+ All Categories
Home > Technology > Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Date post: 05-Dec-2014
Category:
Upload: frank-nielsen
View: 288 times
Download: 2 times
Share this document with a friend
Description:
Slides for the paper: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences published in IEEE SPL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6654274
17
On the Chi square and higher-order Chi distances for approximating f -divergences Frank Nielsen 1 Richard Nock 2 www.informationgeometry.org 1 Sony Computer Science Laboratories, Inc. 2 UAG-CEREGMIA September 2013 c 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 1/17
Transcript
Page 1: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

On the Chi square and higher-order Chi distances

for approximating f -divergences

Frank Nielsen1 Richard Nock2

www.informationgeometry.org

1Sony Computer Science Laboratories, Inc.2UAG-CEREGMIA

September 2013

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 1/17

Page 2: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Statistical divergences

Measures the separability between two distributions.

Examples: Pearson/Neymann χ2, Kullback-Leibler divergence:

χ2P(X1 : X2) =

∫(x2(x)− x1(x))

2

x1(x)dν(x),

χ2N(X1 : X2) =

∫(x1(x)− x2(x))

2

x2(x)dν(x),

KL(X1 : X2) =

∫x1(x) log

x1(x)

x2(x)dν(x),

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 2/17

Page 3: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

f -divergences: A generic definition

If (X1 : X2) =

∫x1(x)f

(x2(x)

x1(x)

)dν(x) ≥ 0,

where f is a convex function

f : (0,∞) ⊆ dom(f ) 7→ [0,∞]

such that f (1) = 0.

Jensen inequality: If (X1 : X2) ≥ f (∫x2(x)dν(x)) = f (1) = 0.

May consider f ′(1) = 0 and fix the scale of divergence by settingf ′′(1) = 1.

Can always be symmetrized:

Sf (X1 : X2) = If (X1 : X2) + If ∗(X1 : X2)

with f ∗(u) = uf (1/u), and If ∗(X1 : X2) = If (X2 : X1).c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 3/17

Page 4: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

f -divergences: Some examples

Name of the f -divergence Formula If (P : Q) Generator f (u) with f (1) = 0

Total variation (metric) 12

|p(x) − q(x)|dν(x) 12|u − 1|

Squared Hellinger∫

(√

p(x) −√

q(x))2dν(x) (√u − 1)2

Pearson χ2P

∫ (q(x)−p(x))2

p(x)dν(x) (u − 1)2

Neyman χ2N

∫ (p(x)−q(x))2

q(x)dν(x)

(1−u)2

u

Pearson-Vajda χkP

∫ (q(x)−λp(x))k

pk−1(x)dν(x) (u − 1)k

Pearson-Vajda |χ|kP∫ |q(x)−λp(x)|k

pk−1(x)dν(x) |u − 1|k

Kullback-Leibler∫

p(x) logp(x)q(x)

dν(x) − log u

reverse Kullback-Leibler∫

q(x) logq(x)p(x)

dν(x) u log u

α-divergence 41−α2 (1 −

p1−α

2 (x)q1+α(x)dν(x)) 41−α2 (1 − u

1+α

2 )

Jensen-Shannon 12

(p(x) log2p(x)

p(x)+q(x)+ q(x) log

2q(x)p(x)+q(x)

)dν(x) −(u + 1) log 1+u2

+ u log u

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 4/17

Page 5: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Stochastic approximations of f -divergences

I(n)f (X1 : X2) ∼

1

2n

n∑

i=1

(f

(x2(si)

x1(si)

)+

x1(ti )

x2(ti )f

(x2(ti )

x1(ti )

)),

with s1, ..., sn and t1, ..., tn IID. sampled from X1 and X2,respectively.

limn→∞

I(n)f (X1 : X2) → If (X1 : X2)

◮ work for any generator f but...

◮ In practice, limited to small dimension support.

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 5/17

Page 6: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Exponential familiesCanonical decomposition of the probability measure:

pθ(x) = exp(〈t(x), θ〉 − F (θ) + k(x)),

Here, consider natural parameter space Θ affine.

Poi(λ) : p(x |λ) =λxe−λ

x!, λ > 0, x ∈ {0, 1, ...}

NorI (µ) : p(x |µ) = (2π)−d2 e−

12(x−µ)⊤(x−µ), µ ∈ R

d , x ∈ Rd

Family θ Θ F (θ) k(x) t(x) ν

Poisson log λ R eθ − log x! x νcIso.Gaussian µ R

d 12θ

⊤θ d2 log 2π − 1

2x⊤x x νL

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 6/17

Page 7: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

χ2 for affine exponential families

Bypass integral computation,

Closed-form formula

χ2P(X1 : X2) = eF (2θ2−θ1)−(2F (θ2)−F (θ1)) − 1,

χ2N(X1 : X2) = eF (2θ1−θ2)−(2F (θ1)−F (θ2)) − 1,

Kullback-Leibler divergence amounts to a Bregman divergence [3]:

KL(X1 : X2) = BF (θ2 : θ1)

BF (θ : θ′) = F (θ)− F (θ′)− (θ − θ′)⊤∇F (θ′)

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 7/17

Page 8: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Higher-order Vajda χk divergences

χkP(X1 : X2) =

∫(x2(x)− x1(x))

k

x1(x)k−1dν(x),

|χ|kP(X1 : X2) =

∫|x2(x)− x1(x)|

k

x1(x)k−1dν(x),

are f -divergences for the generators (u − 1)k and |u − 1|k .

◮ When k = 1, χ1P(X1 : X2) =

∫(x1(x) − x2(x))dν(x) = 0

(never discriminative), and |χ1P |(X1,X2) is twice the total

variation distance.

◮ χ0P is the unit constant.

