+ All Categories
Home > Documents > Site 1/Loch Coire nan Arr/cover...Chris Evans,Don Monteith, Bill Beaumont,Roger Flower, & Julie...

Site 1/Loch Coire nan Arr/cover...Chris Evans,Don Monteith, Bill Beaumont,Roger Flower, & Julie...

Date post: 29-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
232
4 Lakes Streams 1 2 3 4 6 19 9 8 10 11 12 17 18 13 14 15 16 7 22 21 20 1. Loch Coire nan Arr 2. Allt a'Mharcaidh 3. Allt na Coire nan Con 4. Lochnagar 5. Loch Chon 6. Loch Tinker 7. Round Loch of Glenhead 8. Loch Grannoch 9. Dargall Lane 10. Scoat Tarn 11. Burnmoor Tarn 12. River Etherow 13. Old Lodge 14. Narrator Brook 15. Llyn Llagi 16. Llyn Cwm Mynach 17. Afon Hafren 18. Afon Gwy 19. Beagh's Burn 20. Bencrom River 21. Blue Lough 22. Coneyglen Burn 5 Site Summaries 37 Chris Evans, Don Monteith, Bill Beaumont, Roger Flower, & Julie Winterbottom Figure 4.1.1 Location of UKAWMN sites
Transcript
  • 4

    Lakes

    Streams

    12

    3

    4

    6

    19 9 8

    1011

    12

    1718

    13

    14

    1516

    7

    2221

    20

    1. Loch Coire nan Arr2. Allt a'Mharcaidh3. Allt na Coire nan Con4. Lochnagar5. Loch Chon6. Loch Tinker7. Round Loch of Glenhead8. Loch Grannoch9. Dargall Lane10. Scoat Tarn11. Burnmoor Tarn12. River Etherow13. Old Lodge14. Narrator Brook15. Llyn Llagi16. Llyn Cwm Mynach17. Afon Hafren18. Afon Gwy19. Beagh's Burn20. Bencrom River21. Blue Lough22. Coneyglen Burn

    5

    Site Summaries

    ■ 37

    Chris Evans , Don Monteith,Bi l l Beaumont, Roger F lower,& Jul ie Winterbottom

    Figure 4.1.1 Location ofUKAWMN sites

  • 38 ■

    Chapter Four Site Summaries

  • 4.1 Loch Coire nan Arr

    ■ Site ReviewLoch Coire nan Arr is the most northerly of allUKAWMN sites. As atmospheric pollution loads atthe site were known to be low and the waterchemistry relatively well buffered, the site wasinitially considered as a potential control for theother more impacted regions to the south.However, palaeoecological studies have sincesuggested that the loch has undergone very slightacidification in recent years (Patrick et al.,1995).In 1991 a temporary dam was placed on the lochoutflow as a means of conserving the water supplyto a fish farm located beneath the site. Morerecently a permanent structure with sluice, hasreplaced this. The dam has raised mean water levelat the site by at least 0.5 m loch shoreline. Thewater level change has clearly reduced the extentof emergent macrophyte stands at the site (seebelow).

    0 1 km

    Loch Coire nan Arr

    Contours in metres

    Allt Coire nan Arr

    500

    600

    700

    200

    300

    400

    500

    500

    600

    700

    200

    300

    400

    500

    Figure 4.1.1 Loch Coire nanArr: catchment

    Table 4.1.1 Loch Coire nan Arr: site characteristics

    Grid referenceLake altitudeMaximum depthMean depthVolumeLake areaCatchment area (excl. lake)Catchment: Lake area ratioCatchment GeologyCatchment Soils Catchment vegetation

    Net reliefMean annual rainfall 1996 deposition Total Snon-marine S Oxidised NReduced N

    NG 808422125 m12.0 m4.8 m

    5.6 x 105 m3

    11.6 ha897 ha

    77.3Torridonian Sandstone

    peat moorland 99%

    conifers

  • 40 ■

    Chapter Four L. Coire nan Arr

    ■ Water Chemistry(Figure 4.1.2,Table 4.1.2-3)

    Although potentially susceptible to acidification,with a ten-year mean Ca concentration of just 43µeq l-1, Loch Coire nan Arr receives low levels ofanthropogenic S and N deposition and is notacidic. Mean pH is 6.39 and mean alkalinity 38µeq l-1, with labile Al concentrations at or closeto detection limits. Non-marine SO4 con-centrations reflect the low deposition, with a tenyear mean of 13.5 µeq l-1. NO3 concentrationshave remained below 10 µeq l-1 throughout themonitoring period, although some seasonality isobserved with concentrations above detectionlimits during all winter periods (Figure 4.1.2e).

    The proximity of this site to the coast results inlarge marine ion inputs, and Na and Clconcentrations at the loch are therefore high (10year means 203 µeq l-1 and 258 µeq l-1respectively). Both ions show a pronouncedseasonal cycle, with winter peaks resulting fromlarge frontal storms at this time. Marine iondeposition events have been shown to causeepisodic acidification through the ‘sea-salteffect’ (Wright et al., 1988; Langan, 1989)whereby marine cations temporarily displace H+

    from soil exchange sites. This natural process isevident in pH and alkalinity minima that occurconcurrently with marine ion maxima (Figure4.1.2a,b). Some temporary retention of marineSO4 may also occur (Evans et al., in press;Section 5.3), leading to reduced or even negativexSO4 concentrations (Figure 4.1.2d).

    In accordance with the continuously low

    pollutant deposition at the site, no significanttrends were observed for pH, alkalinity, basecations or mineral acid anions. There are also noidentifiable changes in chemistry following therise in water level in 1991. However, large andhighly significant increases were observed overthe last decade for both DOC and non-labile Al(Table 4.1.3). LOESS curves suggest that theseincreases took place fairly steadily between1988-1996, but may have levelled off in recentyears. The SKT estimated total increase over thedecade of 2.5 mg l-1 represents a major change inwater chemistry given a mean concentration inthe first year of sampling of just 1.0 mg l-1.Organically complexed non-labile Al shows aclear correlation with DOC, suggesting thatconcentrations are determined by the availabilityof complexing ligands (Driscoll et al., 1984).Since almost all Al present is in non-labile form,total soluble Al exhibits similar behaviour(Figures 4.1.2j,k). The issue of DOC trends isdiscussed in detail in Section 5.2.3.

    ■ Epilithic diatoms(Figure 4.1.3,Table 4.1.4)

    The epilithic diatom flora of Loch Coire nan Arrdemonstrates marked inter-annual variation overthe past decade. Samples are dominated byTabellaria flocculosa, (pH optima 5.4)Brachysira vitrea (pH optima 5.9) andAchnanthes minutissima(pH optima 6.4), T.flocculosa was most abundant between 1989-1991, gradually declined until 1997 andincreased again in 1998. These changes havebeen largely reciprocated by A. minutissima.Similar patterns in species variation have

    Table 4.1.3Significant trends in chemical determinands (June 1988 - March 1998)

    Determinand Units Annual trend (Regression) Annual trend (Seasonal Kendall)

    DOC mg l -1 +0.21*** +0.25**

    Non-labile Al µg l -1 +1.13** +1.00*

    * Trend significant at p < 0.05; ** trend significant at p < 0.01; *** trend significant at p < 0.001

  • ■ 41

    L. Coire nan Arr Chapter Four

    Figure 4.1.2Loch Coire nan Arr:summary of majorchemicaldeterminands (July 1988 - March 1998)

    Smoothed linerepresents LOESScurve (Section 3.1.2)

