+ All Categories
Home > Documents > Slides université Laval, Actuariat, Avril 2011

Slides université Laval, Actuariat, Avril 2011

Date post: 21-Nov-2014
Category:
Upload: arthur-charpentier
View: 2,280 times
Download: 1 times
Share this document with a friend
Description:
 
31
Arthur CHARPENTIER, Distortion in actuarial sciences Distorting probabilities in actuarial sciences Arthur Charpentier Université Rennes 1 [email protected] http ://freakonometrics.blog.free.fr/ Univeristé Laval, Québec, Avril 2011 1
Transcript
Page 1: Slides université Laval, Actuariat, Avril 2011

11pt

11pt

Note Exemple Exemple

11pt

Preuve

Arthur CHARPENTIER, Distortion in actuarial sciences

Distorting probabilitiesin actuarial sciences

Arthur Charpentier

Université Rennes 1

[email protected]

http ://freakonometrics.blog.free.fr/

Univeristé Laval, Québec, Avril 2011

1

Page 2: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

1 Decision theory and distorted risk measures

Consider a preference ordering among risks, � such that1. � is distribution based, i.e. if X � Y , ∀X L= X Y

L= Y , then X � Y ; hence,we can write FX � FY

2. � is total, reflexive and transitive,3. � is continuous, i.e. ∀FX , FY and FZ such that FX � FY � FZ , ∃λ, µ ∈ (0, 1)

such thatλFX + (1− λ)FZ � FY � µFX + (1− µ)FZ .

4. � satisfies an independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),

FX � FY =⇒ λFX + (1− λ)FZ � λFY + (1− λ)FZ .

5. � satisfies an ordering axiom, ∀X and Y constant (i.e.P(X = x) = P(Y = y) = 1, FX � FY =⇒ x ≤ y.

2

Page 3: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

Theorem1Ordering � satisfies axioms 1-2-3-4-5 if and only if ∃u : R→ R, continuous, strictlyincreasing and unique (up to an increasing affine transformation) such that ∀FX and FY :

FX � FY ⇔∫Ru(x)dFX(x) ≤

∫Ru(x)dFY (x)

⇔ E[u(X)] ≤ E[u(Y )].

But if we consider an alternative to the independence axiom4’. � satisfies an dual independence axiom, i.e. ∀FX , FY and FZ , and ∀λ ∈ (0, 1),

FX � FY =⇒ [λF−1X + (1− λ)F−1

Z ]−1 � [λF−1Y + (1− λ)F−1

Z ]−1.

we (Yaari (1987)) obtain a dual representation theorem,Theorem2Ordering � satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1]→ R, continuous, strictlyincreasing such that ∀FX and FY :

FX � FY ⇔∫Rg(FX(x))dx ≤

∫Rg(FY (x))dx

3

Page 4: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

Standard axioms required on risque measures R : X → R,– law invariance, X L= Y =⇒ R(X) = R(Y )– increasing X ≥ Y =⇒ R(X) ≥ R(Y ),– translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k,– homogeneity ∀λ ∈ R+, R(λX) = λ · R(X),– subadditivity R(X + Y ) ≤ R(X) +R(Y ),– convexity ∀β ∈ [0, 1], R(βλX + [1− β]Y ) ≤ β · R(X) + [1− β] · R(Y ).

– additivity for comonotonic risks ∀X and Y comonotonic,R(X + Y ) = R(X) +R(Y ),

– maximal correlation (w.r.t. measure µ) ∀X,

R(X) = sup {E(X · U) where U ∼ µ}

– strong coherence ∀X and Y , sup{R(X + Y )} = R(X) +R(Y ), where X L= X

and Y L= Y .

4

Page 5: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

Proposition1IfR is a monetary convex fonction, then the three statements are equivalent,– R is strongly coherent,– R is additive for comonotonic risks,– R is a maximal correlation measure.

Proposition2A coherente risk measureR is additive for comonotonic risks if and only if there exists adecreasing positive function φ on [0, 1] such that

R(X) =∫ 1

0φ(t)F−1(1− t)dt

where F (x) = F(X ≤ x).

see Kusuoka (2001), i.e. R is a spectral risk measure.

5

Page 6: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

Definition1A distortion function is a function g : [0, 1]→ [0, 1] such that g(0) = 0 and g(1) = 1.

