+ All Categories
Home > Documents > Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice...

Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice...

Date post: 22-Dec-2015
Category:
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
37
Slide 1 EE40 Fall 2009 Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams http://hkn.eecs.berkeley.edu/exam/list/? exam_course=EE%2040
Transcript
Page 1: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 1EE40 Fall 2009 Prof. Cheung

EE40

Final Exam Review

Prof. Nathan Cheung

12/01/2009

Practice with past examshttp://hkn.eecs.berkeley.edu/exam/list/?exam_course=EE%2040

Page 2: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 2EE40 Fall 2009 Prof. Cheung2

Overview of Course

Circuit components: R, C, L , sources I-V characteristics energy storage/dissipation

Circuit analysis: Laws: Ohm’s, KVL, KCL Equivalent circuits (series/ parallel, Thevenin, Norton) Superposition for linear circuits Nodal analysis Mesh analysis Phasor I and V

First-order transient excitation/analysis:Second Order RLC circuitsBode Plots

Page 3: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 3EE40 Fall 2009 Prof. Cheung3

Semiconductors Devices pn-diodes (many types) FETs (n-channel, p-channel, CMOS)

Useful Diode and FET circuits: Amplifiers: op-amp (negative feedback), rectifiers; wave shaping circuits

Logic gates; Combinatorial logic (sum-of-products, Karnaugh maps), sequential logic etc.

Overview of Course

Page 4: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 4EE40 Fall 2009 Prof. Cheung

Diode Circuit Analysis by Assumed Diode States

•1) Specify Ideal Diode Model or Piecewise-Linear Diode Model

•2) Each diode can be ON or OFF•3) Circuit containing n diodes will have 2n states•4) The combination of states that works for ALL diodes (consistent with KVL and KCL) will be the solution

reverse bias

forward bias

ID (A)

VD (V)reverse bias

forward bias

ID (A)

VDon

Page 5: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 5EE40 Fall 2009 Prof. Cheung

Example Problem: Perfect Rectifier Model

Sketch Vout versus Vin

Suggested problem: What if there is a 0.6V drop when diodes are on ?

Page 6: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 6EE40 Fall 2009 Prof. Cheung

Diode with Capacitor Circuit (e.g.Level Shifter)

- VC +

VOUT

+

-

VIN

+

-

C

VIN

t

1) Diode =open, VC(t)=0, VOUT (t)= VIN(t)2) Diode =short, VC(t)= -VIN(t) , VOUT(t)=03) Diode =open, VC(t)= -VIN(min), VOUT(t)= VIN(t)-VIN(min)

VOUT (t)= VC(t)+ VIN(t)

,

VC

VOUT

t

1 3

2Finds out what happens to VC when VIN changes

VIN(min)

Page 7: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 7EE40 Fall 2009 Prof. Cheung

Example: Diode with RL Circuit

Answer

Sketch i(t)

= L/R = 0.05 msec

Note: i(t) is continuous

Page 8: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 8EE40 Fall 2009 Prof. Cheung

Load-Line Analysis

We have a circuit containing a two-terminal non-linear element “NLE”, and some linear components.

1V+-

250K

S

Non-linear element

9A1M

D

+- 2V

200K

S

NLE

D

Then define I and V at the NLE terminals (typically associated signs)

First replace the entire linear part of the circuit by its Thevenin equivalent.

ID

VDS+ -

Page 9: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 9EE40 Fall 2009 Prof. Cheung

Example of Load-Line Analysis (con’t)

And have this connected to a linear (Thévenin) circuit

+- 2V

200K The solution !