    ••

    • •• •

    • •

    • •

    • •

    • • •

    • •

    ••

    • ••

    1989 1991 1993 1995 1997

    6.0

    6.5

    7.0(a) pH

    ••

    • •

    ••

    ••

    •• •

    • •

    • •

    • ••

    ••

    1989 1991 1993 1995 1997

    20

    40

    60

    80

    (b) Alkalinity

    ••

    ••

    ••

    • •• •

    • • •

    ••

    •• •

    ••

    •• • • • • •

    ••

    ••

    • • ••

    1989 1991 1993 1995 1997

    -20

    0

    20

    40

    60

    -20

    0

    20

    40

    60

    (c) Sulphate

    ••

    • • •

    ••

    •• •

    ••

    • • • • ••

    •• •

    •• • •

    • • • • • • ••

    •• •

    1989 1991 1993 1995 1997

    (d) Non-marine Sulphate

    •• •

    • •

    • •

    • ••

    ••

    ••

    ••

    • •

    ••

    1989 1991 1993 1995 1997

    2

    4

    6

    8

    (e) Nitrate

    •••

    ••

    ••

    • ••

    ••

    •• •

    • • •

    • •

    •• •

    1989 1991 1993 1995 1997

    200

    400

    600

    (f) Chloride

    • •

    • ••

    •• •

    ••

    ••

    ••

    •• • • • •

    • •

    ••

    ••

    ••

    1989 1991 1993 1995 1997

    20

    40

    60

    (g) Calcium

    ••

    ••

    • • ••

    • • •

    ••

    •• •

    • ••

    • •

    •• •

    1989 1991 1993 1995 1997

    200

    300

    400

    500

    (h) Sodium

    • •

    • • • • •

    • ••

    • • • •

    • • • •

    • ••

    • • • • • • • • • • • • • •

    1989 1991 1993 1995 1997

    0

    2

    4

    6

    8

    10

    (i) Labile Al

    ••

    ••

    ••

    • • •

    ••

    • ••

    ••

    ••

    1989 1991 1993 1995 1997

    (j) Non-labile Al

    •• •

    ••

    ••

    ••

    • •

    • • •

    •• •

    • • •

    •• •

    • •

    1989 1991 1993 1995 1997

    10

    20

    30

    40

    10

    20

    30

    (k) Total Soluble Al

    •• •

    ••

    •• •

    • • •

    • • •

    ••

    • •

    ••

    1989 1991 1993 1995 1997

    0

    1

    2

    3

    4

    5

    pHµe

    q l-1

    µeq

    l-1µe

    q l-1

    µg l-

    1µg

    l-1

    µeq

    l-1

    µ eq

    l-1µ e

    q l-1

    µ eq

    l-1µ

    g l-1

    mg

    l-1

    (l) Dissolved Organic Carbon

  • Chapter Four L. Coire nan Arr

    42 ■

    INDICATOR SPECIESNitella flexilis1 2 3 3 3 3 3 1 1Myriophyllum alterniflorum2 3 3 3 3 3 3 2 2Utricularia sp.2 2 3 3 2 2 0 2 2Callitriche hamulata3 2 3 3 3 3 3 3 3Sphagnum auriculatum4 0 1 1 1 1 1 1 1Juncus bulbosus var. fluitans4 5 5 5 5 5 4 4 4OTHER SUBMERGED OR FLOATING LEAF SPECIESBatrachospermum sp. 1 1 0 0 0 0 1 0Filamentous green algae 1 2 3 1 1 1 1 1Fontinalis sp. 1 1 1 0 0 0 0 0Rhytidiadelphus sp. 0 1 1 1 0 1 0 1Lobelia dortmanna 3 3 4 4 3 3 3 3Isoetes lacustris 4 4 4 4 4 3 3 3Littorella uniflora 3 3 4 4 4 3 3 3Subularia aquatica 0 0 0 0 0 0 0 1Potamogeton natans 4 4 4 4 4 2 2 4Potamogeton polygonifolius 0 0 1 1 0 1 1 1Sparganium angustifolium 1 2 2 2 2 1 2 2EMERGENT SPECIESEquisetum fluviatile 2 2 2 2 2 1 2 0Ranunculus flammula 2 2 3 3 3 2 3 1Carex nigra 1 2 2 2 2 1 2 1Carex rostrata 0 0 1 1 0 0 0 0Eleocharis multicaulis 2 2 1 1 1 0 0 0Glyceria fluitans 1 1 1 1 1 0 1 0Juncus acutifloris/articulatus 1 3 2 2 2 1 0 0Juncus effusus 1 1 1 1 1 1 1 1

    TOTAL NUMBER OF SPECIES 20 22 23 22 19 18 19 18

    Table 4.1.4Loch Coire nan Arr: trend statistics for epilithic diatom, macrophyte and macroinvertebrate summary data (1988 - 1998)

    Total sum Number Mean N2 λ1RDA/λ2RDA λ1RDA/λ1PCAof squares of taxa diversity

    Variance p

    explained (%) within year between years linear trend unrestricted restricted

    Epilithic diatoms 49.9 50.1 7.0 0.01 0.24Macrophytes * * 30.1

  • occured in sediment trap samples from the lochwhich have been collected since 1991 (Figure4.1.6). As the sediment traps should provide anintegrated annual sample, it would seem that theepilithon data are generally representative of thediatom crop for the full growing season. Thevarying proportion of A. minutissimaand T.flocculosaappear to indicate fluctuating levels ofacidity and this is also shown by the diatominferred pH derived from pH weighted averagingapplied to the whole assemblage (Figure 7.3a)which suggests a gradual increase in pH between1990 and 1996. Although these inferences arenot strongly supported by changes in waterchemistry, low pH was recorded in the spring of1990, 1997 and 1998, apparently associated withhigh rainfall and Cl concentrations. The floristicsimilarity between 1998 samples and those of1989-1991 appear to rule out any long termtrend. RDA shows time to be insignificant as alinear variable at the 0.01 level using therestricted permutation test. The extent to whichspecies variation may be influenced by ‘natural’oscillations in acidity will require verification byongoing monitoring.

    ■ Macroinvertebrates(Figure 4.1.4,Table 4.1.4)

    The macroinvertebrate benthic fauna ismoderately diverse and dominated byChironomidae and the acid tolerant mayflyfamily Leptophlebiidae. Several mayfly specieshave been recorded throughout the study period.The acid sensitive Baetis spp. has appearedintermittently since 1991, Siphlonurus lacustrishas been recorded in all years except 1990 and inmost recent years Centroptilum luteolumreplaced the acid tolerant Leptophlebiidae as thedominant mayfly. In studies of Finnishfreshwaters C. luteolumhas a pH preference ofapproximately 6.0 (Hämäläinen & Huttunen,1996). The acid tolerant caddisfliesPlectrocnemiaspp. and Polycentropusspp. wererecorded throughout most of the monitoringperiod, being most abundant in 1995 and 1993respectively. However, Plectrocnemiaspp. hasbeen absent since 1996. RDA shows a significantlinear trend at the 0.01 level. The shift in speciesrelative abundance, and in particular the decrease

    in the relative adundance of acid tolerantLeptophlebid mayflies and the appearance of C.luteolum since 1996 is indicative of animprovement in conditions.

    ■ Fish(Figure 4.1.5)

    The outflow of Loch Coire nan Arr was firstfished in 1989. Trout density is intermediate forUKAWMN sites. There are no significant lineartrends in density, mean condition factor orcoefficient of variance of condition factor foreither age group over the last nine years.However, general declines in density of bothgroups are apparent since 1991, possiblyreflecting an influence of the outflow dam on thestream population. In common with many of theother Scottish sites, very high recruitmentoccured in 1991. Mortality of this cohorthowever appears to have been high as there is noevidence of higher than average trout densitiesprogressing through the subsequent year groups.Poorest recruitment occurred in 1992 and 1996.

    ■ Aquatic macrophytes(Table 4.1.4-5)

    The aquatic macrophyte flora of Loch Coire nanArr is typical of non-acid oligotrophic lakes. Thesubmerged community is dominated by theisoetids, Isoetes lacustris, Lobelia dortmannaand Littorella uniflora. The acid sensitivecharophyte species Nitella flexilis, and otherspecies intolerant of acidity levels at the moreacid UKAWMN lake sites (i.e. Myriophyllumalterniflorum and Utricularia sp.) are alsopresent.

    The installation of a dam, and the consequentincreases in mean water level and levelfluctuations, appear to have led to a substantialreduction in the abundance of some submergedspecies. In particular N. flexilis, which waswidespread during the first few years ofmonitoring, is now considered rare. Conversely,Potamogeton natans, which forms floatingleaved beds in moderately deep water, appears tohave increased. Assessment of cover of

    L. Coire nan Arr Chapter Four

    ■ 43

  • Chapter Four L. Coire nan Arr

    44 ■

    Figure 4.1.3Loch Coire nan Arr:summary ofepilithic diatomdata (1988 - 1998)

    Percentagefrequency of all taxaoccurring at >2%abundance in anyone sample

    Euno

    tia pe

    ctina

    lis va

    r. ve

    ntrali

    s

    Gomp

    hone

    ma in

    tricatu

    m

    Euno

    tia sp

    .

    Navic

    ula su

    btilis

    sima

    Frag

    ilaria

    vire

    scen

    s var

    . exig

    ua

    Cymb

    ella m

    icroc

    epha

    la

    Euno

    tia rh

    ombo

    idea

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor

    2040

    60

    Tabe

    llaria

    flocc

    ulosa

    Achn

    anthe

    s sp.

    20

    Frus

    tulia

    rhom

    boide

    s var

    . sax

    onica

    20Br

    achy

    sira b

    rebis

    sonii

    Achn

    anthe

    s alta

    ica

    20

    Achn

    anthe

    s sco

    tica

    Pero

    nia fib

    ula

    Gomp

    hone

    ma gr

    acile

    Cymb

    ella l

    unata

    Syne

    dra a

    cus

    Euno

    tia in

    cisa

    Gomp

    hone

    ma an

    gusta

    tum

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor f

    . impr

    essa

    2040

    60

    Brac

    hysir

    a vitre

    a

    Nitzs

    chia

    perm

    inuta

    Syne

    dra m

    inusc

    ula

    Frag

    ilaria

    vauc

    heria

    e

    Euno

    tia na

    egeli

    i

    Navic

    ula le

    ptostr

    iata

    2040

    60

    Achn

    anthe

    s minu

    tissim

    a

    Euno

    tia ex

    igua

    Syne

    dra r

    umpe

    ns

    Nitzs

    chia

    grac

    ilis

    year

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • L. Coire nan Arr Chapter Four

    ■ 45

    submerged species has been hampered by theproblem of precise re-location of transects nowthat the characteristics of the lake perimeter havechanged. It is highly likely that the water-levelchange has also been responsible for the loss ofemergent stands of Equisetum fluviatile, Carexrostrataand Eleocharis multicaulis. It is unlikelythat these species could become re-established atthe site unless water level management were tocease for a considerable period. “Sample year” issignificant as a linear trend according to RDAand restricted permutation tests but this almostcertainly results from the effects of water levelchange.