For positive risks,Definition1Given distortion function g, Wang’s risk measure, denotedRg , is

Rg (X) =∫ ∞

0g (1− FX(x)) dx =

∫ ∞0

g(FX(x)

)dx (1)

Proposition1Wang’s risk measure can be defined as

Rg (X) =∫ 1

0F−1X (1− α) dg(α) =

∫ 1

0VaR[X; 1− α] dg(α). (2)

6

Page 7: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

More generally (risks taking value in R)Definition2We call distorted risk measure

R(X) =∫ 1

0F−1(1− u)dg(u)

where g is some distortion function.

Proposition3R(X) can be written

R(X) =∫ +∞

0g(1− F (x))dx−

∫ 0

−∞[1− g(1− F (x))]dx.

7

Page 8: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

risk measures R distortion function g

VaR g (x) = I[x ≥ p]Tail-VaR g (x) = min {x/p, 1}PH g (x) = xp

Dual Power g (x) = 1− (1− x)1/p

Gini g (x) = (1 + p)x− px2

exponential transform g (x) = (1− px) / (1− p)

Table 1 – Standard risk measures, p ∈ (0, 1).

8

Page 9: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 1 DECISION THEORY AND DISTORTED RISK MEASURES

Here, it looks like risk measures can be seen as R(X) = Eg◦P(X).Remark1Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e.

Q([a,+∞)) = g(P([a,+∞))).

Since g is increasing on [0, 1] Q is a capacity.

Example1Consider function g(x) = xk. The PH - proportional hazard - risk measure is

R(X; k) =∫ 1

0F−1(1− u)kuk−1du =

∫ ∞0

[F (x)]kdx

If k is an integer [F (x)]k is the survival distribution of the minimum over k values.

Definition2The Esscher risk measure with parameter h > 0 is Es[X;h], defined as

Es[X;h] = E[X exp(hX)]MX(h) = d

dhlnMX(h).

9

Page 10: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 2 ARCHIMEDEAN COPULAS

2 Archimedean copulas

Definition3Let φ denote a decreasing function (0, 1]→ [0,∞] such that φ(1) = 0, and such thatφ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k[φ−1](k)(t) ≥ 0 for all t. Definethe inverse (or quasi-inverse if φ(0) <∞) as

φ−1(t) =

φ−1(t) for 0 ≤ t ≤ φ(0)0 for φ(0) < t <∞.

The function

C(u1, · · · , un) = φ−1(φ(u1) + · · ·+ φ(ud)), u1, · · · , un ∈ [0, 1],

is a copula, called an Archimedean copula, with generator φ.

Let Φd denote the set of generators in dimension d.Example2The independent copula C⊥ is an Archimedean copula, with generator φ(t) = − log t.

10

Page 11: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 2 ARCHIMEDEAN COPULAS

The upper Fréchet-Hoeffding copula, defined as the minimum componentwise,M(u) = min{u1, · · · , ud}, is not Archimedean (but can be obtained as the limit ofsome Archimedean copulas).

Set λ(t) = exp[−φ(t)] (the multiplicative generator), then

C(u1, ..., ud) = λ−1(λ(u1) · · ·λ(ud)),∀u1, ..., ud ∈ [0, 1],

which can be written

C(u1, ..., ud) = λ−1(C⊥[λ(u1), . . . , λ(ud)]),∀u1, ..., ud ∈ [0, 1],

Note that it is possible to get an interpretation of that distortion of theindependence.

A large subclass of Archimedean copula in dimension d is the class ofArchimedean copulas obtained using the frailty approach.

Consider random variables X1, · · · , Xd conditionally independent, given a latentfactor Θ, a positive random variable, such that P (Xi ≤ xi|Θ) = Gi (x)Θ whereGi denotes a baseline distribution function.

11

Page 12: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 2 ARCHIMEDEAN COPULAS

The joint distribution function of X is given by

FX (x1, · · · , xd) = E (P (X1 ≤ x1, · · · , Xd ≤ Xd|Θ))

= E

(d∏i=1

P (Xi ≤ xi|Θ))

= E

(d∏i=1

Gi (xi)Θ

)

= E

(d∏i=1

exp [−Θ (− logGi (xi))])

= ψ

(−

d∑i=1

logGi (xi)),

where ψ is the Laplace transform of the distribution of Θ, i.e.ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectivelyby

Fi(xi) = P(Xi ≤ xi) = ψ (− logGi (xi)) ,the copula of X is

C (u) = FX

(F−1

1 (u1) , · · · , F−1d (ud)

)= ψ

(ψ−1 (u) + · · ·+ ψ−1 (ud)

)This copula is an Archimedean copula with generator φ = ψ−1 (see e.g. Clayton(1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details).