Given the graphical properties of two terminal non-linear circuit (i.e. the graph of a two terminal device)

VDS

ID A)

10

(V)1 2

IDDNLE S

Whose I-V can also be graphed on the same axes (“load line”)

Application of KCL, KVL gives circuit solution

+- 2V

200K

S

NLE

D ID

VDS+ -

Page 10: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 10EE40 Fall 2009 Prof. Cheung

Example : Voltage controlled Attenuator

VC and RC Determines rd atQ point of diode

Page 11: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 11EE40 Fall 2009 Prof. Cheung

The large capacitors and DC bias source are effective shortsfor the ac signal in small-signal circuits

Example : Voltage Controlled Attenuator

Page 12: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 12EE40 Fall 2009 Prof. Cheung12

VDS

ID A)

10

(V)1 2

Three-Terminal Parametric Graphs

Concept of 3-Terminal Parametric Graphs:

We set a voltage (or current) at one set of terminals (here we will apply a fixed VGS, IG=0)

and conceptually draw a box around the device with only two terminals emerging so we can again plot the two-terminal characteristic (here ID versus VDS).

3-Terminal Device

ID

DG

S

VGS

+-

VGS = 3

VGS = 2

VGS = 1

But we can do this for a variety of values of VGS with the result that we get a family of curves.

Page 13: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 13EE40 Fall 2009 Prof. Cheung13

Graphical Solutions for 3-Terminal Devices

Now draw ID vs VDS for the 2V - 200K Thevenin source.

First select VGS (e.g. 2V) and draw ID vs VDS for the 3-Terminal device.

VDS

ID A)

10

(V)1 2

VGS = 3

VGS = 2

VGS = 1

ID

G+-

+-

V2V

D200K

S

VDS

ID A)

10

(V)1 2

The only point on the I vs V plane which obeys KCL and KVL is ID = 5A at VDS = 1V.

The solution !

We can only find a solution for one input (VGS) at a time:

Page 14: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 14EE40 Fall 2009 Prof. Cheung

1) Guess the mode of operation for the transistor. (We will learn how to make educated guesses).

2) Write the ID vs. VDS equation for this guess mode of operation.

3) Use KVL, KCL, etc. to come up with an equation relating ID and VDS based on the surrounding linear circuit.

4) Solve these equations for ID and VDS.

5) Check to see if the values for ID and VDS are possible for the mode you guessed for the transistor. If the values are possible for the mode guessed, stop, problem solved. If the values are impossible, go back to Step 1.

SOLVING MOSFET CIRCUITS: STEPS

Page 15: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 15EE40 Fall 2009 Prof. Cheung

CHECKING THE ANSWERS

NMOS 1) VGS > VT(N) in triode or saturation VGS ≤ VT(N) in cutoff

•2) VDS < VGS – VT(N) in triode VDS ≥ VGS – VT(N) in saturation

DS tov V0GSv

TriodeSaturationCut-off

toV

PMOS1) VGS < VT(P) in triode or saturation VGS ≥ VT(P) in cutoff2) VDS > VGS – VT(P) in triode VDS ≤ VGS – VT(P) in saturation

DS tov V 0GSv

Triode Saturation Cut-off

toV

Page 16: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 16EE40 Fall 2009 Prof. Cheung

Example Problem : MOSFET Circuit

Page 17: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 17EE40 Fall 2009 Prof. Cheung

Find VGS such that VDS=2V

Example Problem : MOSFET Circuit

Answer

Check: VDS(=2V) > VGS-VT (=1.5-0.5=1V)MOSFET indeed is in saturation mode

Guess Saturation Mode

Page 18: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 18EE40 Fall 2009 Prof. Cheung

Find small-signal model parameters

Example Problem : MOSFET Circuit

=10-5 Siemens

Page 19: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 19EE40 Fall 2009 Prof. Cheung

How do you guess the right mode ?

Often, the key is the value of VGS.

(We can often find VGS directly without solving the whole circuit.)

VGS ≤ VT(N)

definitely cutoff

VDS

ID

VGS = VT(N) +

probably saturation

VDS

ID

VGS - VT(N) =

Page 20: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 20EE40 Fall 2009 Prof. Cheung

triode mode saturation mode

VDS

VGS - VTH(N)

When VGS >> VTH(N), it’s harder to guess the mode.

