . I . .:..... ...... . ...............................................m3 ...

    0 00000 °000.0.0 00 000° 00 0000000000 ° 0000 0°00 00000000 0. 0000 000 00©°0°000°0 °°°I A ...............................................................

    Utp

    I.-.--*0 : .. .... ......... .............................................

    w..... ......... .... . .. .......................................................3~13 . .. .......... . ................... ......... ...............

    0. ............................... ... ............................................ -12 -8 - -0 4 8

    INCIDENCE ANGLE, SUCTION SURFACE, is,DEGREES

    Figure 14c Effects of Stator Hub Slit Suction, 15 Percent Span from the Hub -

    Stator Blade Element Performance

    43

  • o 15.. ......,....,-.. o...................... .......... ................. o o. o o ..o . . . - o ....- ...o ..... .. . . o. . .... o .

    ........................................................1. ...... 0........................................................................... ......o o.o0:....... oooC- ..................................... . .............. .............................. .... ... ......

    ........... o. .

    . .. -.. ... ... ...................... o...

    c 1.3 ..... ...

    ... ... ......

    ............ ..................... . .......... ...... . o....................

    ... .0.. . . ..............................

    . . . . . . . . . .. .o. . ...................... ... o .........

    ....w: -::............ : .. .......................12...... ........ ...................... . .... . .. .... .......... .o.........

    1.13........... . ........... ........ . .....

    . ... ..... . . .............S... ... ... ...

    ................ .............1.2...... ...F- ......... ............................................

    .13................................ ............ ................. .... ..i ..: o:ooo......... oo:...... . .oo .o : :............. < ............ ...... ......... : ............. ......... . .. .

    ..... .............. ........

    1.12..... ...................... ::;..................... .......................................

    ... ... 5.6..:: . . . . . . . . ........:- : ::::--: :....................1 .... ........ ...................... ...................

    .V.0o..o.. .. .. .oo ... .C.CC. a. .... .. 0too o5.o

    ..... .. . ...- ; : o........... ............ .. o. .. ..... 800

    ...........-...... -

    IT ..1350.40..... . .. . ... .... :;:.;:........CL ........... LS.JS U TO

    F- oooooooa~~~oo*~. ....... .a........................

    .. . O ..11...... .... .~~~.................................~~~~ .. .. . o . . . • ' ' ' * ' ' O. .. .. . . . . .. .- . . • O

    ........................................~~~...... ........................... .. 20 ........................................

    . . . ..........................

    50 60 70 80 90 00 10 20 30 40 50

    PERCENT GAP

    Figre I15a Effcts of Stator Hub Slit Suction on Gapwise Distibutions of TotalPressure, Temperature, and Effciency, 5% Spa, 70%Speed, Maximum Flow

    44

  • o......... E........ . .......... .o o....-...........oo o o o o ... .. o ... o . .... ........ ..1... .... oo .. .. ... .... . .. ..... .... ...

    . .. . . ... .. ... .. .. . . . . .. .. .. . ..:-............... .. . ....... .....o.

    , oo.. ~.+ .. o. . o . .o .. .. o. .. .. o.. .. .. o. ..... .....o.. o...4..

    . . . .. : . ... .... .. :1A .. . . . . . . . . .. . . . . . .

    *.. . .... . o . .. . . o. . .... .. ,.....o o.... ....o .. ..

    . .......................................... cc+ . . .

    ..... ............. .. .. .. ..

    . o o. .... .... . + . . o........ . . + . . , - *- . o - - - - o . *

    o ..,. ..-- *-*-. ..... ... : :: " ° 1.3..*..-. -.-. -o..,...-.-.-...-.. .... ... .:: ,o : ;: : : : .... . . - .. .. ... . . .... ... .... ... - +o L. ....0... o....o.. +o+...o . .o....o. ... .. o....*.+ . .+ . + o - - ,

  • M................1......0%..--....................SED...... .....w .! ............ ...... .2.0 . . .........--o .... .....o .. ...

    * .-.~:::-t :::LBS/SEc):::. .. 4 1.8 ::82.61NSYBOS oX .. !. o So0 * ooo-WITH SLIT SUCTION:: 182 .o

    Ul . ~:::CLOSED SYMBOLS -NO SLIT SUCTION:: 18256 ........ ...... ...... v..............T..UCT.O..................... .......... ....................

    .... ..................... .......................................... ..... . ..............................................

    1.4...... . . . . . t.. .. . . . . . .

