+ All Categories
Home > Documents > Sinusoidal functions

Sinusoidal functions

Date post: 22-Feb-2016
Category:
Upload: meara
View: 59 times
Download: 0 times
Share this document with a friend
Description:
Differentiation. Derivatives and differentials. Products and quotients. Power rule. Chain rule. Sinusoidal functions. Slope and derivative. 0. Differentials are not numbers. +5. +4. +3. +2. +1. 0. -1. -2. - PowerPoint PPT Presentation
Popular Tags:
20
1 Sinusoidal functions sin ( ) | = 0 =cos ( 0 ) cos ( ) | = 0 =βˆ’ sin ( 0 ) Products and quotients Chain rule βˆ† βˆ† Derivatives and differentials Differentiation | = 0 ≔ lim βˆ† β†’ 0 ( 0 + βˆ† ) βˆ’ ( 0 ) βˆ† | = 0 = 0 βˆ’1 Power rule
Transcript
Page 1: Sinusoidal functions

1

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

Products andquotientsChain rule

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule

Page 2: Sinusoidal functions

𝑓 (π‘₯ )

Slope and derivative

2

π‘₯0 π‘₯0+βˆ† π‘₯

𝑓 (π‘₯0+βˆ† π‘₯ )

π‘₯0

𝑓 (π‘₯0 )

βˆ† 𝑓

βˆ† π‘₯

riserun

= Ξ” 𝑓Δπ‘₯|

π‘₯=π‘₯0≔

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

Page 3: Sinusoidal functions

∫ stuff 𝑑 𝑓Differentials are not numbers

3

βˆ† 𝑓

βˆ† π‘₯β€’ Paired appearances of df and dx, such as in , refer to the shrinkage of Dx

with the corresponding amount of shrinkage in Df. Think of differentials as shorthand instructions for limiting processes rather than as numbers.

β€’ When you find an equation with a differential df, can you find its partner? Can you draw a triangle having legs with lengths Df and Dx?

β€’ Regardless of how closely we look in this course, we find no tick marks on the number line corresponding to df or dx. Differentials are not numbers.

#

0

+1

+2

+3

+4

+5

-1

-2

-3

-4

-5

𝑑 𝑓𝑑π‘₯

Page 4: Sinusoidal functions

𝑓 (π‘₯ )

π‘₯0

Weierstrass function

4

Page 5: Sinusoidal functions

5

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

Chain rule

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule Products andquotients

Page 6: Sinusoidal functions

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0= limβˆ† π‘₯β†’ 0

π‘Žπ‘₯02+2π‘Žπ‘₯0βˆ†π‘₯+π‘Žβˆ† π‘₯2βˆ’π‘Žπ‘₯02

βˆ† π‘₯

Derivative of a quadratic function

6

π‘₯0

𝑓 (π‘₯ )𝑓 (π‘₯ )=π‘Žπ‘₯2

π‘₯0+βˆ† π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0= limβˆ† π‘₯β†’0

π‘Ž (π‘₯0+βˆ†π‘₯ )2βˆ’π‘Žπ‘₯02

βˆ† π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0=2π‘Žπ‘₯0

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0= limβˆ† π‘₯β†’0

2π‘Žπ‘₯0βˆ†π‘₯+π‘Žβˆ† π‘₯2

βˆ†π‘₯𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0= limβˆ† π‘₯β†’0

(2π‘Žπ‘₯0+π‘Žβˆ† π‘₯ )π‘₯0

Page 7: Sinusoidal functions

ΒΏ limβˆ† π‘₯β†’ 0

βˆ‘π‘˜=0

𝑛 𝑛!(π‘›βˆ’π‘˜) !π‘˜ !

π‘₯0π‘›βˆ’π‘˜βˆ† π‘₯π‘˜βˆ’π‘₯0

𝑛

βˆ† π‘₯

Derivative of power law

7

π‘₯0

𝑓 (π‘₯ )𝑓 (π‘₯ )=π‘₯𝑛

π‘₯0+βˆ† π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0= limβˆ† π‘₯β†’0

(π‘₯0+βˆ† π‘₯ )π‘›βˆ’π‘₯0𝑛

βˆ† π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0=𝑛π‘₯0

π‘›βˆ’ 1

π‘₯0

Page 8: Sinusoidal functions

ΒΏ limβˆ† π‘₯β†’ 0

𝑛 !(π‘›βˆ’0 )! 0 !