ID

If ID is small, probably triode mode

How do you guess the right mode ?

Page 21: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 21EE40 Fall 2009 Prof. Cheung

EXAMPLE

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_4 V

3 V

1.5 k

GIVEN: VTH(N) = 1 V, K= 250 A/V2, = 0 V-1.

1) Since VGS > VTH(N), not in cutoff mode. Guess saturation mode.

2) Write transistor ID vs. VDS:

mA1

V 1V 310250II 26tDsaD

3) Write ID vs. VDS equation using KVL:

0V4 DDS I k 1.5-V-

Page 22: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 22EE40 Fall 2009 Prof. Cheung

EXAMPLE

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_4 V

3 V

1.5 k

GIVEN: VTH(N) = 1 V, ½ W/L nCOX = 250 A/V2, = 0 V-1.

4) Solve VDS:

ID = 1mA VDS = 2.5 V

5) Check:

ID and VDS are correct sign, and VDS ≥ VGS-VT(N) as required in saturation mode.

Page 23: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 23EE40 Fall 2009 Prof. Cheung

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_4 V

3 V

1.5 k

GIVEN: VTH(N) = 1 V, K= 250 A/V2, = 0 V-1.

WHAT IF WE GUESSED THE MODE WRONG?

1) Since VGS > VTH(N), not in cutoff mode. Guess triode mode.

2) Write transistor ID vs. VDS:

3) Write ID vs. VDS equation using KVL:

0V4 DDS I k 1.5-V-

ID = 2·250·10-6(3 – 1 – VDS/2)VDS

Page 24: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 24EE40 Fall 2009 Prof. Cheung

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_4 V

3 V

1.5 k

GIVEN: VTH(N) = 1 V, K= 250 A/V2, = 0 V-1.

4) Solve for VDS with quadratic equation by combining 2) and 3):

VDS = {4 V, 2.67 V}

5) Check:VDS > VGS – VT(N) = 2VNeither value valid in triode mode!Guess is incorrect.

WHAT IF WE GUESSED THE MODE WRONG?

Page 25: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 25EE40 Fall 2009 Prof. Cheung

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_4 V

3 V

1.5 k

In this circuit, the transistor delivered a constant current IDSAT to the 1.5 k resistor.

This circuit acts like a constant current source, as long as the transistor remains in saturation mode.IDSAT does not depend on the attached resistance if saturation is maintained.

IDSAT1.5 k

Another Perspective

Page 26: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 26EE40 Fall 2009 Prof. Cheung

G

D

S

ID

+

V GS

_

+

VDS

_+_

+_VDD

VGS

RL

IDSAT does depend on VGS; one can adjust the current supplied by adjusting VGS.

The circuit will go out of saturation mode if• VGS < VT(N) or• VDS < VGS – VT(N)

This can happen if VGS is too large or too small, or if the load resistance is too large.

IDSAT RL

Another Perspective

Page 27: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 27EE40 Fall 2009 Prof. Cheung

ANOTHER EXAMPLE

G

D

S

ID

+

V GS

_

+

VDS

_

+_4 V

1.5 k

GIVEN: VTH(N) = 1 V, K= 250 A/V2, = 0 V-1.

1) What is VGS?No current goes into/out gate.VGS = 3 V by voltage division.Guess saturation (randomly).

2) Write transistor ID vs. VDS:

3) Write ID vs. VDS equation using KVL:

0V4 DDS I k 1.5-V-

2 k

6 k

Effectively the same circuit as previous example: only 1 voltage source in this case

mA1

V 1V 310250II 26tDsaD

VDS=2.75V consisitent with saturation mode

Page 28: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 28EE40 Fall 2009 Prof. Cheung

The CMOS Inverter: Current Flow

VIN

VOUT

VDD

VDD00

N: offP: Triode

N: TriodeP: off

N: TriodeP: sat

N: satP: Triode

N: satP: sat

A B D E

C

ii

I

S

D

G

GS

D

VDD

VOUTVIN

Page 29: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 29EE40 Fall 2009 Prof. Cheung

Another CMOS Example: The LATCH

VDD

VOUT

VDD

VOUT_INT

CLK

CLK

CLK

CLK

VIN

Data (VIN) is written to the internal node (VOUT_INT) when the clock is low. VOUT remains frozen.

