+ All Categories
Home > Documents > Slides Vogel 1

Slides Vogel 1

Date post: 04-Jun-2018
Category:
Upload: m-del-rocio
View: 224 times
Download: 0 times
Share this document with a friend

of 85

Transcript
  • 8/13/2019 Slides Vogel 1

    1/85

    Introduction toNuclear and Particle Physics

    Sascha VogelElena Bratkovskaya

    Marcus Bleicher

    Wednesday, 14:15-16:45FIAS Lecture Hall

  • 8/13/2019 Slides Vogel 1

    2/85

    Elena Bratkovskaya Marcus Bleicher

    [email protected]@th.physik.uni-frankfurt.de

    [email protected]

    Lecturers

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/13/2019 Slides Vogel 1

    3/85

  • 8/13/2019 Slides Vogel 1

    4/85

    The plan...

    1) Units, scales, historical overview2) Fermi-Gas model, shell model3) Collective Nuclear Models4) Angular Momentum, Nucleon-Nucleon-Interaction

    5) Hartree-Fock6) Fermion-Pairing7) Phenomenological Single Particle Models8) Klein-Gordon equation9) Covariant ED

    10) Dirac equation11) Quark models12) Intro to QCD13) Symmetries in QCD14) Quark-Gluon-Plasma

  • 8/13/2019 Slides Vogel 1

    5/85

    Literature

    Walter Greiner, Joachim A. Maruhn,Nuclear models

    Bogdan Povh, Klaus Rith, Christoph Scholz, and Frank ZetscheParticles and Nuclei. An Introduction to the Physical Concepts

    Ashok Das, Thomas FerbelIntroduction to nuclear and particle physics

    Ian Simpson HughesElementary particles

    Bogdan Povh, Klaus RithParticles and nuclei: an introduction to the physical concepts

    Brian Robert Martin, Graham ShawParticle physics

    Brian Robert MartinNuclear and particle physics

  • 8/13/2019 Slides Vogel 1

    6/85

    Lecture 1

    Units, scalesEarly nuclear models

  • 8/13/2019 Slides Vogel 1

    7/85

    Scales

    Visiblematter

    10-1 m

    Crystalstructures

    10-9 m

    Atoms10-10 m

    Nucleus10-14 m

    Nucleon10-15 m

  • 8/13/2019 Slides Vogel 1

    8/85

    Scales in nuclear physics

    10-10m

    10-14m

    10-15

    m

    typical excitation energy: ~ eV

    typical excitation energy: ~ MeV

    typical excitation energy: ~ 102MeV

  • 8/13/2019 Slides Vogel 1

    9/85

    Scales in nuclear physics

    unit for length: fm (fermi, femtometer)unit for energy: eV (electron volt)unit for mass: MeV/c2 (c = 3 x 108m/s)in SI units: 1 MeV/c2= 1.783 x 10-30kg

    Common prefixes: keV - 103eV

    MeV - 106eV GeV - 109eV TeV - 1012eV

    E=mc2

  • 8/13/2019 Slides Vogel 1

    10/85

    Scales in nuclear physics

    common mass scales:

    photon: m!= 0 MeV

    neutrino: m"~ 1 eVelectron: me = 0.511 MeVproton: mp = 938 MeV

    Can we further simplify the unit system?

  • 8/13/2019 Slides Vogel 1

    11/85

    Scales in nuclear physics

    Natural units:

    = c = kB = 1

    masses and lengths are the only units left and

    [mass] = [energy] = [temperature] = 1 / [length]

  • 8/13/2019 Slides Vogel 1

    12/85

    Angular momentum

    Spin is quantized (see atomic physics lecture)

    Allowed values:

    S=

    s+ (s+ 1) s = 0,1

    2, 1,

    3

    2, 2,

    5

    2, ...

