+ All Categories
Home > Documents > SLafrica1

SLafrica1

Date post: 09-Apr-2018
Category:
Upload: mohammad-umar-rehman
View: 215 times
Download: 0 times
Share this document with a friend

of 37

Transcript
  • 8/8/2019 SLafrica1

    1/37

    An Introduction to OptimalControl Applied to DiseaseModels

    Suzanne Lenhart

    University of Tennessee, Knoxville

    Departments of Mathematics

    Lecture1 p.1/3

  • 8/8/2019 SLafrica1

    2/37

    Example

    Number of cancer cells at time

    (exponential growth) State

    Drug concentration Control

    known initial data

    minimize

    where the first term represents number of cancer

    cells and the second term represents harmfuleffects of drug on body.

    Lecture1 p.2/3

  • 8/8/2019 SLafrica1

    3/37

    Optimal Control

    Adjust controls in a system to achieve a goalSystem:

    Ordinary differential equations

    Partial differential equations

    Discrete equations

    Stochastic differential equations

    Integro-difference equations

    Lecture1 p.3/3

  • 8/8/2019 SLafrica1

    4/37

    Deterministic Optimal Control

    Control of Ordinary Differential Equations (DE)

    control state

    State function satisfies DE

    Control affects DE

    !

    "

    #

    $

    $

    $

    Goal (objective functional)

    Lecture1 p.4/3

  • 8/8/2019 SLafrica1

    5/37

    Basic Idea

    System of ODEs modeling situation

    Decide on format and bounds on the controlsDesign an appropriate objective functional

    Derive necessary conditions for the optimal control

    Compute the optimal control numerically

    Lecture1 p.5/3

  • 8/8/2019 SLafrica1

    6/37

    Design an appropriate objective functional

    balancing opposing factors in functionalinclude (or not) terms at the final time

    Lecture1 p.6/3

  • 8/8/2019 SLafrica1

    7/37

    Big Idea

    In optimal control theory, after formulating aproblem appropriate to the scenario, there areseveral basic problems :

    (a) to prove the existence of an optimal control,

    (b) to characterize the optimal control,

    (c) to prove the uniqueness of the control,

    (d) to compute the optimal control numerically,(e) to investigate how the optimal control

    depends on various parameters in the model.

    Lecture1 p.7/3

  • 8/8/2019 SLafrica1

    8/37

    Deterministic Optimal Control- ODE

    Find piecewise continuous control %&

    '

    (

    andassociated state variable )

    &

    '

    (

    to maximize

    0

    1

    2

    3

    4

    &

    '

    5

    )

    &

    '

    (

    5

    %

    &

    '

    ( (

    6

    '

    subject to

    )

    7

    &

    '

    (

    8

    9

    &

    '

    5

    )

    &

    '

    (

    5

    %

    &

    '

    ( (

    )

    &

    @

    (

    8

    )

    4and )& (

    AB B

    Lecture1 p.8/3

  • 8/8/2019 SLafrica1

    9/37

    Contd.

    Optimal Control CD

    E

    F

    G

    achieves the maximum

    PutC

    D

    E

    F

    G

    into state DE and obtainH

    D

    E

    F

    G

    H

    D

    E

    F

    G

    corresponding optimal stateC

    D

    E

    F

    G

    , HD

    E

    F

    G

    optimal pair

    Lecture1 p.9/3

  • 8/8/2019 SLafrica1

    10/37

    Necessary, Sufficient Conditions

    Necessary ConditionsIf I

    P

    Q

    R

    S

    , TP

    Q

    R

    S

    are optimal, then the following

    conditions hold...

    Sufficient ConditionsIf I

    P

    Q

    R

    S

    , TP

    Q

    R

    S

    andU

    (adjoint) satisfy the conditions...then I

    P

    Q

    R

    S

    , TP

    Q

    R

    S

    are optimal.

