+ All Categories
Home > Documents > Sliding Mode Control with Industrial Applicationsgajic/SlidingModeControl.pdf · Sliding Mode...

Sliding Mode Control with Industrial Applicationsgajic/SlidingModeControl.pdf · Sliding Mode...

Date post: 26-Jun-2018
Category:
Upload: nguyenkiet
View: 237 times
Download: 5 times
Share this document with a friend
56
Sliding Mode Control with Industrial Applications Wu-Chung Su, Ph. D. Department of Electrical Engineering National Chung Hsing University,Taiwan, R. O. C. Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey, U. S. A. PRINCETON/CENTRAL JERSEY SECTION OF IEEE – CIRCUITS AND SYSTEMS 2008/11/17 1 Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting
Transcript
  • Sliding Mode Control with Industrial Applications

    Wu-Chung Su, Ph. D.Department of Electrical Engineering

    National Chung Hsing University,Taiwan, R. O. C.

    Department of Electrical and Computer Engineering

    Rutgers, The State University of New Jersey, U. S. A.

    PRINCETON/CENTRAL JERSEY SECTION OF IEEE CIRCUITS AND SYSTEMS

    2008/11/17 1Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Prelude

    A Control Engineer as an Archer

    to drive the state to the target.

    2008/11/17 2Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • The Old Oil-PeddlerOuyang Show(1007~1072A.D.)

    http://baike.baidu.com/2008/11/17 3Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Sliding Mode: an illustration

    to fill oil into a bottle through a funnel2008/11/17 4

    Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • A funnel-like domain

    System:

    Target:

    Funnel:

    New target:

    1 2

    2 1 22 3x xx x x u=

    = +

    1 2( , ) (0, 0)x x =

    2 1x x=

    1 2 0s x x= + =

    2x

    1x

    0s =

    2008/11/17 5Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • A Physical ExampleCoulomb Friction

    sgn( )

    : applied force

    a

    a

    dvm K v fdt

    f

    = +

    http://www.physics4kids.com

    sliding mode: 0 (if ).av f K = <

    < = >

    2008/11/17 6Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Contents (1/2)

    Introduction to Sliding Mode Variable Structure Systems Invariance Condition (Matching Condition)

    Variable Structure Systems (VSS) Design Sliding Surface Design Discontinuous Control

    Discrete-Time Sliding Mode Boundary Layer Switching v.s. Continuous Control

    2( ) . . ( )O T v s O T

    2008/11/17 7Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Contents (2/2)

    Minimum-Time Torque Control (SRM)Temperature Control (Plastic Extrusion P.)Rod-less Pneumatic Cylinder ServoWireless Network Power Control

    Singular PerturbationsDistributed Parameter Systems

    2008/11/17 8Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • A funnel-like domain (cont.)

    System:

    Target:

    Funnel:

    New target:

    1 2

    2 1 22 3 ( )

    x x

    x x x u f t

    =

    = + +1 2( , ) (0, 0)x x =

    2 1x x=

    1 2 0s x x= + =

    2x

    1x

    0s =

    disturbance

    2008/11/17 9Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • A funnel-like domain (cont.)

    System:

    Target:

    Funnel:

    New target:

    1 2

    2 1 2 1 1 2 22 3 ( )

    x x

    x x x u x x

    = = + + +

    2x

    1x

    0s =

    1 2( , ) (0, 0)x x =

    2 1x x=

    1 2 0s x x= + =

    Parameter variations

    2008/11/17 10Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Introduction to Sliding mode-Variable Structure Systems

    2008/11/17 11Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

    (K. D. Young, 1978)1 2

    2 2

    1 2

    1 1

    1 1

    System :

    Switching line : 0(Sliding Surface)

    , if 0 (region I)Control :

    , if 0 (rigion II)

    x xx ax bu

    s cx x

    x x su

    x x s

    = =

    = + =

    >=

  • Introduction to Sliding mode-Variable Structure Systems

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 12

    2

    2

    0 1Structure I :

    0 : spiral out

    0 1Structure II :

    0 : saddle point

    x xb a

    s as b

    x xb a

    s as b

    =

    + =

    =

    =

  • Introduction to Sliding mode- Invariance Condition

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 13

    1 2

    0 2 21 1 1 ( )

    2 1 3

    0 2 21 1 1 ( )

    2 1 3

    x Ax u f t

    Ax u u f t

    = + + = + + +

    Q: Can the control law possibly reject the disturbance out of the system?