    .. . ........

    . ......... ...... o

    .... ...... . . . . .... o ... .. ... ...... .. -...

    1.4................................................

    ..... ..... ........................... ............................. ..................

    o - ... . I........ . ...

    1.23 ..........

    . .. . . . ...: : : . . .. . . . ...... .: ... . ...... . . . . . . . . . . .

    Uj .. -:... ..... . .......... ............... ...- . : : . , . : :..... * ... . . . .. : ::: :

    o... ....... . . ......-. .

    ........ ..... ... ~cc ~ 0 oooo.. ..... .. oo.S1.-.1.22....... . ... .. . . :o. o.

    . ......... ...... :.... ;...- .. .. . . .... . -,-.. .........o ... . .-.-. .........o. . ... , . o.. .,.,. o...... . o............ . . .. . ... . ... .... ... ...... .==...= = = == = = = = ....

    122........................................................ ................. ..................... .-JI-. ................ ... . . .. . ........... ........................ . .... . .............. . . ...........: :.. '... .. ....:.:: ... " .. .......... . ... . . . . ... . . ... . .

    . .oooo0ooooo0ooooo0oo00o0o.. . 0o.. . o,.o..o . . . . . . 0. ... :.::. o . .......... .1. oooo.ooo.o.. o......ooooo0.. . . . .•.. . o,0 .0 .o...oooo0. .......... . ................... .

    :. ........... .*oo oooWe).ooo ...........................ooooooo oooooo oooooooooooooaoooooa....... ooooo~o .. .............-° o~oo

    ...................................................... ................................... ..................................... .............. ......... ......

    80. ;;.o . ......... ;. .......

    1......... ............ E. ... ... ............... ..................................... .... ................. ... ... ......

    :...:........

    ............. . ...................

    ............ .. .................. ....

    10 . ......

    000.0000..000.000000000............... 0000f?0000 .0

    ...... ................... :....

    _ *0 ~~~...~0.l0............. ... 20 ....... .......:::W:... ................. . ....... .. . ........ .... ......... . . . ° . . ...

    50 60 70 80 90 0.0 10 20 30 40 50

    PERCENT GAP

    Figure 16a Effects of Stator Hub Slit Suction on Gapwise Distibuions of Total Pressure, Temperature, and Efficiency, 5% Span, Design Speed, Maximum Flow

    46

    http:S1.-.1.22

  • 2.2 ........ ..... ..... o100% SPEED ...... .. . , . ..° : . ....... .. .. .... .. . . ... .

    2.2 .. .. .....

    2.0 U .................. ...........

    • - o . . . . . .. ........ . ............... . ......... -E): : .. . .. :g : :. .......... . .... oo... ............

    ... .. o......... .... .. . .o . . .o. . . . O , o . O . ,.....oo . o.. .. o o .. . .o . .. .. .. .. ... .. ......... .............. o............ . . . .1..6 . ... ... .. ..... .

    1.81,7. . . .......... ..... .. .. o.. .... ... . ... ... .. . . .o ,- - -- - - - - -- -

    . . .. . . . . . .. .:, . :0- 1 . . ................. . " . . . ..... ... . . .

    1.26o ...........I- 1.6. ... ...... ... ....

    ":. .. • .. .. . ... . ....... . ............. ...................... ........ ... ..

    .... .~.... . a ......

    1 o .... o....:OPEN SYMBOLS -WITH SLIT SUCTION -173 .!?-?-O

    1.27 ............ ...,. .. ............

    .....CLOSED SYMBOLS - NO SLIT SUCTION .173.1 .............. o... .................................................

    1.2411°°°°°°e°°......°............................................................................ , -- o--0 -- o -- o- oo

    .. .

    o. ,......o... ... ...

    0 1 ......................

    .. o . . . . o . . o . .. ..... . . o . .F - , . o . , , o . o . . o . . . . ...............:...... -- ........... .::............1.22 .............................................................................................................< . : ....:.: :I -..-.-...a:: ...S.. .................. ........ .. o .. .. . o .. . ,......... o.. o. .... . ~ . .o. . .o ... .. o ... o . . ... * o .. . .. ... .... .. ...... .•~~~~~~~~~~~ .. ....... .. .. o .. - o ............ ... .... .......... .............--. . .......................

    .... :*..... ..... ................................................ . . o

    ..... ..... ... .......... .

    ............... ° "

    1002 ............ ......... ...................... ...... .......