    Lecture1 p.10/3

  • 8/8/2019 SLafrica1

    11/37

    Adjoint

    like Lagrange multipliers to attach DE to objective func-

    tional.Lecture1 p.11/3

  • 8/8/2019 SLafrica1

    12/37

    Deterministic Optimal Control- ODE

    Find piecewise continuous control VW

    X

    Y

    andassociated state variable

    W

    X

    Y

    to maximize

    a

    b

    c

    d

    e

    W

    X

    f

    W

    X

    Y

    f

    V

    W

    X

    Y Y

    g

    X

    subject to

    h

    W

    X

    Y

    i

    p

    W

    X

    f

    W

    X

    Y

    f

    V

    W

    X

    Y Y

    W

    q

    Y

    i

    eand W Y

    rs s

    Lecture1 p.12/3

  • 8/8/2019 SLafrica1

    13/37

    Quick Derivation of Necessary Condition

    Suppose tu

    is an optimal control and vu

    corresponding state.w

    x

    y

    variation function,

    .

    t

    u*(t)+ ah(t)

    u*(t)

    t

    u

    x

    y

    w

    x

    y

    another control. xy

    state corresponding to tu

    w

    ,

    x

    y

    y

    x

    y

    x

    y

    x

    t

    u

    w

    x

    y

    Lecture1 p.13/3

  • 8/8/2019 SLafrica1

    14/37

    Contd.

    At

    ,

    t

    x * (t)

    y(t,a)

    x 0

    all trajectories start at same position

    when

    control

    Maximum of

    w.r.t.

    occurs at

    .Lecture1 p.14/3

  • 8/8/2019 SLafrica1

    15/37

    Contd.

    j

    k

    m

    k

    n

    n

    n

    n

    j

    j

    m

    z

    j

    {

    k

    m m

    j

    }

    m

    z

    j

    }

    {

    k

    m

    ~

    j

    m

    z

    j

    {

    k

    m

    j

    j

    m

    z

    j

    {

    k

    m m

    j

    m

    z

    j

    {

    k

    m

    ~

    j

    }

    m

    z

    j

    }

    {

    k

    m

    Adding

    to our

    j

    k

    m

    gives

    Lecture1 p.15/3

  • 8/8/2019 SLafrica1

    16/37

    Contd.

    here we used product rule and

    .

    Lecture1 p.16/3

    C d

  • 8/8/2019 SLafrica1

    17/37

    Contd.

    Arguments of

    terms are

    .

    Arguments of

    terms are

    .

    Lecture1 p.17/3

    C d

  • 8/8/2019 SLafrica1

    18/37

    Contd.

    Choose

    s.t.

    adjoint equation

    transversality condition

    arbitrary variation

    for all

    Optimality condition.

    Lecture1 p.18/3

    U i H ilt i

  • 8/8/2019 SLafrica1

    19/37

    Using Hamiltonian

    Generate these Necessary conditions fromHamiltonian

    integrand (adjoint) (RHS of DE)maximize w.r.t. at

    optimality eq.

    adjoint eq.

    transversality conditionLecture1 p.19/3

  • 8/8/2019 SLafrica1

    20/37

    Converted problem of finding control to maximizeobjective functional subject to DE, IC to using

    Hamiltonian pointwise.For maximization

    at

    as a function of

    For minimization

    at

    as a function of

    Lecture1 p.20/3

  • 8/8/2019 SLafrica1

    21/37

    Two unknowns

    and

    introduce adjoint

    (like a Lagrange multiplier)

    Three unknowns

    ,

    and

    nonlinear w.r.t.

    Eliminate

    by setting

    and solve for

    in terms of

    and

    Two unknowns

    and

    with 2 ODEs (2 point BVP)+ 2 boundary conditions.

    Lecture1 p.21/3

    Pontr agin Ma im m Principle

  • 8/8/2019 SLafrica1

    22/37

    Pontryagin Maximum Principle

    If

    and

    are optimal for above problem, then there

    exists adjoint variable

    s.t.

    at each time, where Hamiltonian

    is defined by

    !

    and

    "

    #

    $

    $

    %

    &

    transversality condition

    Lecture1 p.22/3

    H ilt i

  • 8/8/2019 SLafrica1

    23/37

    Hamiltonian

    '

    (

    0

    1

    2

    3

    4

    3

    5

    6

    7

    8

    1

    2

    6

    0

    1

    2

    3

    4

    3

    5

    6

    5

    9

    maximizes'

    w.r.t. 5,'

    is linear w.r.t. 5

    '