    Orbital angular momentumAllowed values: Total angular momentum:

    L = 0, 1, 2, 3... J=

    S+

    LFor each J there are 2J+1 projections of theangular momentum

    M=

    J,

    J+ 1, ..., J

    1, J

  • 8/13/2019 Slides Vogel 1

    13/85

    Quantum statistics

    Assume: System of N particles

    Wavefunction (r1, r2..., rN)

    replace: (r2, r1..., rN) =C

    (

    r1, r2..., rN)

    C has to be a phase factor, i.e. C2= 1:

    Bosons: C = +1Fermions: C = -1

    From spin statistics theorem:

    Fermions have half integer spin, Bosons integer spin

  • 8/13/2019 Slides Vogel 1

    14/85

    Electric charge

    = EM = e

    2

    40c

    1

    137

    Important quantity:Fine structure constant

    Charge is quantized as well: quanta - e

    Usual choice:

    0 = 1 =

    e

    4

  • 8/13/2019 Slides Vogel 1

    15/85

    Magnetons

    N =e

    2mpN=

    e

    2me

    Nuclear magneton Bohr magneton

    e = 1.001159652B

    p = 2.79N

    n =

    1.91N

    2

    3p

    Two quantities are used to describe magneticproperties (e.g. magnetic dipole moment) ofelectrons and nuclei:

  • 8/13/2019 Slides Vogel 1

    16/85

    Historical remarks

    Atomic nucleus discovered 1911 by

    1882 - 19451871 - 1837 1889 - 1970

    ErnestRutherford

    HansGeiger

    ErnestMarsden

  • 8/13/2019 Slides Vogel 1

    17/85

    Before...

    Plum Pudding Model

  • 8/13/2019 Slides Vogel 1

    18/85

    Plum pudding model

    +

    +

    +

    +

    ++

    +

    ++

    +

    +

    positive chargesuniformly distributedinside the whole atom

    +electrons outside

    Features: charge neutral

    extended in space

  • 8/13/2019 Slides Vogel 1

    19/85

    Rutherford experiment 1909-1911

    Bombard nuclei (thin gold foil) with #particlesIdea: Check angular distribution

  • 8/13/2019 Slides Vogel 1

    20/85

    Before...

    +

    +

    +

    +

    ++

    +

    ++

    +

    +

    Prediction: #particles move through the pudding,nearly undisturbed

  • 8/13/2019 Slides Vogel 1

    21/85

    But...

    +

    Result: some #particles got reflected at a center ofthe atom and bounced back ~180

  • 8/13/2019 Slides Vogel 1

    22/85

    But...

    +

    Interpretation: positively charged core surroundedby negatively charges electrons

  • 8/13/2019 Slides Vogel 1

    23/85

    Rutherfords model of the atom

    Atom has a small positive core and is

    surrounded by atoms, just like the sun by planets(also: planetary model)

    Important: The atom is 99.99% empty space

    10-10m

    10-14m

  • 8/13/2019 Slides Vogel 1

    24/85

    Whats inside?

    Following an idea of Rutherfordfrom 1921

    Nucleus consists of

    protons (positive charge)neutrons (no charge)

    Info neutron: charge 0, spin 1/2

    mass 939,56 MeV mean lifetime: 885.7s decay channel: n p+ e + e

  • 8/13/2019 Slides Vogel 1

    25/85

    Nuclear forces

    From Coulomb interaction alone one

    would expect that nuclei are not bound.

  • 8/13/2019 Slides Vogel 1

    26/85

    Nuclear forces

    Nuclear force (or residual strong force) holds them

    together

    Features:1) Nuclear force has to be short range2) Nuclear force has to be strong3) Nuclear force is the same for n-n, n-p and p-p

    (does not depend on charge)4) Nuclear forces are next-neighbour interactions,they show saturation

    5) Nuclear forces are spin-dependent6) They do not obey a 1/r2law, they are not central

    forces, thus angular momentum is not conserved

  • 8/13/2019 Slides Vogel 1

    27/85

    Yukawa potential

    Every force is carried by a force carrier (gauge boson)

    Idea Yukawa: Nuclear force is carried by a virtual meson

    pp

    nn

    !0

  • 8/13/2019 Slides Vogel 1

    28/85

    Yukawa potential

    Mass of the virtual boson is roughly 200 MeV

    Yukawa-Potential

    V =g2emr

    r

    Also called screened Coulomb potential

  • 8/13/2019 Slides Vogel 1

    29/85

    Yukawa potential

    Features: for r $", V$0 weakly attractive at low r

    repulsive core (blackboard)