    ■ SummaryDespite geological sensitivity, Coire nan Arrreceives very low levels of pollutant inputs, andhas remained unacidic for most of the monitoringperiod. Episodic pH and alkalinity reductions area feature of the site, due to large winter inputs ofmarine ions and high rainfall, and it is possiblethat these have influenced the inter-annualdifferences in species assemblages of diatomsand macroinvertebrates. However, negativealkalinities, have not been recorded at any timeduring the study period. Given the low levels ofpollutant deposition, loch chemistry appearsgenerally stable over the last ten years, butsignificant increases have been recorded forDOC and non-labile Al. A rise in water levelfollowing damming, and subsequent water levelmanagement since 1991, has led to considerableinundation of the loch’s former shoreline. Theincreased DOC at this site could therefore resultfrom peat erosion. However, similar trends areobserved at many other sites in the Network,suggesting a more general pattern of rising DOC.This issue is discussed in detail in Section 5.2.3.Changes in water level have almost certainly leadto a reduction in the representation of emergentmacrophytes (through loss of habitat), while out-flow regulation may have had an impact on thetrout density of the outflow burn

  • Chapter Four L. Coire nan Arr

    46 ■

    Figure 4.1.4Loch Coire nan Arr:summary ofmacroinvertebratedata (1988 - 1998)

    Percentage frequency of taxa inindividual samples

    Lymn

    aea p

    ereg

    ra

    20

    Pisid

    ium sp

    .

    2040

    OLIG

    OCHA

    ETA

    20

    Glos

    sipho

    nia sp

    .

    Helob

    della

    stag

    nalis

    20

    40

    Siph

    lonur

    us la

    custr

    is

    20

    Amele

    tus in

    opina

    tus

    Baeti

    s sp.

    2040

    60Ce

    ntrop

    tilum

    luteo

    lum

    20

    Centr

    optilu

    m pe

    nnula

    tum

    Hepta

    genia

    later

    alis

    2040

    6080

    LEPT

    OPHL

    EBIID

    AE

    Amph

    inemu

    ra su

    lcico

    llis

    Nemo

    ura s

    pp.1

    Siph

    onop

    erla

    torre

    ntium

    Arcto

    coris

    a ger

    mari

    Potam

    onec

    tes de

    pres

    sus

    Hydr

    opor

    us pa

    lustris

    Oulim

    nius t

    uber

    culat

    us

    20

    Plec

    trocn

    emia

    sp.

    20

    Polyc

    entro

    pus s

    p.

    Holoc

    entro

    pus s

    p.

    LIMNE

    PHILI

    DAE

    unde

    t.

    20

    Limne

    philu

    s sp.

    Seric

    ostom

    a per

    sona

    tum

    TIPU

    LIDAE

    CULIC

    IDAE

    CERA

    TOPO

    GONI

    DAE

    2040

    6080

    CHIR

    ONOM

    IDAE

    20

    EMPI

    DIDA

    E

    200

    400

    600

    TOTA

    L NO

    . IND

    IVID

    UALS

    Yea

    r

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • L. Coire nan Arr Chapter Four

    ■ 47

    Figure 4.1.5Loch Coire nan Arr:summary of fishdata (1988 - 1997)(a) Trout

    populationdensity for 0+and >0+ ageclasses(individuals 100 m-2)

    (b) Mean conditionfactor (withstandarddeviation) of thetrout populationand itscoefficient ofvariation(histogram)

    (a) Density

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    no

    . in

    ds.

    100

    m-2

    Dens ity 0+ Density >0+

    (c) Condition (>0+)

    0

    2

    4

    6

    8

    10

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    me

    anco

    nd

    itio

    nfa

    cto

    r

    (b) Condition (0+)

    0

    5

    10

    15

    20

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    me

    anco

    nd

    itio

    nfa

    cto

    r

    notfished

    notfished

    notfished

  • Chapter Four L. Coire nan Arr

    48 ■

    Figure 4.1.5Loch Coire nan Arr:summary of fishdata (1989 - 1997)(c) Trout length

    frequencysummaries (1989 - 1998)

    1989

    0

    20

    40

    60

    1990

    0

    20

    40

    60

    1991

    0

    20

    40

    60

    1992

    0

    20

    40

    60

    1993

    0

    20

    40

    60

    1994

    0

    20

    40

    60

    1995

    0

    20

    40

    60

    1996

    0

    20

    40

    60

    1997

    0

    20

    40

    60

    0 50 100 150 200 250 300

    length (mm)

  • L. Coire nan Arr Chapter Four

    ■ 49

    Figure 4.1.6Loch Coire nan Arr:summary ofsediment trap datafor diatoms andcarbonaceousparticles

    Relative frequency of diatom taxa (>2% inat least one sample) at time of trap retrievaland estimatedcarbonaceous particleflux (no. trap-1 day-1) for preceding year

    Achn

    anthe

    s pse

    udos

    wazi

    20

    Achn

    anthe

    s minu

    tissim

    a

    Achn

    anthe

    s mar

    ginula

    ta

    Achn

    anthe

    s sax

    onica

    Achn

    anthe

    s mod

    estifo

    rmis

    20

    Brac

    hysir

    a vitre

    a

    Brac

    hysir

    a bre

    bisso

    nii

    Cymb

    ella p

    erpu

    silla

    Cymb

    ella m

    inuta

    Cymb

    ella l

    unata

    Euno

    tia pe

    ctina

    lis

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor

    Euno

    tia pe

    ctina

    lis va

    r. ve

    ntrali

    s

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor f

    . impr

    ess

    Euno

    tia ex

    igua

    Euno

    tia rh

    ombo

    idea

    20

    Euno

    tia in

    cisa

    Euno

    tia na

    egeli

    i

    Euno

    tia sp

    .

    Frag

    ilaria

    vire

    scen

    s var

    . exig

    ua

    Frag

    ilaria

    vauc

    heria

    e

    Frus

    tulia

    rhom

    boide

    s var

    . sax

    onica

    Gomp

    hone

    ma an

    gusta

    tum

    Nitzs

    chia

    perm

    inuta

    Pero

    nia fib

    ula

    20

    Tabe

    llaria

    flocc

    ulosa

    20

    CARB

    ONAC

    EOUS

    PAR

    TICL

    E FL

    UX

    Yea

    r

    1991

    1992

    1993

    1994

    1995

    1996

    1997

    1998

  • Chapter Four L. Coire nan Arr

    50 ■

  • Allt a’Mharcaidh Chapter Four

    4.2 Allt a’Mharcaidh

    ■ Site ReviewThe Allt a’Mharcaidh, in the western Cairngormsof northeast Scotland, is a well buffered mountainstream which is subject to occasional acidepisodes. No physical changes have been observedin the study catchment since the onset ofmonitoring in 1988. The Allt a’Mharcaidh wasstudied as part of the SWAP project (e.g. Ferrier &Harriman, 1990). It is one of the two British sitesrepresented in the UNECE Integrated MonitoringProgramme (UNECE - IMP) and is also afreshwater site in the UK Environmental ChangeNetwork (ECN).

    ■ Water Chemistry(Figure 4.2.2,Table 4.1.2-3)

    The Allt a’Mharcaidh has a relatively well bufferedchemistry, with a 10 year mean pH of 6.45.Although the site can be considered acid-sensitive,with a mean Ca of 42 µeq l-1, S and N depositionare low. Mean xSO4 is 33 µeq l-1, whilst virtuallyall incoming N is retained; NO3 concentrations in88% of samples collected were below detectionlimits, and the maximum recorded was 5 µeq l-1.

    The Allt a’Mharcaidh is however subject to acidicepisodes, in which alkalinity falls to around zeroand pH to

  • 52 ■

    Chapter Four Allt a’Mharcaidh

    regression analysis. However the same increaseis not found using SKT, and the time series plot(Figure 4.2.2) suggests that this trend may be theresult of a small number of high DOC samples inrecent years rather than a genuine and sustainedincrease.

    ■ Epilithic diatoms(Figure 4.2.3,Table 4.2.4)

    The epilithon of Allt a’Mharcaidh is dominatedby Synedra minuscula, Achnanthes minutissimaand Fragilaria vaucheriae, species typical ofmildly acidic softwater streams. These taxa have

    shown marked variation in their relativeabundance between years, A. minutissimashowing relatively high abundances from 1991-1992 and 1994-1995. F. vaucheriaeand rare taxa,including Gomphonema angustatum[agg.] andDiatoma hyemale var. mesodon, have undergonea decline in relative abundance since the onset ofmonitoring, while Achnanthes modestiformishasincreased slightly. The species assemblage in1998 samples was particularly unusual, withrelatively high representation of Brachysiravitrea, B. brebissonii, Frustulia rhomboides var.saxonica and Achnanthes marginulata. Thesespecies have relatively low pH optima and theirincrease is likely to reflect a sustained period ofdepressed pH over the summer of 1998 resultingfrom unusually high flow conditions (see Section7.4.1). RDA analysis shows time as an explana-tory variable to be insignificant at the 0.01 leveland no trend is apparent in diatom inferred pHfor the site.