12

Page 13: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 3 HIERARCHICAL ARCHIMEDEAN COPULAS

3 Hierarchical Archimedean copulas

It is possible to look at C(u1, · · · , ud) defined as

φ−11 [φ1[φ−1

2 (φ2[· · ·φ−1d−1[φd−1(u1) + φd−1(u2)] + · · ·+ φ2(ud−1))] + φ1(ud)]

where φi are generators. C is a copula if φi ◦ φ−1i−1 is the inverse of a Laplace

transform. This copula is said to be a fully nested Archimedean (FNA) copula.E.g. in dimension d = 5, we get

φ−11 [φ1(φ−1

2 [φ2(φ−13 [φ3(φ−1

4 [φ4(u1) + φ4(u2)]) + φ3(u3)]) + φ2(u4)]) + φ1(u5)].

It is also possible to consider partially nested Archimedean (PNA) copulas, e.g.by coupling (U1, U2, U3), and (U4, U5),

φ−14 [φ4(φ−1

1 [φ1(φ−12 [φ2(u1) + φ2(u2)]) + φ1(u3)]) + φ4(φ−1

3 [φ3(u4) + φ3(u5)])]

Again, it is a copula if φ2 ◦ φ−11 is the inverse of a Laplace transform, as well as

φ4 ◦ φ−11 and φ4 ◦ φ−1

3 .

13

Page 14: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 3 HIERARCHICAL ARCHIMEDEAN COPULAS

U1 U2 U3 U4 U5

φ4

φ3

φ2

φ1

U1 U2 U3 U4 U5

φ2

φ1

φ3

φ4

Figure 1 – fully nested Archimedean copula, and partially nested Archimedeancopula.

14

Page 15: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 3 HIERARCHICAL ARCHIMEDEAN COPULAS

It is also possible to consider

φ−13 [φ3(φ−1

1 [φ1(u1) + φ1(u2) + φ1(u3)]) + φ3(φ−12 [φ2(u4) + φ2(u5)])].

if φ3 ◦ φ−11 and φ3 ◦ φ−1

2 are inverses of Laplace transform. Or

φ−13 [φ3(φ−1

1 [φ1(u1) + φ1(u2)] + φ3(u3) + φ3(φ−12 [φ2(u4) + φ2(u5)])].

15

Page 16: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 3 HIERARCHICAL ARCHIMEDEAN COPULAS

U1 U2 U3 U4 U5

φ1

φ3

φ2

U1 U2 U3 U4 U5

φ1

φ3

φ2

Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif-férentes.

16

Page 17: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 3 HIERARCHICAL ARCHIMEDEAN COPULAS

Example3If φi’s are Gumbel’s generators, with parameter θi, a sufficient condition for C to be aFNA copula is that θi’s increasing. Similarly if φi’s are Clayton’s generators.

Again, an heuristic interpretation can be derived, see Hougaard (2000), with twofrailties Θ1 and Θ2 such that

17

Page 18: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

4 Distorting copulas

Genest & Rivest (2001) extended the concept of Archimedean copulasintroducing the multivariate probability integral transformation (Wang, Nelsen &Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap(2005) or Durante & Sempi (2005) called this the transformed copula). Considera copula C. Let h be a continuous strictly concave increasing function[0, 1]→ [0, 1] satisfying h (0) = 0 and h (1) = 1, such that

Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))), 0 ≤ ui ≤ 1

is a copula. Those functions will be called distortion functions.Example4A classical example is obtained when h is a power function, and when the power is theinverse of an integer, hn(x) = x1/n, i.e.

Dhn(C) (u, v) = Cn(u1/n, v1/n), 0 ≤ u, v ≤ 1 and n ∈ N.

Then this copula is the survival copula of the componentwise maxima : the copula of

18

Page 19: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

(max{X1, · · · , Xn},max{Y1, · · · , Yn}) is Dhn(C), where {(X1, Y1), · · · , (Xn, Yn)}

is an i.i.d. sample, and the (Xi, Yi)’s have copula C.

A max-stable copula is a copula C such that ∀n ∈ N,

Cn(u1/n1 , · · · , u1/n

d ) = C(u1, · · · , ud).

Example5Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and defineC(u, v) = φ−1(φ(u) +φ(v)) = Dexp[−φ](C⊥). This function is an Archimedean copula.

Example6A distorted version of the comonontonic copula is the comonotonic copula,

h−1[min{h(u1), · · · , h(ud)}] = min{u1, · · · , ud}

Example7Following the idea of Capéraà, Fougères & Genest (2000), it is possible to constructArchimax copulas as distortions of max-stable copulas. In dimension d = 2, max-stable

19

Page 20: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

copulas are characterized through a generator A such that

C(u, v) = exp[log(uv)A

(log(u)log(uv)

)]Here consider φ an Archimedean generator, then Archimax copulas are defined as

C(u, v) = φ−1[[φ(u) + φ(v)]A

(φ(u)

φ(u) + φ(v)

)]In the bivariate case, h need not be differentiable, and concavity is a sufficientcondition.