    10..........*.... .................. ... ... ....... . .......... o....... ....S .................................. .................................... .... ~~~ ..o...o.o.......o...o.o ,. ... ., o. ,.o..• .o ,oo ... o•• •o. o .. • •• ••• o.. .e- -, o-- .. ..o.• .. . -- - ¢.... ..

    . .. . o* ..... . .. .* . . . • . o . • • o • . . .. - .- . - - - - - o

    ..o ...~ o ... .... o. .. . .. ..o .. . .. .. ... .*.... .. . * . . . . o . . . . ,

    o . ............. ........ ••o...... o........................................o~ .................0 0 10 20 30.0 52 50 6 0 s ............................... o....o...o.................o......... ........ ...................... . ............................ .... ......... . ........ 4m . .....-- .. . .... .. ... ** •....°•...... .. . °-'°'-.-...

    _ 40 .......... To.......................................................... ............. O 50 Tepeatre70 an fiiny'5Upn90 0 10 einSpeNatl 30 40 5060 80 20

    PERCENT GAP

    Figure 16b Effects of Stator Hub Slit Suction on Gapwise Distributions of Total Pressure, Temperature, and Effciency, 5% Span, Design Speed, Near Stal

    47

  • 100 ..... !.: .... ....

    . o °° • • ° °°°oo °.....°° • • = . ° ° ° °° ° . ° ° o °° ° ° ..

    . !!: AX R . . . . . .....o- ....... . . ...................... ......... ....... T EF I l NY.......... .

    o.........o.0 . .. .. ........

    ° • .°° °° ....... .. . . • °o ° . ° ° o °. ° .° ° . .° o °

    CORRCTE W /67DELSIGSEEDEGHTFLO

    o 70

    ooo.~oooO2ooooo.o oo~~00o~ooooooo.oooooooooooeoooooo° ...

    .. 0 . . . . . . . . . .......................... ........... .. .............

    ....... 0 ...-.1....... . . . .P I T A G. . . . ...... .............. . .

    .o .. . . . . .. .. o ..... . ,. o . .. a...o ..°.. ... o .. ... .. . . .. * . . o . o .

    0 ... ... ...... - ..................0- - ... - : o " . ......................... .. .... .......0 ...... .cc 9 . . . .. . . .. . .. .. . .. ...

    ... ..... .... ............... ....... .......................60 . FR*EESTREAM:o T.T LPE.UR

    000 000000000000.000.... ........ PON ATDEIG.SEE...... .00 A:::~.:........................ .. .

    117 :: .: . ........ . .. ........ . . ....000 ..... .. .... . . .. .W ........ ................................................ ......... .. .. . . . : : : . . . .- . . .. . .o .. . . .o . .. .. . . J C .Y. ..°. . .. ..

    .... PE . . . 0 1

    . R ES R A DA....A ICE FCE C oo o ooo........TD SG ....... 0.......PON

    .0 04.. 0 0 ....... 0 .700 80001002003............

    20BASED ON STATOR EXIT

    60

    TIPHUB

    PERCENT SPAN

    Figre 17 Efficiency Comparison of Free-Stream Toal Pressure versus FreeStream

    Efficiency Calculation Methods

    48

  • *

    PRESSURE SURFACE

    SUCTION SURFACE

    TIP

    _1.5

    1.6

    65

    CL

    01

    52.08

    .81585

    12.201.

    9.70 19

    Figure 18a

    /

    Total Pressure Ratio (P1 3 /P0 ), 100 Percent Flow Rate

    HUB

    Speed, 181.5 Pounds Per Second

    49

  • 4 PRESSURE SUCTION SURFACE SURFACE

    1.50

    9b21 -1.55

    -1.6o

    o1.6

    I-2 52.01 U

    0.

    121.70

    " - 1-75

    -- 1.8o

    1.90 1.85

    12.1_8

    7-03 1.95 1.90

    2.7.03

    HUB

    Figure 18b Total Pressure Ratio (P 13 /P0 ), 100 Percent Span, 180.7 Pounds Per Second Flow Rate

    50

  • t PRESSUR> SUCTION SURFACE) SURFACE

    1.55- TIP99.48

    99.6

    2.0--

    1- .95

    z

    W

    C 52.08

    o1. 31-5

    2.0 -2.0

    S 1.95

    i.8o

    16. 14

    12.21 9.702.