    ■ Macroinvertebrates

    (Figure 4.2.4,Table 4.2.4)

    The macroinvertebrate community of Allta’Mharcaidh is diverse and dominated through-out the monitoring period by the acid sensitivemayfly Baetisspp.. Several other acid sensitivemayflies are also present in lower numbers,including Rhithrogena semicolorata andHeptagenia lateralis. The site also contains adiverse assemblage of stoneflies of whichLeuctra inermis is most abundant, while othercommon taxa include Brachyptera risi,Protonemura spp., Amphinemura sulcicollis andthe predatory species Isoperla grammatica and

    Table 4.2.3Significant trends in chemical determinands (July 1988 - March 1998)

    Determinand Units Annual trend (Regression) Annual trend (Seasonal Kendall)

    DOC mg l -1 +0.11*** -

    * Trend significant at p < 0.05; ** trend significant at p < 0.01; *** trend significant at p < 0.001

    Table 4.2.2 Allt a’Mharcaidh: summary of chemicaldeterminand, July 1988 - March 1998

    pH 6.45 7.08 5.12Alkalinity µeq l-1 44.2 91.0 -4.0Ca µeq l-1 42.0 60.5 4.5Mg µeq l-1 29.2 50.0 16.7Na µeq l-1 135.2 213.0 91.3K µeq l-1 7.4 12.8 2.6SO4 µeq l-1 44.4 72.9 29.2xSO4 µeq l-1 32.9 57.9 18.3NO3 µeq l-1 1.4 5.0 < 1.4Cl µeq l-1 110.1 259.2 56.3Soluble Al µg l-1 35.7 166.0 < 2.5labile Al µg l-1 6.7 46.0 < 2.5Non-labile Al µg l-1 29.8 150.0 < 2.5DOC mg l-1 2.3 12.1 < 0.1Conductivity µS cm-1 24.0 38.0 14.0

    Determinand Mean Max Min

  • ■ 53

    Allt a’Mharcaidh Chapter Four

    Figure 4.2.2Allt a’Mharcaidh:summary of majorchemicaldeterminands(April 1988 - March 1998)

    Smoothed linerepresents LOESScurve (Section 3.1.2)

    ••••

    ••

    •••

    ••

    ••

    •••

    ••

    ••

    •••••••••

    •••

    ••

    •••

    ••

    •••••••

    ••

    ••••

    ••

    ••

    ••

    •••

    •••

    ••••

    ••

    ••

    ••••

    ••

    ••

    1989 1991 1993 1995 1997

    5.5

    6.5

    7.0

    6.0

    (a) pH

    •••

    ••

    ••

    ••

    ••

    ••

    ••

    •••

    ••••

    ••

    •••

    ••

    ••

    ••

    ••

    ••

    •••

    ••

    ••

    ••

    ••

    •••

    •••

    ••

    ••

    ••

    ••

    ••••

    ••

    ••

    1989 1991 1993 1995 1997

    0

    20

    40

    60

    80

    (b) Alkalinity

    •••••••••

    ••

    ••••••••

    ••••••••

    •••••

    ••••••

    •••••••••••

    ••••••••••••••

    ••••

    •••••••

    ••

    ••

    ••

    •••••••

    •••••••••

    ••••

    •••

    ••••••••••

    1989 1991 1993 1995 1997

    0

    20

    40

    60

    80

    (c) Sulphate

    ••••••

    •••

    ••

    •••••

    ••••

    •••••

    ••••••••

    ••••••

    •••••••••••••••••••••••••

    ••

    •••••••••

    ••••

    ••••••

    ••••

    •••••••

    ••••••

    •••

    ••••••••••

    1989 1991 1993 1995 1997

    0

    20

    40

    60

    80

    (d) Non-marine Sulphate

    ••••

    ••

    ••

    ••••••••

    •••••••••••

    ••••••••••••••••••••••••••••••••••

    ••••••••••••

    •••••••••••••••••••••

    •••••••••••••

    1989 1991 1993 1995 1997

    2

    3

    4

    5

    (e) Nitrate

    ••••••

    ••

    •••••••••••

    ••••

    ••••••

    •••

    ••••••

    •••••

    ••

    ••••••••

    ••••••••

    •••

    ••

    •••••••••

    ••

    •••••••••

    ••••••••

    ••••••••••••••

    ••

    1989 1991 1993 1995 1997

    100

    200

    (f) Chloride

    ••

    ••

    •••

    •••

    ••

    ••

    ••

    •••

    ••

    ••

    ••••

    ••

    •••

    •••

    ••••

    ••

    ••••

    •••

    ••••

    ••

    ••

    ••

    ••

    ••

    ••

    •••••••••

    ••

    ••

    ••

    ••

    ••

    1989 1991 1993 1995 1997

    30

    40

    50

    60

    (g) Calcium

    ••••••••••

    •••

    ••

    ••

    •••••

    ••••

    •••

    •••

    ••

    ••••

    •••••••

    ••••

    •••••••

    ••

    •••

    ••

    •••••

    ••

    ••

    ••

    ••••

    •••••••••

    ••••••••

    ••••

    ••••

    1989 1991 1993 1995 1997

    100

    150

    200

    (h) Sodium

    ••••

    •••••••••••

    •••••

    •••••••••••••••

    •••••

    ••

    ••••••••

    ••

    •••••

    •••

    ••••••

    •••••

    •••••••

    ••

    ••••

    •••••••

    ••

    1989 1991 1993 1995 1997

    10

    20

    30

    40

    (i) Labile Al

    ••

    ••

    ••

    •••••••

    ••

    ••••

    ••••

    ••••

    •••••

    •••

    ••

    •••

    ••••••••••

    ••

    ••••

    ••••

    ••

    •••••

    ••

    •••

    ••

    ••

    ••••••

    ••••

    1989 1991 1993 1995 1997

    0

    50

    100

    150

    (j) Non-labile Al

    •••

    ••••

    •••••••

    ••

    •••

    ••

    ••

    ••••

    •••••

    •••

    ••

    •••

    ••••••••••

    ••

    ••••••

    ••

    •••••

    •••

    ••

    ••

    ••••••

    ••

    ••

    1989 1991 1993 1995 1997

    0

    50

    100

    150

    (k) Total Soluble Al

    ••••••••••••

    ••••

    •••••

    •••••••

    ••••••

    •••••

    ••••

    ••

    •••••••••

    ••

    •••

    •••••••

    ••

    ••••

    ••

    •••••

    ••

    •••

    ••••

    ••••••

    ••••

    1989 1991 1993 1995 1997

    0

    5

    10

    (l) Dissolved Organic Carbon

    pHµe

    q l-1

    µeq

    l-1µe

    q l-1

    µg l-

    1µg

    l-1

    µeq

    l-1

    µ eq

    l-1µ e

    q l-1

    µ eq

    l-1µ

    g l-1

    mg

    l-1

  • Chloroperla tripunctata.The macroinvertebratecommunity remains relatively persistent with nomarked changes in either species abundance orcomposition. Time as a linear trend is notsignificant at a 0.01 level, using RDA andassociated permutation tests.

    ■ Fish(Figure 4.2.5(i), (ii))

    Trout densities at this site are the third highest ofthose found in the Network sites. Although

    Chapter Four Allt a’Mharcaidh

    54 ■

    (% cover of 50 m survey stretch)Year 88 89 90 91 92 93 95 96 97

    INDICATOR SPECIESLemanaea sp.1 0.0 0.4 0.0 1.4 0.0 0.0 0.4 0.0 0.4Brachythecium plumosum1

  • Allt a’Mharcaidh Chapter Four

    ■ 55

    Figure 4.2.3Allt a’Mharcaidh:summary ofepilithic diatomdata (1988 - 1998)

    Percentagefrequency of all taxaoccurring at >2%abundance in anyone sample

    Gomp

    hone

    ma cl

    avatu

    m

    Gomp

    hone

    ma ac

    umina

    tum

    2040

    Hann

    aea a

    rcus

    Diato

    ma hy

    emale

    var.

    meso

    don

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor

    20

    Achn

    anthe

    s deth

    a

    Diato

    ma hy

    emale

    2040

    Frag

    ilaria

    vauc

    heria

    e

    Gomp

    hone

    ma in

    tricatu

    m

    Gomp

    hone

    ma an

    gusta

    tum

    Euno

    tia [s

    p. 1

    0 (m

    inim

    a)]

    Euno

    tia pe

    ctina

    lis

    2040

    6080

    Achn

    anthe

    s minu

    tissim

    a

    Achn

    anthe

    s sax

    onica

    2040

    60

    Syne

    dra m

    inusc

    ula

    20Ta

    bella

    ria flo

    cculo

    sa

    Frus

    tulia

    rhom

    boide

    s var

    . virid

    ula

    Frag

    ilaria

    vire

    scen

    s

    Gomp

    hone

    ma co

    nstric

    tum

    Achn

    anthe

    s mod

    estifo

    rmis

    Euno

    tia va

    nheu

    rckii v

    ar. in

    terme

    dia

    Achn

    anthe

    s aus

    triaca

    var.

    helve

    tica

    Euno

    tia pe

    ctina

    lis va

    r. ve

    ntrali

    s

    Frus

    tulia

    rhom

    boide

    s var

    . sax

    onica

    Euno

    tia in

    cisa

    Syne

    dra u

    lna

    Cymb

    ella l

    unata

    Achn

    anthe

    s helv

    etica

    var.

    mino

    r

    20

    Achn

    anthe

    s mar

    ginula

    ta

    20

    Brac

    hysir

    a vitre

    a

    Brac

    hysir

    a bre

    bisso

    nii

    Achn

    anthe

    s alta

    ica

    Yea

    r

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • population densities of 0+ trout show somevariation over the ten years of monitoring, thereis no apparent trend in this fluctuation. Mostyears show good recruitment with 1991, 1996and 1997 showing the highest densities.Population densities of >0+ trout are more stableand show a significant (p =

  • Allt a’Mharcaidh Chapter Four

    ■ 57

    Figure 4.2.4Allt a’Mharcaidh:summary ofmacroinvertebratedata (1988 - 1998)

    Percentagefrequency of taxa inindividual samples

    Amele

    tus in

    opina

    tus

    2040

    60

    Baeti

    s sp.

    Rhith

    roge

    na se

    mico

    lorata

    20Br

    achy

    ptera

    risi

    Proto

    nemu

    ra sp

    .

    20

    Amph

    inemu

    ra su

    lcico

    llis

    2040

    Leuc

    tra in

    ermi

    s

    Leuc

    tra hi

    ppop

    us

    20

    Isope

    rla gr

    amma

    tica

    Chlor

    oper

    la trip

    uncta

    ta

    Oreo

    dytes

    sanm

    arkii

    Elmi

    s aen

    ea

    Rhya

    coph

    ila sp

    .