  • Introduction to Sliding mode- Invariance Condition

    Controlsubspace:

    Disturbancesubspace:

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 14

    0 21 , 1

    2 1span

    21

    3span

    *Thedisturbancecanberejectedbythecontrollawif(andonlyif)the control subspace covers

    the disturbance subspace.

  • Inthisexample,

    Ifisknown,thenthecontrollaw

    Willleadto

    Introduction to Sliding mode- Invariance Condition

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 15

    2 0 21 2 1 1

    3 2 1

    = +

    ( )d t

    1 1

    2 2

    2 ( )( )

    u v f tu v f t= =

    1 2

    0 2 0 2 2 0 21 1 ( 2 1 1 ) ( ) 1 ( ) 1 1

    2 1 2 1 3 2 1x Ax v v f t f t Ax v

    = + + + + = +

    .

  • Introduction to Sliding mode- Invariance Condition

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 16

    (Drazenovic, 1969): The system with disturbance

    is invariant of in sliding mode iff

    In the previous example,

    ( )x Ax Bu Ef t= + +( )f t 0s

    [ ] [ ]| .rank B E rank B=

    0 2 2 0 21 1 1 1 1 2.

    2 1 3 2 1rank rank

    = =

  • A funnel-like domain (revisit)

    System:

    Target:

    Funnel:

    New target:

    1 2

    2 1 22 3 ( )

    x x

    x x x u f t

    =

    = + +1 2( , ) (0, 0)x x =

    2 1x x=

    1 2 0s x x= + =

    2x

    1x

    0s =

    disturbance

    2008/11/17 17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • A funnel-like domain (revisit)

    System:

    Target:

    Funnel:

    New target:

    1 2

    2 1 2 1 1 2 22 3 ( )

    x x

    x x x u x x

    = = + + +

    2x

    1x

    0s =

    1 2( , ) (0, 0)x x =

    2 1x x=

    1 2 0s x x= + =

    Parameter variations

    2008/11/17 18Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • VSS Design

    2008/11/17 19Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

    (K. D. Young, 1978)1 2

    2 2

    1 2

    1 1

    1 1

    System :

    Switching line : 0(Sliding Surface)

    , if 0 (region I)Control :

    , if 0 (rigion II)

    x xx ax bu

    s cx x

    x x su

    x x s

    = =

    = + =

    >=

  • Existence of sliding modei. Reaching condition (sufficient, global)

    ii. Sliding condition (sufficient, local)

    VSS Design

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 20

    Sliding Surface: s = 0u+

    u

    0 0lim 0, lim 0s s

    s s+

    < >

    sgn( ), 0s s < >

    x(0)

  • VSS Design

    Finite time reaching:

    Reaching time

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 21

    sgn( ), 0s s < >

    Lyapunov function2

    2 2 0

    ( ) 0

    V sdV ss sdt

    s x

    =

    = =

    3 2 2 1 1

    1 1 2 2 3 3 2 3 1 2( )s x c x c x

    a x a x a x u f t c x c x= + +

    = + + + +

    1 1 2 1 2 3 2 3 max( ) ( ) ( )sgn( )u a x a c x a c x f s= + + +

    max( ) .f t f= =

  • VSS Design- Sliding Surface

    Eigenspace Approach v.s. Lyapunov Approach

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 25

    ( )x A x B u D f t= + +

    Nonsingular transformation

    Canonical form

    Sliding surface

    ( ) 1

    2 2

    0,n m m

    xTB Tx

    B x = =

    1 11 12 1

    2 21 22 2 2 2

    0 0( )

    x A A xu f t

    x A A x B D

    = + +

    [ ]2 1, or ( ) Im mx Kx s x K Tx= =

    Stabilizing feedback

    Lyapunov function

    Sliding surface

    ( )x A x B K x D f t= +

    1( )2

    Ts s

    T

    PA A P Q

    V x x Px

    + =

    =

    ( ) Ts x B Px=

  • VSS Design- Discontinuous Control

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 26

    ( )s lid ing su rface: ( ) 0

    ( )

    x A x B u D f ts x C x

    s C A x C B u C D f t

    = + += =

    = + +

    Signum function (Single-input case)

    1 1max( ) ( ) ( )sgn( )u CB CAx CB d s

    = +

    Unit Control(Multi-input case) 1 1

    max( ) ( ) ( )su CB CAx CB ds

    = +

    v.s.