  • 8/13/2019 Slides Vogel 1

    30/85

    Properties of nuclei

    AZX

    1

    1H

    197

    79 Au

    12

    6 CExamples:

    A = N+ Z

  • 8/13/2019 Slides Vogel 1

    31/85

    Properties of nuclei

    AZX

    mass number

    1

    1H

    197

    79 Au

    12

    6 CExamples:

    A = N+ Z

  • 8/13/2019 Slides Vogel 1

    32/85

    Properties of nuclei

    AZX

    mass number

    charge

    1

    1H

    197

    79 Au

    12

    6 CExamples:

    A = N+ Z

  • 8/13/2019 Slides Vogel 1

    33/85

    Properties of nuclei

    AZX

    mass number

    charge

    1

    1H

    197

    79 Au

    12

    6 CExamples:

    A = N+ Z

  • 8/13/2019 Slides Vogel 1

    34/85

    Table of Nuclides

  • 8/13/2019 Slides Vogel 1

    35/85

    Table of Nuclides

    isotone

  • 8/13/2019 Slides Vogel 1

    36/85

    Table of Nuclides

    isotope

    isotone

  • 8/13/2019 Slides Vogel 1

    37/85

    Table of Nuclides

  • 8/13/2019 Slides Vogel 1

    38/85

    Table of Nuclides

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

  • 8/13/2019 Slides Vogel 1

    39/85

    Table of Nuclides

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

    13

    6 C

    12

    6 C same Z: isotopes

  • 8/13/2019 Slides Vogel 1

    40/85

    Table of Nuclides

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

    13

    6 C

    12

    6 C same Z: isotopes

    13

    6 C

    14

    7 N same N: isotones

  • 8/13/2019 Slides Vogel 1

    41/85

    Table of Nuclides

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

    13

    6 C

    12

    6 C same Z: isotopes

    13

    6 C

    14

    7 N same N: isotones

    3

    1H

    3

    2He NZ: mirror nuclei

  • 8/13/2019 Slides Vogel 1

    42/85

    Table of Nuclides

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

    13

    6 C

    12

    6 C same Z: isotopes

    13

    6 C

    14

    7 N same N: isotones

    3

    1H

    3

    2He NZ: mirror nuclei

    180

    73 T a

    180m

    73 T a same A and Z,

    but different excitation: nuclear isomers

  • 8/13/2019 Slides Vogel 1

    43/85

    Table of Nuclides

    half-life of more than 1000 trillion years

    17

    8 O

    17

    7 N

    17

    9 F same A: isobars

    13

    6 C

    12

    6 C same Z: isotopes

    13

    6 C

    14

    7 N same N: isotones

    3

    1H

    3

    2He NZ: mirror nuclei

    180

    73 T a

    180m

    73 T a same A and Z,

    but different excitation: nuclear isomers

  • 8/13/2019 Slides Vogel 1

    44/85

    Decays

    A

    ZX

    ZX Z+1X+ e

    + eA

    ZX A

    Z1X+ e+ + e

    A

    ZX+ e

    A

    Z1X+ eA

    ZX A4

    Z2X+ (42He)

  • 8/13/2019 Slides Vogel 1

    45/85

    Decays

    A

    ZX

    ZX Z+1X+ e

    + eA

    ZX A

    Z1X+ e+ + e

    A

    ZX+ e

    A

    Z1X+ eAZX

    A4

    Z2X+ (42He)

  • 8/13/2019 Slides Vogel 1

    46/85

  • 8/13/2019 Slides Vogel 1

    47/85

    Decays

    A

    ZX

    ZX Z+1X+ e

    + eA

    ZX A

    Z1X+ e+ + e

    A

    ZX+ e

    A

    Z1X+ eAZX

    A4

    Z2X+ (42He)

  • 8/13/2019 Slides Vogel 1

    48/85

    Decays

    A

    ZX

    ZX Z+1X+ e

    + eA

    ZX A

    Z1X+ e+ + e

    A

    ZX+ e

    A

    Z1X+ eAZX

    A4

    Z2X+ (42He)

  • 8/13/2019 Slides Vogel 1

    49/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    50/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    51/85

    Nuclear fission

    too many protons

  • 8/13/2019 Slides Vogel 1

    52/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    53/85

    Nuclear fission

    too many neutrons

  • 8/13/2019 Slides Vogel 1

    54/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    55/85

    Nuclear fission

    too much Coulombrepulsion

  • 8/13/2019 Slides Vogel 1

    56/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    57/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    58/85