    TIPU

    LIDAE

    2040

    CHIR

    ONOM

    IDAE

    2040

    60

    SIMU

    LIIDA

    E

    EM

    PIDI

    DAE

    500

    1000

    1500

    2000

    TOTA

    L NO

    . IND

    IVID

    UALS

    Yea

    r

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • Chapter Four Allt a’Mharcaidh

    58 ■

    Figure 4.2.5 (i)Allt a’Mharcaidh:summary of fishdata (1988 - 1997)(a) Trout population

    density for 0+and >0+ ageclasses(individuals 100 m-2)

    (b) Mean conditionfactor (withstandarddeviation) of thetrout populationand itscoefficient ofvariation(histogram)

    (a) Density

    0

    20

    40

    60

    80

    100

    120

    140

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    no

    . in

    ds.

    100

    m-2

    Density 0+ Density >0+

    Condition (>0+)

    02468

    101214

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    1.4

    me

    anco

    nd

    itio

    nfa

    cto

    r

    (b) Condition (0+)

    0

    5

    10

    15

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    1.4

    me

    anco

    nd

    itio

    nfa

    cto

    r

  • Allt a’Mharcaidh Chapter Four

    ■ 59

    1989

    0

    20

    40

    60

    1990

    0

    20

    40

    60

    1991

    0

    20

    40

    60

    1992

    0

    20

    40

    60

    1993

    0

    20

    40

    60

    1994

    0

    20

    40

    60

    1995

    0

    20

    40

    60

    1996

    0

    20

    40

    60

    1997

    0

    20

    40

    60

    0 50 100 150 200 250 300

    length (mm)

    1988

    0

    20

    40

    60 Figure 4.2.5 (i)Allt a’Mharcaidh:summary of fishdata (1988 - 1997)(c) Trout length

    frequencysummaries(1988 - 1997)

  • Chapter Four Allt a’Mharcaidh

    60 ■

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    no

    .in

    ds.

    100

    m-2

    1988

    0

    10

    20

    30

    1989

    0

    10

    20

    30

    1990

    0

    10

    20

    30

    1991

    0

    10

    20

    30

    1992

    0

    10

    20

    30

    1993

    0

    10

    20

    30

    1994

    0

    10

    20

    30

    1995

    0

    10

    20

    30

    1996

    0

    10

    20

    30

    1997

    0

    10

    20

    30

    0 50 100 150 200 250 300

    (b)

    (a)

    length (mm)

    Figure 4.2.5 (ii)Allt a’Mharcaidh:summary of fishdata (1988-1997)(a) Mean site density

    of salmon (allage classes)

    (b) Salmon lengthfrequencysummaries(1988-1997)

  • Allt na Coire nan Con Chapter Four

    4.3 Allt na Coire nan Con

    ■ Site ReviewAllt na Coire nan Con, in the Strontian region ofnorthwest Scotland, is a fast flowing stream withina partially forested catchment. The bulk of thecatchment was planted (predominantly with spruceand larch) around 1970. Grazing on the upperslopes is confined to deer. Considerable felling andsome re-planting has been carried out, particularlyover the last 5 years (see Figure 4.3.1), includingareas close to the survey and sampling stretches.

    ■ Water Chemistry

    (Figure 4.3.2,Table 4.3.2-3)

    Mean pH (5.85) and alkalinity (22 µeq l-1) aresomewhat lower than at Loch Coire nan Arr, theother northwest Scotland site, and mean xSO4 (30µeq l-1) substantially higher. A number of acidic

    episodes have been recorded, with pH fallingbelow 5.0 and alkalinity becoming negative duringthe most severe events. Sea-salt inputs areextremely high, since the catchment is very close tothe west coast. As winter sea-salt deposition events

    ����

    ����

    �����

    ������

    ���

    ��

    ��

    �planted pre 1988

    felled and re-planted post 1988

    felled since 1988

    500500

    500

    600

    700

    500

    600

    700

    400

    300

    200

    100

    400

    300

    200

    100

    400

    300

    200

    100

    Contours in metres

    0 500 m

    Allt na Coirenan Con

    Figure 4.3.1 Allt na Coire nanCon: catchment

    Table 4.3.1 Allt na Coire nan Con: site characteristics

    Grid referenceCatchment areaMinimum catchment altitudeMaximum catchment altitudeCatchment GeologyCatchment Soils

    Catchment vegetation

    Mean annual rainfall 1996 deposition Total Snon-marine S Oxidised NReduced N

    NM 793688790 ha

    10 m756 m

    schists and gneisspeaty podsols,

    peaty gleys, peats conifers 42%

    recently felled 4% moorland 54%

    2582 mm

    22 kg ha-1 yr-1

    12 kg ha-1 yr-1

    5 kg ha-1 yr-1

    6 kg ha-1 yr-1

    Table 4.3.2 Allt na Coire nan Con: summary ofchemical determinands,June 1988 - March 1998

    pH 5.85 6.70 4.96Alkalinity µeq l-1 21.6 98.0 -11.0Ca µeq l-1 57.5 107.5 22.5Mg µeq l-1 67.5 175.0 25.0Na µeq l-1 262.2 569.6 152.2K µeq l-1 9.0 18.5 2.6SO4 µeq l-1 61.3 110.4 35.4xSO4 µeq l-1 30.2 81.5 -7.7NO3 µeq l-1 4.3 17.1 < 1.4Cl µeq l-1 296.3 816.9 126.8Soluble Al µg l-1 65.7 131.0 12.0Labile Al µg l-1 17.4 98.0 < 2.5Non-labile Al µg l-1 48.5 110.0 10.0DOC mg l-1 3.9 10.0 < 0.1Conductivity µS cm-1 46.3 108.0 20.0

    Determinand Mean Max Min

    ■ 61

  • Chapter Four Allt na Coire nan Con

    tend to coincide with periods of high rainfall, it islikely that the major winter acid episodes resultfrom the net effects of marine ion displacementof H+ ions and base cation dilution. NO3,although still low (mean 4.3 µeq l-1), is present atmeasurable concentrations during winter periods,suggesting the commencement of nitrogensaturation. Since estimated moorland S and Ndeposition are similar at the two north westernsites (Tables 4.1.1 and 4.3.1), the more impactednature of Allt na Coire nan Con may result fromelevated dry deposition inputs to the large area ofconiferous forest.

    SKT analysis suggests a decrease in Cl over thestudy period, but this is not detected usingregression. Since the only significant source ofCl is marine, it is likely that any apparent trend inthis anion is the result of natural climaticvariation. This is supported by the time seriesdata and LOESS fit (Figure 4.3.2f) showing aperiod of raised Cl during the early part of therecord.

    Both trend detection methods indicate highlysignificant increases in DOC over the monitoringperiod, which appears to have taken place at anapproximately constant rate (Table 4.3.3, Figure4.3.2). The total estimated increase of 2.8 mg l-1

    over the ten years is similar to that at Loch Coirenan Arr, but from a higher initial value. Anassociated increase is also apparent for non-labileAl. The issue of DOC trends is discussed inSection 5.2.3.

    ■ Epilithic diatoms

    (Figure 4.3.3,Table 4.3.4)

    The epilithic diatom flora of Allt na Coire nanCon shows considerable inter-annual variability.Samples from the early years of monitoring weredominated by Achnanthes saxonica(pH optima5.7). This species was less abundant between1993 - 1997, when Synedra minuscula,A. minut issima and Brachysira v i t rea(a l l o f wh ich have slightly higher pHpreferences) increased, but it became dominantagain in 1998. The acidophilous speciesTabellaria flocculosawas the dominant taxa in1993. Diatom inferred pH values correlateclosely with summer rainfall totals for the nearbyMeteorological Station (Inverailort), suggestingthat the species assemblage has been stronglyinfluenced by natural pH variations linked tovarying summer flow conditions (see section7.4.1). “Sample year” is insignificant as a lineartrend using RDA and restricted permutation test.

    ■ Macroinvertebrates

    (Figure 4.3.4,Table 4.3.4)

    The macroinvertebrate fauna is typical of amildly acid oligotrophic stream, and ischaracterised by chironomidae, Simulidae and adiverse fauna of both mayflies and stoneflies.The acid sensitive mayfly Rhithrogenasemicoloratadominated the first seven years of

    Table 4.3.3Allt na Coire nan Con: significant trends in chemical determinands(June 1988 - March 1998)

    Determinand Units Annual trend (Regression) Annual trend (Seasonal Kendall)

    C1 µeq 1-1 - -7.65*

    DOC mg 1-1 +0.21*** +0.25**Non-labile Al µg 1-1 +1.13** +1.00*

    * Trend significant at p < 0.05; ** trend significant at p < 0.01; *** trend significant at p < 0.001

    62 ■

  • ■ 63

    Allt na Coire nan Con Chapter Four

    Figure 4.3.2Allt na Coire nanCon: summary ofmajor chemicaldeterminands (June 1988 - March 1998)

    Smoothed linerepresents LOESScurve (Section 3.1.2)