  • Discrete-Time Sliding Mode

    Continuous-time

    Sampled-data

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 27

    ( )Sliding surface: ( ) ( ) 0

    x Ax Bu Df ts t Cx t

    = + += =

    1

    Sliding surface: 0k k k k

    k k

    x x u ds Cx

    + = + += =

    0( 1)

    ( )

    0

    , ,

    ( ) (( 1) )

    TAT A

    k T TA t A

    kkT

    e e d B

    d e Df d e Df k T d

    +

    = =

    = = +

  • Discrete-Time Sliding Mode

    Issues on disturbance rejection:1. Matching condition fails

    However, 2. Non-causal disturbances

    However,

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 28

    1k k k kx x u d+ = + +

    0 0

    , (( 1) )T T

    A Ake d B d e Df k T d

    = = +

    range( )kd

    21

    1 1 1

    ( )k kk k k k

    d d O Td x x u

    = +=

    2( ) ( )kd f kT O T= +

    Ultimate achievable accuracy: 2( )O T

  • Discrete-Time Sliding Mode

    Quasi-sliding mode

    Discrete-time sliding mode

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 29

    20, ( ) ( )ks s t O T= =

    ( ), ( ) ( )ks O T s t O T= =

    Discontinuous control

    Continuous control

  • Discrete-Time Sliding Mode

    Ukins discrete-time equivalent control(Continuous control law)

    Discrete-time sliding mode control(Modification of )

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 30

    11

    0

    ( ) ( )k k k keqk k k

    s C x C u Cd

    u C C x d+

    = + + =

    = +

    eqku

    11

    21 1

    ( ) ( )

    ( ) ( )k k k

    k k k

    u C C x d

    s C d d O T

    +

    = +

    = =

    2( )O T

  • Contents (1/2)

    Introduction to Sliding Mode Variable Structure Systems Invariance Condition (Matching Condition)

    Variable Structure Systems (VSS) Design Sliding Surface Design Discontinuous Control

    Discrete-Time Sliding Mode Boundary Layer Switching v.s. Continuous Control

    2( ) . . ( )O T v s O T

    2008/11/17 31Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Contents (2/2)

    Minimum-Time Torque Control (SRM)Temperature Control (Plastic Extrusion P.)Rod-less Pneumatic Cylinder ServoWireless Network Power Control

    Singular PerturbationsDistributed Parameter Systems

    2008/11/17 32Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Switched Reluctance Motors

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 33

    Rotor Stator

  • Switched Reluctance Motors

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 34

    A

    A-

    1

    2

    3

    4

    5

    6

    4-phase, 8/6-pole SRM

  • Switched Reluctance Motors

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 35

    Stator Rotor

    Reluctance force

    reluctance force

    Magnetic flux

    ( )L

  • Switched Reluctance Motors

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 36

    2 2( )1Torque :2

    jj j

    dLi T i

    d

    =

    a

    a'

    R

    L

    7 .5 15 22 .5 30 37 .5 45 52 .5 60(D egree)

    30

    10

    (m H )

    La Lb Lc Ld

    ( )( ) , , , ,j jj j j j j

    di dLV L i R i j A B C D

    dt dt

    = + + =

  • Minimum-Time Torque Control

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 37

    A BC D

    Sensor 1 Sensor 2

    Q1

    Q2

    Q3

    Q4

    Vdc

    DriveCPLD

    XC9536

    encoder

    current sensor

    Drive Circuit

    Control System Setupri

    KV =* KV =*

    i)( 0ti )( 0ti

    System dynamics:

    ( , ) ( ) ( )di A i B V tdt

    = +

    Sliding surface:0rs i i= =

    Minimum-Time VSC:, ( )

    ( ), ( )

    dc r

    dc r

    V if i t iV t

    V if i t i >

    =

  • Minimum-Time Torque Control

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 38

  • Temperature Control - A Plastic Extrusion Process

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 39

    System setup: ITRI (Industrial Technology Research Institute), Taiwan, R.O.C.