    Nuclear fission

    too many neutrons

  • 8/13/2019 Slides Vogel 1

    59/85

    Nuclear fission

  • 8/13/2019 Slides Vogel 1

    60/85

    Nuclear fission

    too much Coulombrepulsion

  • 8/13/2019 Slides Vogel 1

    61/85

    Nuclear fission

    D

  • 8/13/2019 Slides Vogel 1

    62/85

    Decays

    Derivationblackboard

  • 8/13/2019 Slides Vogel 1

    63/85

  • 8/13/2019 Slides Vogel 1

    64/85

  • 8/13/2019 Slides Vogel 1

    65/85

    D

  • 8/13/2019 Slides Vogel 1

    66/85

    Decays

    A(t)/A1

    (0)

    t/!2

    A1(t)

    A2(t)

    !1= 10 !2

    t

    2

    A1(t)

    1 = 102

    A2(t)

    A(t)

    A1(0)

    Bi di

  • 8/13/2019 Slides Vogel 1

    67/85

    Binding energy

    M(Z,N) = N mN+ Z Mp+ Z me EB

    The binding energy is the energy set free when formingthe respective nuclei.

    Bi di

  • 8/13/2019 Slides Vogel 1

    68/85

    Binding energy

    Binding energy

  • 8/13/2019 Slides Vogel 1

    69/85

    Binding energy

    Binding energy

  • 8/13/2019 Slides Vogel 1

    70/85

    Binding energy

    FissionFusion

    Binding energy

  • 8/13/2019 Slides Vogel 1

    71/85

    Binding energy

    EB = aV AaS

    A

    23

    aC

    Z

    2

    A1

    3asym

    (N

    Z)

    2

    A

    A

    1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A12

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    72/85

    Binding energy

    EB = aV AaS

    A

    23

    aC

    Z

    2

    A1

    3asym

    (N

    Z)

    2

    A

    A

    1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    73/85

    Binding energy

    EB = aV AaS

    A

    23

    aC

    Z

    2

    A1

    3asym

    (N

    Z)

    2

    A A

    1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    74/85

    Binding energy

    EB = aV AaS

    A

    23

    aC

    Z

    2

    A1

    3asym

    (N

    Z)2

    A A

    1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    75/85

    Binding energy

    EB = aV AaS

    A

    2

    3

    aC

    Z

    2

    A1

    3asym

    (N

    Z)2

    A A

    1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    76/85

    Binding energy

    EB = aV AaS

    A

    2

    3

    aC

    Z2

    A1

    3asym

    (N Z

    )2

    A

    A1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    77/85

    Binding energy

    EB = aV AaS

    A

    2

    3

    aC

    Z2

    A1

    3asym

    (N Z

    )2

    A

    A1

    2

    aV A

    SA2

    3

    aC Z2

    A1

    3

    asym(N Z)2

    A

    A1

    2

    Volume term

    Surface term

    Coulomb term

    Symmetry term

    Pairing term

    Binding energy

  • 8/13/2019 Slides Vogel 1

    78/85

    Binding energy

    Volume Surface Coulomb

    ParitySymmetry

    Binding energy

  • 8/13/2019 Slides Vogel 1

    79/85

    Binding energy

    Volume Surface Coulomb

    ParitySymmetry

    Binding energy

  • 8/13/2019 Slides Vogel 1

    80/85

    Binding energy

    Volume Surface Coulomb

    ParitySymmetry

    Early Nuclear Models

  • 8/13/2019 Slides Vogel 1

    81/85

    Early Nuclear Models

    Nuclear abundance

  • 8/13/2019 Slides Vogel 1

    82/85

    Nuclear abundance

    Wait

  • 8/13/2019 Slides Vogel 1

    83/85

    Wait...

    Where do elementsbeyond iron come from?

    FissionFusion

    Universe

  • 8/13/2019 Slides Vogel 1

    84/85

    Universe

    Where do heavy elements come from?

  • 8/13/2019 Slides Vogel 1

    85/85

    Where do heavy elements come from?

    Some food for thought for the tutorials...


Recommended