    ••

    ••

    •••

    ••

    ••

    ••

    ••

    •••

    ••

    ••

    ••

    •••

    ••

    ••

    ••

    ••

    ••

    ••

    ••

    ••

    •••

    •••

    ••

    ••••

    •••

    •••

    ••••

    ••

    ••

    ••

    •••

    1989 1991 1993 1995 1997

    5.0

    5.5

    6.0

    6.5

    (a) pH•

    ••

    •••••

    •••••

    ••••

    •••

    ••

    ••

    ••

    ••

    ••

    ••••••••

    ••

    ••

    •••••••

    ••

    •••••

    ••••••••

    ••••

    ••

    •••

    •••••••••••

    ••

    ••••

    ••

    ••

    1989 1991 1993 1995 1997

    0

    20

    40

    60

    80

    100

    (b) Alkalinity

    •••

    ••••

    •••••

    ••••

    ••

    ••••••

    ••

    ••••

    •••

    ••••

    •••

    ••

    •••••

    •••••••

    ••

    ••••••••

    •••••

    ••

    ••

    •••••

    •••

    •••••••••

    ••••••

    ••••••••

    1989 1991 1993 1995 1997

    0

    50

    100

    (c) Sulphate

    •••

    •••••••••••••

    ••

    •••••••••

    •••••••

    ••

    ••

    ••••

    ••

    •••••

    •••••••••••••••

    ••••

    ••••

    •••••••

    ••

    •••••

    •••••••••

    ••••••••••••

    •••

    1989 1991 1993 1995 1997

    0

    50

    100

    (d) Non-marine Sulphate

    •••

    ••

    •••

    •••

    ••

    ••••••

    •••

    •••••

    ••

    •••••••••

    ••••

    ••••••••••

    ••••••••

    •••

    •••

    ••••

    ••

    ••

    •••••

    •••••

    ••

    ••

    •••

    ••

    ••

    •••

    1989 1991 1993 1995 1997

    5

    10

    15

    (e) Nitrate

    •••••••

    ••

    ••••••••••

    ••••••

    ••

    ••

    ••••

    ••

    ••••••

    •••••••

    ••••

    ••••

    ••

    •••

    ••••••

    ••••••••••••••••••••

    •••

    •••

    ••••••

    ••

    1989 1991 1993 1995 1997

    200

    400

    600

    800

    (f) Chloride

    ••

    ••

    ••••

    ••

    ••

    •••••••

    •••••

    •••

    ••

    •••

    •••

    ••

    •••

    ••

    ••

    ••••••

    •••••

    ••

    •••

    ••••

    ••••••••

    •••

    ••

    ••••

    ••••

    1989 1991 1993 1995 1997

    20

    40

    60

    80

    (g) Calcium

    •••••••

    ••

    •••

    ••

    ••••

    •••

    ••••

    •••

    ••

    •••

    •••

    ••••••

    ••

    •••••

    ••

    ••

    ••

    ••

    ••

    ••••••

    •••••••••

    ••••••••

    •••••

    ••••••

    ••

    1989 1991 1993 1995 1997

    200

    500

    300

    400

    (h) Sodium

    ••••••

    ••

    ••

    •••••

    ••••

    ••

    •••

    ••

    •••••••

    ••

    •••

    ••

    ••••

    ••

    •••

    •••

    ••

    ••

    ••••••

    ••••••••••

    •••••

    •••

    •••

    ••••••••

    ••

    1989 1991 1993 1995 1997

    0

    20

    40

    60

    80

    100

    100

    (i) Labile Al

    ••

    •••

    ••

    ••

    ••

    ••

    ••

    •••••

    ••

    ••

    ••

    ••••••••

    ••

    •••

    ••

    •••••••

    •••

    ••

    ••

    •••

    ••

    ••

    •••

    •••

    ••

    ••••

    1989 1991 1993 1995 1997

    20

    60

    80

    40

    100

    (j) Non-labile Al

    ••

    ••

    ••

    ••

    ••

    ••

    ••

    ••••••

    ••

    ••

    ••

    ••

    ••

    •••

    •••

    ••

    ••

    ••

    •••

    ••

    ••

    •••

    ••

    •••

    •••

    •••

    ••

    1989 1991 1993 1995 1997

    50

    100

    (k) Total Soluble Al

    •••

    ••••••

    ••

    •••

    ••

    ••••••••

    •••••

    ••

    ••

    ••••

    •••••

    •••

    ••••

    •••

    ••

    ••••

    ••

    ••

    •••

    •••••

    •••••

    ••

    ••••

    ••

    ••

    ••••

    •••

    ••

    1989 1991 1993 1995 1997

    0

    2

    4

    6

    8

    10

    (l) Dissolved Organic Carbon

    pHµe

    q l-1

    µeq

    l-1µe

    q l-1

    µg l-

    1µg

    l-1

    µeq

    l-1

    µ eq

    l-1µ e

    q l-1

    µ eq

    l-1µ

    g l-1

    mg

    l-1

  • the study period, while Baetisspp. was presentthroughout and showed an increase in numbers in1996. Siphlonurus lacustrisappeared in 1993and Heptagenia lateralis, which first appeared in1992, has shown an increase in abundance in thelatter years of the study. The stonefly communityincludes the detritivores Brachyptera risi,Leuctra inermisand Amphinemura sulcicollisas

    well as predators Isoperla grammatica andChloroperla tripunctata. Several ‘new’ species ofcaddisfly were recorded after 1992, among themChaetopteryx villosa, Silo pallipes andLepidostoma hirtum, the latter intolerant of veryacid conditions. Moderately acid sensitiveColeoptera Hydraena gracilis and Elmis aeneawere first recorded in 1994. 1990 was a very poor

    Chapter Four Allt na Coire nan Con

    64 ■

    (% cover of 50 m survey stretch)Year 88 89 90 91 92 93 95 96 97

    INDICATOR SPECIESHygrohypnum ochraceum1 16.0 16.2 16.6 9.4 3.7 1.5 0.2 0.4 0.1Hyocomium armoricum1

  • Allt na Coire nan Con Chapter Four

    ■ 65

    Figure 4.3.3Allt na Coire nanCon:summary ofepilithic diatomdata (1988 - 1998)

    Percentagefrequency of all taxaoccurring at >2%abundance in anyone sample

    Frus

    tulia

    rhom

    boide

    s var

    . virid

    ula

    20

    Euno

    tia ex

    igua

    2040

    6080

    Achn

    anthe

    s sax

    onica

    E

    unoti

    a sp.

    Frag

    ilaria

    vauc

    heria

    e

    2040

    6080

    Tabe

    llaria

    flocc

    ulosa

    Eun

    otia r

    homb

    oidea

    20

    Gomp

    hone

    ma an

    gusta

    tum

    2040

    Syne

    dra m

    inusc

    ula

    20

    Euno

    tia in

    cisa

    2040

    60

    Achn

    anthe

    s minu

    tissim

    a

    Frus

    tulia

    rhom

    boide

    s var

    . sax

    onica

    20

    Brac

    hysir

    a vitre

    a

    Gomp

    hone

    ma co

    nstric

    tum

    Gomp

    hone

    ma co

    nstric

    tum va

    r. ca

    pitatu

    m

    20

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor f

    . impr

    ess

    Navic

    ula le

    ptostr

    iata

    Brac

    hysir

    a bre

    bisso

    nii

    Yea

    r

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • year both in number of species and abundance.Time as a linear trend accounts for 15.8% of thetotal variance and is significant at the 0.01 level.There is some indication of an improvement inconditions as species richness has increased inthe second half of the study period, although thiscould be linked to a decline in spring flowconditions (Section 7.4.2).

    ■ Fish

    (Figure 4.3.5)

    Trout densities at this site are intermediate forthose found on the Network. Mean populationdensities of both 0+ and >0+ trout show no trendsover the ten years. However, in common withseveral other Scottish sites, densities of 0+ fishshowed a peak in 1991, and higher than averagerecruitment also occurred in 1990 and 1995. Verylow densities of >0+ fish were recorded in threeconsecutive years between 1992-1994 despite thehigh recruitment observed in 1991. Significantnegative linear trends are apparent in thecoefficient of variation of CF for the 0+ group(p0+ group (p

  • Allt na Coire nan Con Chapter Four

    ■ 67

    Figure 4.3.4Allt na Coire nanCon:summary ofmacroinvertebratedata (1988 - 1998)

    Percentagefrequency of taxa inindividual samples

    OLIG

    OCHA

    ETA

    20

    Siph

    lonur

    us la

    custr

    is

    Amele

    tus in

    opina

    tus

    2040

    Baeti

    s sp.

    2040

    Rhith

    roge

    na se

    mico

    lorata

    20

    Hepta

    genia

    later

    alis

    Ecdy

    onur

    us sp

    .

    LEPT

    OPHL

    EBIID

    AE

    20

    Brac

    hypte

    ra ris

    i

    20

    Proto

    nemu

    ra sp

    .

    2040

    Amph

    inemu

    ra su

    lcico

    llis

    Nemo

    ura s

    pp.1

    Nemo

    ura s

    pp.2

    2040

    Leuc

    tra in

    ermi

    s

    Leuc

    tra hi

    ppop

    us

    Leuc

    tra ni

    gra

    20

    Isope

    rla gr

    amma

    tica

    20

    Siph

    onop

    erla

    torre

    ntium

    20Ch

    lorop

    erla

    tripun

    ctata

    2040

    Oreo

    dytes

    sanm

    arkii

    Hydr

    aena

    grac

    ilis

    20

    Limniu

    s volc

    kmar

    i

    Rhya

    coph

    ila sp

    .

    Plec

    trocn

    emia

    sp.

    Polyc

    entro

    pus s

    p.

    LIM

    NEPH

    ILID

    AE u

    ndet

    .

    Silo

    pallip

    es

    Lepid

    ostom

    a hirtu

    m

    TIPU

    LIDA

    E

    CULI

    CIDA

    E

    2040

    60

    CHIR

    ONOM

    IDAE

    2040

    6080

    SIM

    ULIID

    AE

    200

    400

    600

    TOTA

    L NO

    . IND

    IVID

    UALS

    Y

    ear

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • Chapter Four Allt na Coire nan Con

    68 ■

    Figure 4.3.5 (i)Allt na Coire nanCon:summary of fishdata (1988 - 1997)(a) Trout population

    density for 0+and >0+ ageclasses(individuals 100 m-2)

    (b) Mean conditionfactor (withstandarddeviation) of thetrout populationand itscoefficient ofvariation(histogram)

    (a) Density

    0

    5

    10

    15

    20

    25

    30

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    no

    . in

    ds.