π‘₯0𝑛+ 𝑛 !

(π‘›βˆ’1 )!1 !π‘₯0π‘›βˆ’ 1βˆ† π‘₯+βˆ‘

π‘˜=2

𝑛 𝑛 !(π‘›βˆ’π‘˜ )!π‘˜!

π‘₯0π‘›βˆ’π‘˜βˆ†π‘₯π‘˜βˆ’ π‘₯0

𝑛

βˆ† π‘₯

ΒΏ limβˆ† π‘₯β†’ 0

βˆ‘π‘˜=0

𝑛 𝑛!(π‘›βˆ’π‘˜) !π‘˜ !

π‘₯0π‘›βˆ’π‘˜βˆ† π‘₯π‘˜βˆ’π‘₯0

𝑛

βˆ† π‘₯

Derivative of power law

8

𝑓 (π‘₯ )=π‘₯𝑛

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0=𝑛π‘₯0

π‘›βˆ’ 1

ΒΏ limβˆ† π‘₯β†’ 0 ( 𝑛 !

(π‘›βˆ’1 ) !1!π‘₯0π‘›βˆ’1+βˆ‘

π‘˜=2

𝑛 𝑛 !(π‘›βˆ’π‘˜ ) !π‘˜!

π‘₯0π‘›βˆ’π‘˜βˆ†π‘₯π‘˜βˆ’1)

ΒΏ 𝑛 !(π‘›βˆ’1 )! 1!

π‘₯0π‘›βˆ’ 1=

𝑛 βˆ™ (π‘›βˆ’1 ) βˆ™ (π‘›βˆ’2 )β‹―3 βˆ™2 βˆ™1(π‘›βˆ’1 ) βˆ™ (π‘›βˆ’2 )β‹― 3 βˆ™2 βˆ™1 βˆ™1

π‘₯0π‘›βˆ’ 1

π‘₯

0

𝑓 (π‘₯ )

π‘₯0+βˆ† π‘₯π‘₯0

stuffβˆ† π‘₯+s

tuff βˆ†π‘₯2 +st

uff βˆ†π‘₯3 +β‹―

Page 9: Sinusoidal functions

9

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule Products andquotientsChain rule

Page 10: Sinusoidal functions

Chain rule

10

𝑓 (π‘₯ )

𝑑 𝑓𝑑 π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

π‘₯0

𝑦= 𝑓 (π‘₯ )

𝑧=𝑔 (𝑦 )

𝑔 ( 𝑦 )

𝑔 ( 𝑓 (π‘₯ ) )

𝑑𝑔 ( 𝑓 (π‘₯ ) )𝑑π‘₯ |

π‘₯=π‘₯0=𝑑𝑔 ( 𝑓 (π‘₯ ) )𝑑 𝑓 (π‘₯ ) |𝑓 (π‘₯ )= 𝑓 (π‘₯0 )

𝑑 𝑓 (π‘₯ )𝑑π‘₯ |

π‘₯=π‘₯0

βˆ† π‘₯βˆ† 𝑓

βˆ† π‘“βˆ† 𝑔

βˆ† π‘”βˆ† π‘₯

βˆ† 𝑓 β‰… 𝑑 𝑓 (π‘₯ )𝑑π‘₯ |

π‘₯=π‘₯0βˆ†π‘₯

βˆ† 𝑔≅ 𝑑𝑔 ( 𝑓 (π‘₯ ) )𝑑 𝑓 (π‘₯ ) |𝑓 (π‘₯ ) = 𝑓 (π‘₯0 )

βˆ† 𝑓

βˆ† 𝑔≅ 𝑑𝑔 ( 𝑓 (π‘₯ ) )𝑑 𝑓 (π‘₯ ) |𝑓 (π‘₯ ) = 𝑓 (π‘₯0 )