◮ χkP is a signed distance

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 8/17

Page 9: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Higher-order Vajda χk divergences

LemmaThe (signed) χk

P distance between members X1 ∼ EF (θ1) andX2 ∼ EF (θ2) of the same affine exponential family is (k ∈ N)always bounded and equal to:

χkP(X1 : X2) =

k∑

j=0

(−1)k−j

(k

j

)eF ((1−j)θ1+jθ2)

e(1−j)F (θ1)+jF (θ2).

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 9/17

Page 10: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Higher-order Vajda χk divergences:

For Poisson/Normal distributions, we get closed-form formula:

χkP(λ1 : λ2) =

k∑

j=0

(−1)k−j

(k

j

)eλ

1−j1 λ

j2−((1−j)λ1+jλ2),

χkP(µ1 : µ2) =

k∑

j=0

(−1)k−j

(k

j

)e

12j(j−1)(µ1−µ2)⊤(µ1−µ2).

signed distances.

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 10/17

Page 11: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

f -divergences from Taylor series

Lemma (extends Theorem 1 of [1])

When bounded, the f -divergence If can be expressed as the powerseries of higher order Chi-type distances:

If (X1 : X2) =

∫x1(x)

∞∑

i=0

1

i !f (i)(λ)

(x2(x)

x1(x)− λ

)i

dν(x),

=

∞∑

i=0

1

i !f (i)(λ) χi

λ,P(X1 : X2),

If < ∞, and χiλ,P(X1 : X2) is a generalization of the χi

P defined by:

χiλ,P(X1 : X2) =

∫(x2(x) − λx1(x))

i

x1(x)i−1dν(x).

and χ0λ,P(X1 : X2) = 1 by convention. Note that

χiλ,P ≥ f (1) = (1− λ)k is a f -divergence for

f (u) = (u − λ)k − (1− λ)kc© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 11/17

Page 12: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

f -divergences: Analytic formula◮ λ = 1 ∈ int(dom(f (i))), f -divergence (Theorem 1 of [1]):

|If (X1 : X2)−s∑

k=0

f (k)(1)

k!χkP(X1 : X2)|

≤1

(s + 1)!‖f (s+1)‖∞(M −m)s ,

where ‖f (s+1)‖∞ = supt∈[m,M] |f(s+1)(t)| and m ≤ p

q≤ M.

◮ λ = 0 (whenever 0 ∈ int(dom(f (i)))) and affine exponentialfamilies, simpler expression:

If (X1 : X2) =

∞∑

i=0

f (i)(0)

i !I1−i ,i(θ1 : θ2),

I1−i ,i(θ1 : θ2) =eF (iθ2+(1−i)θ1)

e iF (θ2)+(1−i)F (θ1).

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 12/17

Page 13: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Corollary: Approximating f -divergences by χ2 divergences

Corollary

A second-order Taylor expansion yields

If (X1 : X2) ∼ f (1) + f ′(1)χ1N (X1 : X2) +

1

2f ′′(1)χ2

N(X1 : X2)

Since f (1) = 0 and χ1N(X1 : X2) = 0, it follows that

If (X1 : X2) ∼f ′′(1)

2χ2N(X1 : X2),

(f ′′(1) > 0 follows from the strict convexity of the generator).When f (u) = u log u, this yields the well-known approximation [2]:

χ2P(X1 : X2) ∼ 2 KL(X1 : X2).

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 13/17

Page 14: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Kullback-Leibler divergence: Analytic expression

Kullback-Leibler divergence: f (u) = − log u.

f (i)(u) = (−1)i(i − 1)!u−i

and hence f (i)(1)i ! = (−1)i

i, for i ≥ 1 (with f (1) = 0).

Since χ11,P = 0, it follows that:

KL(X1 : X2) =∞∑

j=2

(−1)i

iχjP(X1 : X2).

→ alternating sign sequencePoisson distributions: λ1 = 0.6 and λ2 = 0.3, KL ∼ 0.1158 (exactusing Bregman divergence), stochastic evaluation with n = 106

yields KL ∼ 0.1156KL divergence from Taylor truncation: 0.0809(s = 2),0.0910(s = 3), 0.1017(s = 4), 0.1135(s = 10), 0.1150(s = 15),etc.

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 14/17

Page 15: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Contributions

Statistical f -divergences between members of the same exponentialfamily with affine natural space.

◮ Generic closed-form formula for the Pearson/Neyman χ2 andVajda χk -type distance

◮ Analytic expression of f -divergences using Pearson-Vajda-typedistances.

◮ Second-order Taylor approximation for fast estimation off -divergences.

JavaTM package:www.informationgeometry.org/fDivergence/

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 15/17

Page 16: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Thank you.

@article{fDivChi-arXiv1309.3029,

author="Frank Nielsen and Richard Nock",

title="On the {C}hi square and higher-order {C}hi distances for approximating $f$-divergences",

year="2013",

eprint="arXiv/1309.3029"

}

www.informationgeometry.org

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 16/17

Page 17: Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-Divergences

Bibliographic references I

N.S. Barnett, P. Cerone, S.S. Dragomir, and A. Sofo.

Approximating Csiszar f -divergence by the use of Taylor’s formula with integral remainder.

Mathematical Inequalities & Applications, 5(3):417–434, 2002.

Thomas M. Cover and Joy A. Thomas.

Elements of information theory.

Wiley-Interscience, New York, NY, USA, 1991.

Frank Nielsen and Sylvain Boltz.

The Burbea-Rao and Bhattacharyya centroids.

IEEE Transactions on Information Theory, 57(8):5455–5466, August 2011.

c© 2013 Frank Nielsen, Sony Computer Science Laboratories, Inc. 17/17


Recommended