When the clock is high. The (inverted) internal node voltage is written to VOUT. The internal node VOUT_INT remains frozen

Page 30: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 30EE40 Fall 2009 Prof. Cheung

THE LATCH

VDD

VOUT

VDD

VOUT_INT

CLK

CLK

CLK

CLK

VIN

When CLK is low the left-hand transistors conduct. The right-hand transistors are open.

VOUT_INT is charged to VIN.

0 V

VDD 0 V

VDD

VOUT remains the same; there is no charging path.

Page 31: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 31EE40 Fall 2009 Prof. Cheung

THE LATCH

VDD

VOUT

VDD

VOUT_INT

CLK

CLK

CLK

CLK

VIN

When CLK is high, the right-hand transistors conduct. the left-hand transistors are open.

VDD

VDD0 V

0 V

VOUT_INT remains the same; there is no charging path.

VOUT is changed to VOUT_INT.

Page 32: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 32EE40 Fall 2009 Prof. Cheung

CONCEPT OF STATE

VDD

CurrentState

VDD

NextState

CLK

CLK

CLK

CLK

VIN

A latch stores a “1” or “0”.

The stored value is known as the “state”.

This is one of the basic elements needed to make a “state machine” (covered in EE 20 and CS 61C).

Page 33: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 33EE40 Fall 2009 Prof. Cheung

LATCH AS GATEKEEPER

Combinatorial LogicSignal propagates all the way through

Includes our logic gates: NAND, NOT, etc.

Sequential ElementPrevents changes in output until signaled

A signal may have to go through a complex system of gates, with paths of different delays: possibility of false output!

Page 34: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 34EE40 Fall 2009 Prof. Cheung

Amplifier Efficiency

Power Supply A

Power Supply B

LoadSource

SourcePi = (10-3V)2/105 =10-11 WLoadP0 = (8V)2/8 =8 W

Power SuppliesPs = 15W+7.5W = 22.5 W

AmplifierPd = 22.5W+10-11W-8W = 14.5 W

Amplifier

Amplifier Efficiency = 8/22.5 =36%

Page 35: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 35EE40 Fall 2009 Prof. Cheung

Differential Signal and Common Mode Signal

Redefine the inputs in terms of two other voltages:

1. differential mode input vid vi1 – vi2

2. common mode input vicm (vi1 + vi2)/2

so that

vi1 = vicm + (vid/2) and vi2 = vicm - (vid/2)

icmcmiddo vAvAv

“common mode gain”

“differential mode gain”

Page 36: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 36EE40 Fall 2009 Prof. Cheung

Common Mode Rejection Ratio

cm

d

A

Alog20)dBin(CMRR

Example

•Differential signal from sensor = 1mV (peak).We want outputs signal > 1V implies Ad> 1000•Common mode signal =100V (from power line).We want common mode signal < 0.1V impliesAcm <10-4

Therefore CMRR needs to be > 20log(107)= 140dB

Page 37: Slide 1EE40 Fall 2009Prof. Cheung EE40 Final Exam Review Prof. Nathan Cheung 12/01/2009 Practice with past exams .

Slide 37EE40 Fall 2009 Prof. Cheung

GivenVoff=2mVIB= 100nAIoff= 20nAAcm=1Ad=100Both input terminals to ground through 100k resistors

Use superposition

Vo = Ad(Vvoff+VIoff)+ Acmvicm= 100(0.001667+0.001667)+1(0.01)=0.3343V

Offset Voltage, Offset Current, and Bias Current


Recommended