20

Page 21: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

With nonconcave distortion function, distorted copulas are semi-copulas, fromBassan & Spizzichino (2001).Definition4Function S : [0, 1]d → [0, 1] is a semi-copula if 0 ≤ ui ≤ 1, i = 1, · · · , d,

S(1, ..., 1, ui, 1, ..., 1) = ui, (3)

S(u1, ..., ui−1, 0, ui+1, ..., ud) = 0, (4)and s 7→ S(u1, ..., ui−1, s, ui+1, ..., ud) is increasing on [0, 1].

Let Hd denote the set of continuous strictly increasing functions [0, 1]→ [0, 1]such that h (0) = 0 and h (1) = 1, C ∈ C,

Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1

is a copula, called distorted copula.Hd-copulas will be functions Dh (C) for some distortion function h and somecopula C.d-increasingness of function Dh (C) is obtained when h ∈ Hd, i.e. h is continuous,

21

Page 22: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

with h (0) = 0 and h (1) = 1, and such that h(k)(x) ≤ 0 for all x ∈ (0, 1) andk = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)).

As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd.Further, observe that for h, h′ ∈ Hd,

Dh◦h′ (C) (u1, · · · , ud) = (Dh ◦ Dh′) (C) (u1, · · · , ud) , 0 ≤ ui ≤ 1.

Again, it is possible to get an intuitive interpretation of that distortion.

Consider a max-stable copula C. Let X be a random vector such that X given Θhas copula C and P (Xi ≤ xi|Θ) = Gi (xi)Θ, i = 1, · · · , d.

Then, the (unconditional) joint distribution function of X is given by

F (x) = E (P (X1 ≤ x1, · · · , Xd ≤ xd|Θ))= E (C (P (X1 ≤ xi|Θ) , · · · ,P (Xd ≤ xd|Θ)))

= E(C(G1 (x1)Θ

, · · · , Gd (xd)Θ))

= E(CΘ (G1 (x1) , · · · , Gd (xd))

)= ψ (− logC (G1 (x1) , · · · , Gd (xd))) ,

22

Page 23: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

where ψ is the Laplace transform of the distribution of Θ, i.e.ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e.

C(G1 (x1)Θ

, · · · , Gd (xd)Θ)

= CΘ (G1 (x1) , · · · , Gd (xd)) .

The unconditional marginal distribution functions are Fi (xi) = ψ (− logGi (xi)),and therefore

CX (x1, · · · , xd) = ψ(− log

(C(exp

[−ψ−1 (x)

], exp

[−ψ−1 (y)

]))).

Note that since ψ−1 is completly montone, then h belongs to Hd.

23

Page 24: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 4 DISTORTING COPULAS

Remark2It is possible to use distortion to obtain stronger tail dependence (with results that can berelated to C & Segers (2007)). Recall that

λL = limu→0

C(u, u)u

and λU = limu→1

1− C(u, u)1− u .

If h−1 is regularly varying in 0 with exponent α > 0, i.e. h−1(t) ∼ L0tα in 0, then

λL(Dh(C)) = [λL(C)]α.

If h−1 is regularly varying in 1 with exponent β > 0, i.e. 1− h−1(t) ∼ L0[1− t]β in 1,then λU (Dh(C)) = 2− [2− λU (C)]β .

24

Page 25: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 5 APPLICATION TO MULTIVARIATE RISK MEASURE

5 Application to multivariate risk measure

Wang (1996) proposed the risk measure based on distortion functiong(t) = Φ(Φ−1(t)− λ), with λ ≥ 0 (to be convex).

Valdez (2009) suggested a multivariate distortion.

25

Page 26: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

6 Application to aging problems

Let T = (T1, · · · , Td) denote remaining lifetime, at time t = 0. Consider theconditional distribution

(T1, · · · , Td) given T1 > t, · · · , Td > t

for some t > 0.

Let C denote the survival copula of T ,

P(T1 > t1, · · · , Td > td) = C(P(T1 > t1), · · · ,P(T1 > tc)).

The survival copula of the conditional distribution is the copula of

(U1, · · · , Ud) given U1 <F 1(t)︸ ︷︷ ︸u1

, · · · ,underbraceF d(t)ud

where (U1, · · · , Ud) has distribution C , and where Fi is the distribution of Ti

26

Page 27: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

Let C be a copula and let U be a random vector with joint distribution functionC. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of Cat level u is defined as the copula, denoted Cu, of the joint distribution of U

conditionally on the event {U ≤ u} = {U1 ≤ u1, · · · , Ud ≤ ud}.