𝑑 𝑓 (π‘₯ )𝑑π‘₯ |

π‘₯=π‘₯0βˆ†π‘₯

βˆ†π‘”βˆ† π‘₯ β‰…

𝑑𝑔 ( 𝑓 (π‘₯ ) )𝑑 𝑓 (π‘₯ ) |𝑓 (π‘₯ )= 𝑓 (π‘₯0 )

𝑑 𝑓 (π‘₯ )𝑑π‘₯ |

π‘₯=π‘₯0

Page 11: Sinusoidal functions

11

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule Products andquotientsChain rule

Page 12: Sinusoidal functions

π‘₯0+βˆ† π‘₯

π‘₯0

Product rule

12

π‘₯

0 𝑓 (π‘₯ )

𝑔 (π‘₯ )

𝑓 (π‘₯0+βˆ† π‘₯ )𝑓 (π‘₯0 )

𝑔(π‘₯

0+βˆ†π‘₯ )

𝑔(π‘₯

0)

𝐴 (π‘₯ )= 𝑓 (π‘₯ )𝑔 (π‘₯ ) 𝑑 𝐴𝑑π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ†π‘₯β†’ 0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’π΄ (π‘₯0 )βˆ† π‘₯βˆ† 𝐴=𝐴 (π‘₯0+βˆ†π‘₯ )βˆ’π΄ (π‘₯0 )

Page 13: Sinusoidal functions

Product rule

13

π‘₯0+βˆ† π‘₯

π‘₯0

π‘₯

0 𝑓 (π‘₯ )

𝑔 (π‘₯ )

𝑑 𝐴𝑑π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ†π‘₯β†’ 0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’π΄ (π‘₯0 )βˆ† π‘₯

𝐴 (π‘₯ )= 𝑓 (π‘₯ )𝑔 (π‘₯ )βˆ† 𝐴=𝐴 (π‘₯0+βˆ†π‘₯ )βˆ’π΄ (π‘₯0 )

Ξ” 𝐴Δπ‘₯ =

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯ 𝑔 (π‘₯0 )+ 𝑓 (π‘₯0 )

𝑔 (π‘₯0+βˆ† π‘₯ )βˆ’π‘” (π‘₯0 )βˆ† π‘₯

𝑑 𝐴𝑑π‘₯ |

π‘₯=π‘₯0= 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0𝑔 (π‘₯0 )+ 𝑓 (π‘₯0 ) 𝑑𝑔𝑑π‘₯ |

π‘₯=π‘₯0

𝑓 𝑔

𝑓 (π‘₯0+βˆ† π‘₯ )𝑓 (π‘₯0 )

𝑔(π‘₯

0+βˆ†π‘₯ )

𝑔(π‘₯

0)

Page 14: Sinusoidal functions

Quotient rule

14

𝑑 𝐴𝑑π‘₯ |

π‘₯=π‘₯0≔ lim

βˆ†π‘₯β†’ 0

𝐴 (π‘₯0+βˆ† π‘₯ )βˆ’π΄ (π‘₯0 )βˆ† π‘₯

𝐴 (π‘₯ )= 𝑓 (π‘₯ )𝑔 (π‘₯ )𝑑 𝐴𝑑π‘₯ |

π‘₯=π‘₯0= 𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0𝑔 (π‘₯0 )+ 𝑓 (π‘₯0 ) 𝑑𝑔𝑑π‘₯ |

π‘₯=π‘₯0

STOP

𝑑𝑄𝑑π‘₯ |π‘₯=π‘₯0

=

𝑑 𝑓𝑑 π‘₯|

π‘₯=π‘₯0𝑔 (π‘₯0 )βˆ’ 𝑓 (π‘₯0 ) 𝑑𝑔𝑑π‘₯ |

π‘₯=π‘₯0

[𝑔 (π‘₯0 ) ]2

𝑄 (π‘₯ )= 𝑓 (π‘₯ )𝑔 (π‘₯ )

For the quotient , what is the derivative?

Why?