    100

    m-2

    Density 0+ Density >0+

    Condition (>0+)

    0

    5

    10

    15

    20

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    1.4

    me

    anco

    nd

    itio

    nfa

    cto

    r

    (b) Condition (0+)

    0

    5

    10

    15

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    cv(h

    isto

    gra

    m)

    0.8

    1.0

    1.2

    1.4

    me

    anco

    nd

    itio

    nfa

    cto

    r

  • Allt na Coire nan Con Chapter Four

    ■ 69

    1989

    0

    5

    10

    15

    1990

    0

    5

    10

    15

    1991

    0

    5

    10

    15

    1992

    0

    5

    10

    15

    1993

    0

    5

    10

    15

    1994

    0

    5

    10

    15

    1995

    0

    5

    10

    15

    1996

    0

    5

    10

    15

    1997

    0

    5

    10

    15

    0 50 100 150 200 250 300

    length (mm)

    1988

    0

    5

    10

    15 Figure 4.3.5 (i)Allt na Coire nanCon: summary offish data (1988 -1997)(c) Trout length

    frequencysummaries(1988 - 1997)

  • Chapter Four L. Coire nan Arr

    70 ■

    0

    20

    40

    60

    80

    100

    120

    140

    1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

    no.

    inds

    .100

    m-2

    1988

    0

    20

    40

    60

    1989

    0

    20

    40

    60

    1990

    0

    20

    40

    60

    1991

    0

    20

    40

    60

    1992

    0

    20

    40

    60

    1993

    0

    20

    40

    60

    1994

    0

    20

    40

    60

    1995

    0

    20

    40

    60

    1996

    0

    20

    40

    60

    1997

    0

    20

    40

    60

    0 50 100 150 200 250 300

    length (mm)

    (b)

    (a)Figure 4.3.5 (ii)Allt na Coire nanCon: summary of fishdata (1988-1997)(a) Mean site density

    of salmon (all ageclasses)

    (b) Salmon lengthfrequencysummaries

  • Lochnagar Chapter Four

    4.4 Lochnagar

    ■ Site ReviewAt an altitude of 785 m in the Grampian Mountainsof northeast Scotland, Lochnagar is the highest ofthe UKAWMN lakes. Palaeoecological pHreconstruction indicates that Lochnagar acidifiedfrom around pH 5.6, in the mid-nineteenth century,to around pH 5.0 by the 1940s (Patricket al.1989,Patrick et al. 1995). Although prone to aconsiderable duration of ice cover during somewinters, the extent of the freezing period has beenhighly variable over the past decade, with ice onlypresent for a few days during the winter of 1997-1998. Scientific work at Lochnagar has increasedsince its inclusion in the EU funded mountain lakesprojects AL:PE, MOLAR, CHILL and, mostrecently, EMERGE, in addition to a DETR study ofthe impact of heavy metals deposition andadditional sampling carried out for theEnvironmental Change Network. There have beenno physical disturbances in the catchment, otherthan occasional scree falls from the corrie back-wall, since the onset of monitoring in 1988.

    Contours in metres

    0 500 metres

    Lochnagar800

    90010001100

    800

    90010001100

    Figure 4.4.1 Lochnagar:catchment

    Table 4.4.1 Lochnagar: site characteristics

    Grid referenceLake altitudeMaximum depthMean depthVolumeLake areaCatchment area (excl. lake)Catchment: Lake area ratioCatchment GeologyCatchment Soils Catchment vegetation

    Net reliefMean annual rainfall 1996 deposition Total Snon-marine S Oxidised NReduced N

    NO 252859785 m26 m8.4 m

    8.2 x 105 m3

    9.8 ha91.9 ha

    9.37granitepeats

    alpine - moorland100%

    370 m1536 mm

    16 kg ha-1 yr-1

    13 kg ha-1 yr-1

    6 kg ha-1 yr-1

    8 kg ha-1 yr-1

    ■ 71

    Table 4.4.2 Lochnagar: summary of chemicaldeterminands, June 1988 - March 1998

    pH 5.33 5.81 4.95Alkalinity µeq l-1 0.6 12.0 -10.0Ca µeq l-1 29.0 50.0 21.5Mg µeq l-1 33.3 58.3 25.0Na µeq l-1 93.9 173.9 69.6K µeq l-1 7.4 12.8 2.6SO4 µeq l-1 57.7 85.4 45.8xSO4 µeq l-1 48.3 74.4 35.4NO3 µeq l-1 15.7 30.7 < 1.4Cl µeq l-1 89.3 166.2 50.7Soluble Al µg l-1 41.8 147.0 4.0Labile Al µg l-1 25.5 137.0 < 2.5Non-labile Al µg l-1 16.5 41.0 < 2.5DOC mg l-1 1.1 3.4 0.2Conductivity µS cm-1 21.8 35.0 4.0

    Determinand Mean Max Min

  • 72 ■

    Chapter Four Lochnagar

    ■ Water Chemistry

    (Figure 4.4.2,Table 4.4.2-3)

    Lochnagar is acidic with a ten year mean pH of5.33 and a mean alkalinity of 0.6 µeq l-1. Unlikethe other sites in northern Scotland, mean labileAl concentrations exceed those of non-labile Al.Much of the Lochnagar catchment comprisesbare granite or thin soils, resulting in a verylimited buffering capacity (mean Ca=29 µeq l-1)and therefore high sensitivity to acid deposition.The mean xSO4 concentration of 48 µeq l-1 ishigher than at the other northern Scotland sites,and NO3 is also moderately high with a mean of15.7 µeq l-1. It is probable that, due to the sparsesoil and vegetation cover, and low ambienttemperature, the catchment has little ability toimmobilise incoming N deposition, and hastherefore reached a more advanced stage of Nsaturation than lower altitude catchments in thesame region. Marine ion concentrations arelower and less variable than at west coast sites,and in general it appears that the site is notsubject to major episodic variations, with rangesof pH (4.95 to 5.81) and alkalinity (-10 to 12 µeql-1) among the lowest in the Network. Seasonalvariations are also weak or absent, perhapsreflecting the low level of biological activitywithin the catchment.

    Trend analyses (Table 4.4.3) indicate that thechemistry of Lochnagar has changedsubstantially over the last decade. Both SKT andregression suggest that xSO4 has fallen slightly

    (5 or 8 µeq l-1 respectively), whilst NO3 has risenover the same period (11 or 14 µeq l-1). Thecombined effect of these trends should be areduction in pH and alkalinity, and a decliningtrend is indeed observed for pH using regression,although not SKT. Examination of time seriesand LOESS plots confirm that a reasonablylinear xSO4 decline has taken place over the lastten years. However the increase in NO3 andassociated decrease in pH appear to haveoccurred during a short period, from 1992-1995,since when concentrations have remained fairlystable. The possibility that the NO3 increasereflects a short term climatic fluctuation,possibly due to climatic variability, cannottherefore be ruled out at this stage; furthersampling should help to clarify this issue. As atmost other UKAWMN, regression analysissuggests that DOC has risen during the last tenyears, in this case by approximately 0.8 mg l-1.

    ■ Epilithic diatoms

    (Figure 4.4.3,Table 4.4.4)

    The epilithic diatom flora of Lochnagar isrelatively diverse and dominated by acidophiloustaxa. Achnanthes marginulata(pH optima 5.2) isgenerally the most abundant species, althoughTabellaria flocculosa(pH optima 5.4) was moreabundant in 1991 and more recently in 1997-1998. Eunotia incisa (pH optima 5.1) wasrelatively abundant from 1990-1992 but hassince declined. Diatom inferred pH (derivedfrom weighted averaging) demonstrates that the

    Table 4.4.3Significant trends in chemical determinands ( July 1988 - March 1998)

    Determinand Units Annual trend (Regression) Annual trend (Seasonal Kendall)

    pH -0.020* -SO4 µeq l-1 -0.94* -0.52*xSO4 µeq l-1 -1.00** -0.67**NO3 µeq l-1 +1.43*** +1.13*DOC mg l-1 +0.08* -

    * Trend significant at p < 0.05; ** trend significant at p < 0.01; *** trend significant at p < 0.001

  • ■ 73

    Lochnagar Chapter Four

    Figure 4.4.2Lochnagar:summary of majorchemicaldeterminands(September 1988 -March 1998)

    Smoothed linerepresents LOESScurve (Section 3.1.2)

