+ All Categories
Home > Documents > Site-Specific Evidence In Developing Engineering Solutions ... · PDF fileSite-Specific...

Site-Specific Evidence In Developing Engineering Solutions ... · PDF fileSite-Specific...

Date post: 23-Feb-2018
Category:
Upload: nguyenque
View: 215 times
Download: 1 times
Share this document with a friend
17
Benefit of Gathering Site-Specific Evidence In Developing Engineering Solutions to Climate Change Events March 2016 Adeniyi Aje Ahmad Khattab
Transcript

Benefit of Gathering Site-Specific Evidence In Developing Engineering Solutions to Climate Change Events

March 2016

Adeniyi Aje Ahmad Khattab

β€’ The Context

β€’ Case Study – Somerset 2013/14

β€’ Typical Assessment Approach

β€’ New Assessment Approach

β€’ Validation of Approach

β€’ Future Use & Benefits

β€’ Limitations

β€’ Questions & Answers

β€’ Our Climate is changing with time

β€’ Our Environment is also changing with time

β€’ EA updates – Feb 2016

a) Increase in intensity/frequency of rainfall β†’ increased flow rate.

Key Parameter (affecting structures along walkways)

b) Discharge Flow Rate, Q = Velocity, V x Area, A

Constant (Channel Section)

c) Climate Change β†’ Scour in waterways around existing structures d) Factors that affect velocity and may consequently lead to scour:

β€’ Upstream and downstream ground conditions β€’ Laminar or turbulent flow β€’ Discharge flow rate β€’ Catchment run-off vs. Percolation β€’ Channel alignment β€’ Bed roughness β€’ Fluid Viscosity β€’ Obstructions β€’ Bed slope

(Somerset) Catchment Area River Parrett

King Sedgemoor Drain

Dunball New Bridge* Dunball Old Bridge

Sluice Gate

Sluice Gate

Dunball New Bridge* Dunball Old Bridge

Open Sluice Gate

Old Abutment

Flow around Structures (Piers)

Residual Structure

Flow Direction

Displaced Rock = Hydraulic Jump

Concrete Invert Slab

Narrow Channel = Increased Velocity

Bed Conditions Slope

Approach Formulae Design Velocity

Continuity Equation for Rectangular Open Channels based on approximate channel geometry

𝑸𝑸 = 𝑽𝑽𝑽𝑽 = (𝟏𝟏.πŸŽπŸŽπ’π’ ) Γ— 𝑽𝑽 Γ— (π‘Ήπ‘ΉπŸπŸ/πŸ‘πŸ‘)(π‘Ίπ‘ΊπŸπŸ/𝟐𝟐) 8.0 m/s

Critical Velocity for Live bed scour (HEC 18 – Evaluation of Scour at

Bridges) 𝑽𝑽𝒄𝒄 = (𝑲𝑲𝒖𝒖) Γ— (π’šπ’šπŸπŸ/πŸ”πŸ”) Γ— (𝒅𝒅) 4.6 m/s

Supercritical Flow back-analysis for rectangular channels at critical

bed velocity 𝑭𝑭𝑭𝑭 =

π‘½π‘½πŸπŸπ’ˆπ’ˆπ’šπ’šπŸπŸ

> 𝟏𝟏 5.6 m/s

Single Pier Scour Hole Back- Analysis (HEC 18)

π’šπ’šπ’”π’”π’šπ’šπŸπŸ

= 𝟐𝟐.𝟎𝟎 Γ— π‘²π‘²πŸπŸ Γ— π‘²π‘²πŸπŸ Γ— π‘²π‘²πŸ‘πŸ‘ Γ—π’‚π’‚π’šπ’šπŸπŸ

𝟎𝟎.πŸ”πŸ”πŸ”πŸ”

Γ— π‘­π‘­π‘­π‘­πŸŽπŸŽ.πŸ’πŸ’πŸ‘πŸ‘ 10.2 m/s

a) Info Received β†’ 1D Hydraulic Model (V=2.1m/s) β†’ Scour Hole Depth β†’ Upstream Flow Rate, Qβ‰ˆ70m3/s

b) Due Diligence/Check β†’ Existing Formulae β†’ Engineering Judgement

β†’ Observations (Site Conditions)

Tools

a) Hydraulic Model Results:

b) Further Due Diligence/Checks β†’ New Approach Required.

Approach Estimated Design Velocity 1D Hydraulic Modelling 2.1 m/s

2D Hydraulic Modelling 3 to 4.5 m/s

Change in Bed Conditions

Angle of Current Attack

Influence of Bridge Piers

Effect of Residual Structure/ Abutment

Mismatch in results β†’ model velocities relatively low. Effects listed above not considered.

β€’ Diving Inspection Report

β€’ Flood Event Videos - YouTube

β€’ Aftermath Photos

β€’ As-Built Drawings

β€’ Bathymetric Surveys

β€’ Observed Displaced Rocks (size)

a) What is actually happening? What have we observed?

b) Non-conservation of Energy

Vertical Translation Velocity Horizontal Translation Velocity

π‘£π‘£β„Ž =(πœŒπœŒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ) Γ— 𝑔𝑔 Γ— 𝑑𝑑𝑣𝑣

(3 Γ— 𝐢𝐢𝐷𝐷 Γ— π‘‘π‘‘β„Ž4 Γ— π‘‘π‘‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ

+ π‘ͺπ‘ͺπ’Žπ’Ž) Γ— πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ

12 𝑣𝑣𝑣𝑣 =

8 Γ— (πœŒπœŒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ) Γ— π‘‘π‘‘π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ Γ— 𝑔𝑔3 Γ— π‘ͺπ‘ͺ𝑳𝑳 Γ— πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ

12

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖 + 𝐾𝐾𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖 + 𝑾𝑾𝑾𝑾𝑭𝑭𝑾𝑾 𝑫𝑫𝑾𝑾𝒏𝒏𝑫𝑫 = 𝑃𝑃𝑃𝑃𝑓𝑓𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖 + 𝐾𝐾𝑃𝑃𝑓𝑓𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖

Scour Deposition

FD FI FB

FL

FG

(vv+vh)

β€’ FG = Gravity (weight) Force β€’ FL = Lift Force β€’ FB = Buoyant Force β€’ FD = Drag Force β€’ FI = Inertia Force

a) Stone Ø = 0.2m b) CL = 0.25 – 0.35? c) CD = 0.47

Trends correlate with those on graph which are based on intensive experimentation

Approach Design Velocity 1D Model 2.1 m/s

2D Model 3 to 4.5 m/s

New Approach 5.4 m/s to 6.6 m/s

Velocity Forces on Submerged Rocks Design Chart

CL = 0.35

CL = 0.25

CL = 1.29

π‘£π‘£β„Ž =(πœŒπœŒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ) Γ— 𝑔𝑔 Γ—

(3 Γ— 𝐢𝐢𝐷𝐷 Γ—4 Γ— + πΆπΆπ‘šπ‘š) Γ— πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ

12

𝑣𝑣𝑣𝑣 =8 Γ— (πœŒπœŒπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ βˆ’ πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ) Γ— Γ— 𝑔𝑔

3 Γ— Γ— πœŒπœŒπ‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘€π‘Ÿπ‘Ÿ

12

a) Removes the complexity of upstream effects (~7m/s) b) Based on a limited number of variables c) Uses site-specific information and engineering judgement d) Can be used in preliminary design as a simple hand calculation e) Can we use this equation to size rock (i.e. Riprap) protection?

i.e. V = known CD = known

CL = ? Displacement β‰ˆ 0

Stone Size =


Recommended