Page 15: Sinusoidal functions

15

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule Products andquotientsChain rule

Page 16: Sinusoidal functions

Derivative of sine

16

𝑓 (πœƒ )=sin (πœƒ ) 𝑑 π‘“π‘‘πœƒ|

πœƒ=πœƒ0≔ lim

βˆ† πœƒβ†’0

𝑓 (πœƒ0+βˆ†πœƒ )βˆ’ 𝑓 (πœƒ0 )βˆ†πœƒ

𝑑 π‘“π‘‘πœƒ|

πœƒ=πœƒ0= limβˆ†πœƒβ†’0

sin (πœƒ0+βˆ† πœƒ )βˆ’sin (πœƒ0 )βˆ† πœƒ

Recall angle-addition identity from video on trigonometry

𝑑 𝑓𝑑 πœƒ|

πœƒ=πœƒ0= limβˆ†πœƒβ†’0

sin (πœƒ 0 )cos (βˆ†πœƒ )+cos (πœƒ0 )sin (βˆ†πœƒ )βˆ’ sin (πœƒ0 )βˆ†πœƒ

𝑑 π‘“π‘‘πœƒ|

πœƒ=πœƒ0= limβˆ†πœƒβ†’0

sin (πœƒ0 ) (cos (βˆ†πœƒ )βˆ’1 )+cos (πœƒ0 ) sin (βˆ†πœƒ )βˆ† πœƒ

𝑑 𝑓𝑑 πœƒ|

πœƒ=πœƒ0= limβˆ†πœƒβ†’0

sin (πœƒ0 )(cos (βˆ†πœƒ )βˆ’1 )

βˆ† πœƒ + limβˆ† πœƒβ†’0

cos (πœƒ0 ) sin(βˆ†πœƒ )βˆ† πœƒ

Page 17: Sinusoidal functions

0 1

𝑑 𝑓𝑑 πœƒ|πœƒ=πœƒ0

= limβˆ†πœƒβ†’0

sin (πœƒ0 )(cos (βˆ†πœƒ )βˆ’1 )

βˆ† πœƒ + limβˆ† πœƒβ†’0

cos (πœƒ0 ) sin(βˆ†πœƒ )βˆ† πœƒ

1

βˆ† πœƒ

cos (βˆ† πœƒ )

βˆ† πœƒ

sin

(βˆ†πœƒ

)

1βˆ’cos (βˆ†πœƒ )

17

𝑑 π‘“π‘‘πœƒ|

πœƒ=πœƒ0≔ lim

βˆ† πœƒβ†’0

𝑓 (πœƒ0+βˆ†πœƒ )βˆ’ 𝑓 (πœƒ0 )βˆ†πœƒ

𝑓 (πœƒ )=sin (πœƒ )

𝑑 π‘“π‘‘πœƒ|

πœƒ=πœƒ0=cos (πœƒ0 )

Derivative of sine

Page 18: Sinusoidal functions

Trigonometry: sine and cosine

18

2πœ‹πœƒ

0

-1

1

πœ‹πœ‹4

πœ‹2

3πœ‹2

12

βˆ’1 /2

√2/2√3 /2

βˆ’βˆš3 /2βˆ’βˆš2 /2

3πœ‹4

5πœ‹4

7πœ‹4

πœ‹6

πœ‹3

2πœ‹35πœ‹6

7πœ‹6

4πœ‹3

5πœ‹311πœ‹6

sin (πœƒ )

cos (πœƒ )

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

Page 19: Sinusoidal functions

Derivative of cosine

19

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

πœƒ

πœ‹2 βˆ’πœƒ

cos (πœƒ )=sin (πœ‹2 βˆ’πœƒ)

sin (πœƒ )=cos (πœ‹2 βˆ’πœƒ)

STOPHint:

Page 20: Sinusoidal functions

20

Sinusoidal functions

𝑑sin (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=cos (πœƒ0 )

𝑑cos (πœƒ )π‘‘πœƒ |

πœƒ=πœƒ0=βˆ’sin (πœƒ0 )

βˆ† 𝑓

βˆ† π‘₯

Derivatives and differentials

Differentiation

𝑑 𝑓𝑑 π‘₯ |π‘₯=π‘₯0

≔ limβˆ† π‘₯β†’ 0

𝑓 (π‘₯0+βˆ† π‘₯ )βˆ’ 𝑓 (π‘₯0 )βˆ†π‘₯

𝑑π‘₯𝑛

𝑑π‘₯ |π‘₯=π‘₯0

=𝑛π‘₯0π‘›βˆ’1

Power rule Products andquotientsChain rule


Recommended