6.1 Aging with Archimedean copulas

If C is a strict Archimedean copula with generator φ (i.e. φ(0) =∞), then thelower tail dependence copula relative to C at level u is given by the strictArchimedean copula with generator φu defined by

φu(t) = φ(t · C(u))− φ(C(u)), 0 ≤ t ≤ 1,

where C(u) = φ−1[φ(u1) + · · ·+ φ(ud)] (see Juri & Wüthrich (2002) or C & Juri(2007)).

27

Page 28: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

Example8Gumbel copulas have generator φ (t) = [− ln t]θ where θ ≥ 1. For any u ∈ (0, 1]d, thecorresponding conditional copula has generator

φu (t) =[M1/θ − ln t

]θ−M where M = [− ln u1]θ + · · ·+ [− ln ud]θ .

Example9Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence,

φu (t) = [t·C(u)]−θ−1−φ(C(u)) = t−θ·C(u)−θ−1−[C(u)−θ−1] = C(u)−θ·[t−θ−1],

hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is uniqueup to a multiplicative constant, φu is also the generator of Clayton copula, withparameter θ.

Theorem3Consider X with Archimedean copula, having a factor representation, and let ψ denotethe Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d, then X givenX ≤ F−1

X (u) (in the pointwise sense, i.e. X1 ≤ F−11 (u1), · · · ., Xd ≤ F−1

d (ud)) is an

28

Page 29: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

Archimedean copula with a factor representation, where the factor has Laplace transform

ψu (t) =ψ(t+ ψ−1 (C(u))

)C(u) .

6.2 Aging with distorted copulas copulas

Recall that Hd-copulas are defined as

Dh(C)(u1, · · · , ud) = h−1(C(h(u1), · · · , h(ud))), 0 ≤ ui ≤ 1,

where C is a copula, and h ∈ Hd is a d-distortion function.

Assume that there exists a positive random variable Θ, such that, conditionallyon Θ, random vector X = (X1, · · · , Xd) has copula C, which does not depend onΘ. Assume moreover that C is in extreme value copula, or max-stable copula (seee.g. Joe (1997)) : C

(xh1 , · · · , xhd

)= Ch (x1, · · · , xd) for all h ≥ 0. The following

result holds,Lemma1

29

Page 30: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

Let Θ be a random variable with Laplace transform ψ, and consider a random vectorX = (X1, · · · , Xd) such that X given Θ has copula C, an extreme value copula.Assume that, for all i = 1, · · · , d, P (Xi ≤ xi|Θ) = Gi (xi)Θ where the Gi’s aredistribution functions. Then X has copula

CX (x1, · · · , xd) = ψ(− log

(C(exp

[−ψ−1 (x1)

], · · · , exp

[−ψ−1 (xd)

]))),

whose copula is of the form Dh(C) with h(·) = exp[−ψ−1 (·)

].

Theorem4Let X be a random vector with anHd-copula with a factor representation, let ψ denotethe Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, andGi’s the marginal distributions.

Let u ∈ (0, 1]d, then, the copula of X given X ≤ F−1X (u) is

CX,u (x) = ψu

(− log

(Cu

(exp

[−ψ−1

u (x1)], · · · , exp

[−ψ−1

u (xd)])))

= Dhu(Cu)(x),

where hu(·) = exp[−ψ−1

u (·)], and where

– ψu is the Laplace transform defined as ψu (t) = ψ (t+ α) /ψ (α) whereα = − log (C (u∗)), u∗i = exp

[−ψ−1 (ui)

]for all i = 1, · · · , d. Hence, ψu is the

30

Page 31: Slides université Laval, Actuariat, Avril 2011

Arthur CHARPENTIER, Distortion in actuarial sciences 6 APPLICATION TO AGING PROBLEMS

Laplace transform of Θ given X ≤ F−1X (u),

– P(Xi ≤ xi|X ≤ F−1

X (u) ,Θ)

= G′i (xi)Θ for all i = 1, · · · , d, where

G′i (xi) = C (u∗1, u∗2, · · · , Gi (xi) , · · · , u∗d)C (u∗1, u∗2, · · · , u∗i , · · · , u∗d)

,

– and Cu is the following copula

Cu (x) =C(G1(G′1−1 (x1)

), · · · , Gd

(G′d−1 (xd)

))C(G1(F−1

1 (u1)), · · · , Gd

(F−1d (ud)

)) .

31


Recommended