    (

    @

    1

    2

    3

    4

    3

    8

    6

    5

    1

    2

    6

    7

    A

    1

    2

    3

    4

    3

    8

    6

    bounded controls,B

    C

    5

    1

    2

    6

    C

    D

    .Bang-bang control or singular control

    Example:

    '

    (

    E

    5

    7

    8

    5

    7

    4

    F

    8

    4

    H

    I

    '

    I

    5

    (

    E

    7

    8

    P

    (

    Q

    cannot solve for 5

    '

    is nonlinear w.r.t.5

    , set'

    R

    (

    Q

    and solve for5

    9

    optimality equation.Lecture1 p.23/3

    Example 1

  • 8/8/2019 SLafrica1

    24/37

    Example 1

    T

    U

    V

    X

    Y

    a

    b

    c

    e

    f

    g

    c

    subject to ip

    b

    c

    e

    q

    i

    b

    c

    e

    a

    b

    c

    e

    r

    i

    b

    s

    e

    q

    u

    What optimal control is expected?

    Lecture1 p.24/3

    Example 1 worked

  • 8/8/2019 SLafrica1

    25/37

    Example 1 worked

    v

    w

    x

    integrand

    RHS of DE

    at

    j

    k

    l

    j

    m

    m

    k

    Lecture1 p.25/3

    Example 2

  • 8/8/2019 SLafrica1

    26/37

    Example 2

    o

    z

    {

    |

    subject to }

    ~

    {

    ~

    z

    What optimal control is expected?

    Lecture1 p.26/3

    Hamiltonian

  • 8/8/2019 SLafrica1

    27/37

    Hamiltonian

    The adjoint equation and transversality conditiongive

    Lecture1 p.27/3

    Example 2 continued

  • 8/8/2019 SLafrica1

    28/37

    Example 2 continued

    and the optimality condition leads to

    The associated state is

    Lecture1 p.28/3

    Graphs Example 2

  • 8/8/2019 SLafrica1

    29/37

    Graphs, Example 2

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 21

    0

    1

    2

    3

    Time

    State

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

    2

    4

    6

    8

    Time

    Adjoint

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 28

    6

    4

    2

    0

    Time

    Control

    Example 2.2

    Lecture1 p.29/3

    Example 3

  • 8/8/2019 SLafrica1

    30/37

    Example 3

    at

    Lecture1 p.30/3

    Contd

  • 8/8/2019 SLafrica1

    31/37

    Contd.

    Solve for

    and then get

    .Do numerically with Matlab or by hand

    Lecture1 p.31/3

    Exercise

  • 8/8/2019 SLafrica1

    32/37

    Exercise

    control

    Lecture1 p.32/3

    Exercise completed

  • 8/8/2019 SLafrica1

    33/37

    Exercise completed

    control

    !

    Lecture1 p.33/3

    Contd.

  • 8/8/2019 SLafrica1

    34/37

    Contd.

    "

    #

    $

    %

    '

    (

    )

    1

    2

    '

    (

    )

    13

    4

    )

    5

    There is not an Optimal Control" in this case.

    Want finite maximum.

    Here unbounded optimal state

    unbounded OC

    Lecture1 p.34/3

    Opening Example

  • 8/8/2019 SLafrica1

    35/37

    Ope g a p e

    6

    7

    8

    9

    Number of cancer cells at time8

    (exponential growth) State@

    7

    8

    9

    Drug concentrationControl

    A

    6

    A

    8

    B

    C 6

    7

    8

    9

    D

    @

    7

    8

    9

    6

    7

    E

    9

    B

    6

    G known initial data

    minimize

    6

    7 9

    I

    G

    @

    P

    7

    8

    9

    A

    8

    See need for bounds on the control. See salvage

    term.Lecture1 p.35/3

    Further topics to be covered

  • 8/8/2019 SLafrica1

    36/37

    p

    Interpretation of the adjointSalvage term

    Numerical algorithmsSystems caseLinear in the control case

    Discrete models

    Lecture1 p.36/3

    more info

  • 8/8/2019 SLafrica1

    37/37

    more info

    See my homepage www.math.utk.edu Q R lenhart

    Optimal Control Theory in Application to Biology

    short course lectures and lab notes

    Book: Optimal Control applied to Biological Models

    CRC Press, 2007, Lenhart and J. Workman

    Lecture1 p.37/3