    Figure 18c Total Pressure Ratio (PI 0 Flow Rate

    1.85

    1.90

    HUB

    0), 100 Percent Speed, 175.0 Pounds Per Second

    51

  • i PRESSURE SUCTION SURFACE SURFACE

    9_9-4 _ T IP

    94 .42 .4

    7-1.98

    2

    0

    0.

    31.56

    1.7012.199.7TO

    1.80 -1.75 1.85-

    HUB

    Figure 18d Total Pressure Ratio (P1 3 /P0 ), 90 Percent Speed, 153.96 Pounds Per Second Flow Rate

    52

  • PRESSURE SUCTION SURFACE SURFACE

    88.19 1.220 TIP

    11.220 _9 ' ! -171! 24 o 1.220

    1.23

    88 .15

    1..200

    12

    30.32

    1_4.89

    10.95

    1.2303

    HUB

    Figure 19a Total Temperature Ratio (TI 3 /T0 ), 100 Percent Speed, 181.5 Pounds Per Second Flow Rate

    53

  • PRESSURE SUCTION SURFACE SURFACE

    1250

    I- = . 1.230

    a 50.761.3

    Lu-1.240

    .-.

    ---1.230

    i .84

    1/

    , 1-. 220

    1.210

    HUB

    Figure 19b, Total Temperature Ratio (T1 3 /T 0 ), 100 Percent Speed, 180.7 Pounds Per Second Flow Rate

    54

  • PRESSURE SUCTION SURFACE SURFACE

    TIP

    2 i 1.25

    a

    zLU

    Lii

    -.26

    30.32

    ~1.2

    12

    . 220 -

    8.45

    Figure 19c

    1..2

    HUB

    Total Temperature Ratio (TI 3 /T0 ), 100 Percent Speed, 175.0 Pounds Per Second Flow Rate

    55

  • PRESSURE SUCTION SURFACE SURFACE

    1.22 TI

    !.2!---0

    1.2

    1.2

    to5o.82

    z

    cc

    tU 1.19

    30.31

    14.88 ---1.19

    10.9 1.20

    8.45 1.21

    -- 1.22

    1.19

    HUB

    Figure 19d Total Temperature Ratio (T 13 /T 0 ), 90 Percent Speed, 153.96 Pounds Per Second Flow Rate

    56

  • PRESSURE SUCTION SURFACE SURFACE

    TIP

    94.42

    20

    I-4

    C-,8

    C-6

    L)O

    -6 -6

    12.20 -

    16.14 LHU //

    12.20

    -6 6 -4- -6

    HUB

    Figure 20a Absolute Air Angle, Degrees (90-3 13), 100 Percent Speed, 181.5 Pounds Per Second Flow Rate

    57

  • NPRESSURE SUCTION

    9944

    SURFACE

    1

    SURFACE

    TIP

    89.40

    73.88

    2lL 52.01

    I-6

    94.3!.-

    12.18 12

    -8

    0-6

    31.55

    12.3-8

    9.6 -6

    -4

    Figure 20b

    58

    Absolute Air Angle, Degrees (90 -913), Second Flow Rate

    10

    HUB

    Percent Speed, 180.7 Pounds Per

  • PRESSURE SUCTION SURFACE SURFACE

    99.48 TIP

    94.42

    a-Co

    z 52.o8

    C--8 w

    -5

    -10 -8 1.14

    12.22:

    9-70

    HUB

    Figure 20c Absolute Air Angle, Degrees (90 -913), 100 Percent Speed, 175.0 Pounds Per Second Flow Rate

    59

  • PRESSURE SURFACE

    SUCTION SURFACE

    TIP

    --

    -8,

    w-91.07

    INI

    Figure 20d

    60

    1-2.19

    =:98

    -HUB

    Absolute Air Angle, Degrees (90 -/1) Second Flow Rate

    -10

    90 Percent Speed, 153.96 Pounds Per

  • * PRESSURE) SUCTION SURFACE SURFACE

    99.4o TIP

    73.99

    2 LU

    U

    52.08

    - 1.20

    31.57

    -1.15

    12.20

    9.70

    HUB

    Figure 21a Static Pressure Ratio (P 13 /P0 ), 100 Percent Speed, 181.5 Pounds Per Second Flow Rate

    61

  • PRESSURE SURFACE

    SUCTION SURFACE

    89.40 1.4o

    73.88

    cC

    z .3

    52.01

    31-5

    16.og

    12.18 1.25 1.29.61

    X.0

    .0

    HUB

    Figure 21b Static Pressure Ratio (PI3/P0 ), 100 Percent Speed, 180.7 Pounds Per Second Flow Rate