    ••

    •• •

    • •

    ••

    ••

    ••

    ••

    ••

    • •

    ••

    ••

    • •

    ••

    1989 1991 1993 1995 1997

    5.0

    5.4

    5.8

    (a) pH

    • •

    •• •

    • •

    ••

    • • ••

    ••

    ••

    • •

    ••

    ••

    • • • ••

    • •

    1989 1991 1993 1995 1997

    -10

    0

    5

    -5

    10

    (b) Alkalinity

    ••

    •• • • • •

    •• • •

    • •• • • •

    ••• •

    • • •

    • •• •

    ••

    • ••

    1989 1991 1993 1995 1997

    40

    60

    80

    (c) Sulphate

    ••

    • • • • • •• •

    • ••

    • ••

    • • ••

    • • ••

    •• •

    • •• •

    • • •• •

    1989 1991 1993 1995 1997

    40

    60

    80

    (d) Non-marine Sulphate

    ••

    • ••

    ••

    ••

    ••

    ••

    ••

    ••

    • • ••

    ••

    ••

    ••

    •• •

    1989 1991 1993 1995 1997

    10

    0

    20

    30

    (e) Nitrate

    • •

    •• •

    •• •

    •• • • • • •

    • ••

    •• •

    •• •

    • • • ••

    • •

    ••

    1989 1991 1993 1995 1997

    60

    80

    100

    120

    140

    160

    (f) Chloride

    • •

    ••

    • •

    • • •• • •

    • • •• •

    ••

    •• • •

    ••

    • •

    ••

    1989 1991 1993 1995 1997

    30

    40

    50

    (g) Calcium

    • •

    • ••

    • • • ••

    • • • • •• •

    • • •

    • ••

    • • •

    • • • ••

    • •• •

    1989 1991 1993 1995 1997

    80

    120

    140

    100

    160

    (h) Sodium

    ••

    • • •

    •• • • •

    ••

    •• •

    • •

    •• •

    •• •

    • • •

    • •• •

    1989 1991 1993 1995 1997

    0

    50

    100

    (i) Labile Al

    ••

    ••

    ••

    ••

    •• • •

    • •

    • •

    • •

    ••

    ••

    •• •

    • ••

    1989 1991 1993 1995 1997

    10

    20

    30

    40

    (j) Non-labile Al

    •• •

    • •• •

    ••

    ••

    •• •

    • •

    ••

    ••

    •• •

    ••

    • • •

    • •

    ••

    1989 1991 1993 1995 1997

    0

    50

    100

    150

    (k) Total Soluble Al

    ••

    • • ••

    ••

    ••

    ••

    ••

    ••

    ••

    ••

    • •

    • • •• •

    • ••

    1989 1991 1993 1995 1997

    1

    2

    3

    (l) Dissolved Organic Carbon

    µeq

    l-1µe

    q l-1

    µeq

    l-1µe

    q l-1

    µeq

    l-1

    µeq

    l-1µg

    l-1

    µg l-

    1µe

    q l-1

    µeq

    l-1pH

    mg

    l-1

  • assemblage reflects the deterioration in pHevident from water chemistry samples since1993. Despite this, RDA and associated restrictedpermutation test show no significant linear timetrend over the full period, at the 0.01 level. Thesediment trap record for Lochnagar only began in1991 and the sample for 1992 was lost (Figure4.4.6). No trends are evident in this limiteddataset, although there are clear similarities inspecies representation with the epilithon.

    ■ Macroinvertebrates

    (Figure 4.4.4,Table 4.4.4)

    The impoverished macroinvertebrate fauna istypical of a moderately acidic, high altitude lake.The fauna is dominated by chironomids and thestonefly Capnia spp., which is patchy in itsoccurrence (only one individual was recorded in

    Abundance Taxon Year 88 89 90 91 92 93 95 97

    INDICATOR SPECIESSphagnum auriculatum4 3 3 3 3 3 3 3 3Juncus bulbosus var. fluitans4 1 2 2 2 2 2 2 3OTHER SUBMERGED SPECIESFilamentous green algae 1 3 0 2 1 1 2 1Fontinalis antipyretica 1 0 1 1 1 1 1 1Racomitrium aciculare 0 0 1 0 0 0 1 1Cephalozia connivens 0 0 1 0 0 0 0 0Marsupella emarginata 0 0 0 0 1 0 0 0Nardia compressa 1 1 3 2 3 2 2 2Plectocolea obovata 0 1 1 0 0 0 0 0Scapania undulata 3 3 3 3 3 3 3 3Isoetes lacustris 2 2 2 2 2 2 2 2

    TOTAL NUMBER OF SPECIES 7 7 9 7 8 7 8 8

    Chapter Four Lochnagar

    74 ■

    Table 4.4.4Lochnagar: trend statistics for epilithic diatom, macrophyte and macroinvertebratesummary data (1988 - 1998)

    Epilithic diatoms 481 145 7.2 0.26 0.26Macrophytes 18 11 6.5 0.32 0.30Invertebrates 871 25 2.5 0.52 0.40

    Variance pexplained (%) within year between years linear trend unrestricted restricted

    Epilithic diatoms 56.3 43.7 5.2 0.06 0.44Macrophytes - - 15.8 0.34 0.12Invertebrates 43.0 57.0 10.4 0.00 0.00

    Total sum Number Mean N2 λ1RDA/λ2RDA λ1RDA/λ1PCAof squares of taxa diversity

    Table 4.4.5Lochnagar: relative abundance of aquatic macrophyte flora (1988 - 1997)(see Section 3.2.3 for key to indicator values)

  • Lochnagar Chapter Four

    ■ 75

    Figure 4.4.3Lochnagar:summary ofepilithic diatomdata (1988 - 1998)

    Percentagefrequency of all taxaoccurring at >2%abundance in anyone sample

    Aulac

    oseir

    a sp.

    Euno

    tia pe

    ctina

    lis va

    r. mi

    nor

    Achn

    anthe

    s minu

    tissim

    a

    Tabe

    llaria

    kuetz

    ingian

    a

    Aulac

    oseir

    a dist

    ans v

    ar. a

    lpige

    na

    Euno

    tia pe

    ctina

    lis

    Euno

    tia sp

    .

    Euno

    tia te

    nella

    Frag

    ilaria

    vire

    scen

    s var

    . exig

    ua

    Euno

    tia pa

    ludos

    a

    Achn

    anthe

    s sp.

    Achn

    anthe

    s helv

    etica

    var.

    mino

    r

    2040

    Euno

    tia in

    cisa

    20

    Euno

    tia rh

    ombo

    idea

    Frus

    tulia

    rhom

    boide

    s var

    . sax

    onica

    Brac

    hysir

    a vitre

    a

    Aulac

    oseir

    a alpi

    gena

    Euno

    tia m

    inutis

    sima

    Achn

    anthe

    s sco

    tica

    20

    Brac

    hysir

    a bre

    bisso

    nii

    Achn

    anthe

    s deth

    a

    Aulac

    oseir

    a dist

    ans v

    ar. n

    ivaloi

    des

    2040

    60

    Achn

    anthe

    s mar

    ginula

    ta

    Achn

    anthe

    s alta

    ica

    Frus

    tulia

    rhom

    boide

    s var

    . virid

    ula

    20

    Euno

    tia va

    nheu

    rckii v

    ar. in

    terme

    dia

    20

    Euno

    tia de

    nticu

    lata

    Cocc

    oneis

    plac

    entul

    a

    Navic

    ula kr

    assk

    ei

    Tabe

    llaria

    quad

    risep

    tata

    20

    Achn

    anthe

    s aus

    triaca

    var.

    helve

    tica

    20

    Aulac

    oseir

    a dist

    ans v

    ar. n

    ivalis

    Pinn

    ularia

    subc

    apita

    ta va

    r. hil

    sean

    a

    Pero

    nia fib

    ula

    2040

    60

    Tabe

    llaria

    flocc

    ulosa

    20

    Achn

    anthe

    s alta

    ica va

    r. mi

    nor

    Navic

    ula m

    edioc

    ris

    20

    Euno

    tia na

    egeli

    i

    Cymb

    ella p

    erpu

    silla

    Aulac

    oseir

    a per

    glabr

    a

    Tabe

    llaria

    bina

    lis f.

    ellipt

    ica

    20

    Euno

    tia [te

    nella

    /palud

    osa]

    Aulac

    oseir

    a dist

    ans v

    ar. te

    nella

    2040

    60

    Euno

    tia ex

    igua

    20

    Euno

    tia [v

    anhe

    urck

    ii var

    . 1]

    Aulac

    oseir

    a lira

    ta va

    r. alp

    igena

    Yea

    r

    88 89 90 91 92 93 94 95 96 97 98

    % fr

    eque

    ncy

    of ta

    xa in

    eac

    h sa

    mpl

    e

  • 1994). Several other species of stonefly arepresent including Diura bicaudata andSiphonoperla torrentium. Acid tolerantstonefliesNemurella pictetii and Protonemuraspp. appeared after 1991. Other common taxainclude the water beetle, Oreodytes davisii, andmembers of the caddisfly family, theLimnephilidae, and the Tipulidae. Time as alinear trend is significant at the 0.01 level. Theapparent shift in stonefly species, from Nemouraspp. to Nemurella picteti, the increase in therelative abundance of Plectrocnemiasp. andPolycentropussp., and the general decline inspecies richness, are all indicative of increasingacidity.

    ■ Fish

    (Figure 4.4.5)

    The outflow stream of Lochnagar has been fishedsince 1989. The electrofishing site issignificantly downstream of the water chemistrysampling point and it is likely that geologicalbuffering results in less acid conditions thanthose experienced at the actual outflow. Thiscould explain why, when the Loch troutpopulation is believed to be impoverished,densities within the fishing stretch are high, andindeed the highest found in the Network.Densities of 0+ group fish were relatively low forthe site in 1993, 1996 and 1997, but no trends areapparent over the nine years of data. Densities of>0+ group are variable, three years (1990, 1991& 1996) being significantly above average.Condition factor and the coefficient of variationof the condition factor for both age groups alsoshow no time trends. Length frequency graphsindicate a healthy population structure, althoughnumbers of larger fish (>100 mm) are relativelylow in certain years. This feature does not seemto be linked to the recruitment reductionsmentioned above.

    ■ Aquatic macrophytes

    (Tables 4.4.4-5)

    The impoverished macroflora of Lochnagarreflects the extreme altitude and acidity of thesite. Isoetes lacustrisand Juncus bulbosusvar.

    fluitans are the only vascular species whichappear able to withstand a combination ofadverse factors including low nutrientavailability, the effects of ice scouring, lowambient temperature and strong wave action. TheLoch is dominated by liverworts, and particularlyNardia compressa, while the moss Fontinalisantipyreticais present in a few isolated locations.The cover of Juncus bulbosusvar. fluitansalongtwo of


Recommended