    62

  • PRESSURE SUCTION SURFACE SURFACE

    1.50

    944

    89.4

    I

    LU __52.080

    0.,

    1.45

    -12.21 1.4

    9.70 6.6

    HUB

    Figure 21c Static Pressure Ratio (P1 3 /P0 ), 100 Percent Speed, 175.0 Pounds Per Second Flow Rate

    63

    http:LU__52.08

  • PRESSURE i) SUCTION SURFACE SURFACE

    9_9' TIP

    1.35

    73.98

    z 520 F- 52.07

    0 w

    wJC.,

    31.56

    1.30

    16.13

    12.19

    6.98

    1, 36 .25 125

    HUB

    Figure 21d Static Pressure Ratio (P13/P0), 90 Percent Speed, 153.96 Pounds Per Second Flow Rate

    64

  • PRESSURE SURFACE

    SUCTION SURFACE

    9.4 - 4oo

    TIP

    8. 4o 0 1 M_5000

    Cooo

    2 44

    89.4

    70052.08 z

    LHU

    9.70

    Figure 22a Meridional Velocity, Ft/Sec (Vml3), 100 Percent Speed, 181.5 Pounds Per Second Flow Rate 65

  • PRESSURE SUCTION SURFACE SURFACE

    q -44TIP

    /--- oo

    89.40O

    -- 00

    73.88

    700

    z

    ~52.0O1

    LU 0.

    7800

    4--(

    16.01

    12.18

    9.61

    HUB

    Figure 22b Meridional Velocity, Ft/Sec (Vml3), 100 Percent Speed, 180.7 Pounds Per Second Flow Rate

    66

  • PRESSURE SUCTION SURFACE SURFACE

    200 a__8N TIP

    -500

    I-Lu

    - 2.08

    0. L) ' / oo o60

    070

    86oo

    12.21

    6. 6 9.900

    HUB

    Figure 22c Meridional Velocity, Ft/Sec (V.1 3 ), 100 Percent Speed, 175.0 Pounds Per Second Flow Rate

    67

  • PRESSURE SUCTION SURFACE SURFACE

    .300

    Iz 52.07

    a..:

    79.70

    Figure 22d Meridional Velocity, Pt/Sec (Vml3), 90 Percent Speed, 153.96 Pounds Per

    Second Flow Rate 68

  • APPENDIX 1

    PERFORMANCE PARAMETERS

    a) Relative total temperature T'8 =t 8 [i+ 7- 1 (V)2]T1 1+ Y2 1 (M' 8) 2](rotor (oo nin)

    T' 9 =T18 + [cwr8) 2 2 8(wrj9)2 (rotor out)

    b) Incidence angle based on mean

    in =/'8 -#"8

    tm =010 -*10

    camber line

    (rotor)

    (stator)

    c) Deviation

    80= - 0 (rotor)

    IQ= 0l! - 0*11 (stator)

    d) Diffusion factor V' 9

    D 1 V' 8Vr

    D=1- V11110

    +

    +

    r9V9 -r8V 8

    969 8V8 (r 8+r 9 ) cV' 8V -r V a

    10 V0 10 riri 11 (r1 0, + rll) aV 1 0

    (rotor)

    (stator)

    e) Loss coefficient

    PE8 [T'8 --

    P9 (rotor)

    j = 1I0 11I

    P11(stator)

    0 P1 0

    69

  • f) Loss parameter

    cOCos (9 (rotor) 2 a

    Cos flu (stator) 2or

    g) Polytropic efficiency

    y1in 9 S [ P7 j

    1) p -

    1 7Pin T9] (rotor)

    y1In I[Pill1

    2) "p = tl 17 (stator)

    h) Adiabatic efficiency

    [P9 " -1

    ad= [7J 1 (rotor)

    L T12 -1

    nad = ] (stage)

    70

  • W12[P7 12

    ad= adjusted W

    []

    1 2

    I + W16 T16- 1

    (stage)

    ) Wake blockage factor

    Z AV P A

    n AV

    avg

    where n is number of tangential traverse

    points equally spaced across a stator gap and PAy avg is calculated from mass flow averaged values of P, p, and T at that radius

    71/72

  • APPENDIX 2

    SYMBOLS

    A - area, ft2

    Aan - annulus area, ft2

    Af - frontal area, ft2

    c chord lengt


Recommended