  • Temperature Control - A Plastic Extrusion Process

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 40

    Dynamics of Channel temperature:1dy hA hAy y w

    dt cV cV cV = + +

    Rate of change of energy input:( , , ), 0

    ( , , )( , , ), 0

    a w u t udw a w u tdt a w u t u

    +

    = =

  • Temperature Control - A Plastic Extrusion Process

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 41

    Single-channel dynamics:

    ( , , )y my v

    a w u tvcV

    = +

    = +

    Sliding surface (PI control):

    ( ) ( )( ( ) ( ))IP I P desiredKv K e K e or V s K y s Y ss

    = = +

    Output feedback sliding mode control

    1 1 0 1 1

    ( )P Ik k k k

    s e K m e K es a s b e b e

    = + + + + +

  • Temperature Control - A Plastic Extrusion Process

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 42

    Switching control law:heat, 0water, 0

    kk

    k

    su

    s

  • Rod-less Pneumatic Cylinder Servo

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 43

  • Rod-less Pneumatic Cylinder Servo

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 44

    Equation of motion:sgnL u c TM Y Y Y A P = +

    1 1 2 2 1 2

    Pressure dynamics:( , , , ) ( , , , , )P P P Y X X P P Y Y X = +

  • Rod-less Pneumatic Cylinder Servo

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 45

    1 2

    Sliding surface:1( ) ( ) sgnL d d d u c

    T T

    MP Y k Y Y k Y Y Y YA A

    = + + + +

    Variable Structure Control: sgn( )vX X =

  • Wireless Network Power Control

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 46

    Zoran Gajic, Plenary Lecture 2007 CACS International Automatic Control ConferenceNational Chung Hsing University, Taichung, Taiwan, November 9-11, 2007

  • Wireless Network Power Control

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 47

    ( ) ( ) ( ) ( )( ) , 1,2, , .( ) ( ) ( ) ( )

    ii i ii ii

    i ij j ij i

    g t p t g t p tt i NI t g t p t t

    = = =+

    Signal-to-interference ratio (SIR) for the ith user

    Control objective: ( ) tari it

    ( )i ii i i ig p I p = + Logarithmic scale representation

    ,

    ( ) ( ), 1, 2,( ) ( ) ( )

    i i

    i i i

    p t u t i Nt p t f t= =

    = +

    System dynamics:

  • Wireless Network Power Control

    Sliding surfaceDiscrete-time representation

    Discrete-time SMC (continuous)

    Stability analysis

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 48

    1( 1) ( ) 1 1 ( ( ) ( ))1( 1) ( ) 21i i

    i i

    Ts k s kd k v k

    u k u k TT

    + = + +

    ( ) ( ) 0tari i is t t = =

    ( 1) ( ) ( ) ( ) ( )i i is k s k Tu k d k v k+ = + + +

    1 1( ) ( ) ( ( 1) ( 1))i iu k s k d k v kT T= +

    21

    det 01 1

    z Tz

    zT

    = = +

  • Contents (2/2)

    Minimum-Time Torque Control (SRM)Temperature Control (Plastic Extrusion P.)Rod-less Pneumatic Cylinder ServoWireless Network Power Control

    Singular PerturbationsDistributed Parameter Systems

    2008/11/17 49Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Singularly Perturbed Systems VSSQuasi-steady state (slow mode) Sliding mode

    Fast mode Reaching phase

    Continuous control Discontinuous control

    Infinite-time reaching(boundary layer)

    Finite-time reaching

    Extended Research Problems Singular Perturbations

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 50

    Sliding Surface: s = 0

    u+

    u

    x(0)

  • Extended Research Problems

    Distributed Parameter Systems

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 51

    :( , ) ( , ) ( , )

    (0, ) 0( , ) ( ) ( )

    t xx

    Heat Conduction SystemU x t U x t U x t

    Boundary conditions U tU l t Q t f t

    = +== +

    Kernel function( , )k x y

    ( , )U x t ( , )w x t (0, ) 0( , ) ( ) ( )

    t xx

    w

    w w cww tw l t Q t f t

    = == +

    0x = x l=

  • Extended Research Problems

    Distributed Parameter Systems

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 52

    ( ) ( , ) 0Sliding surface:

    xS t l t= =

    ( )2 212 2

    ( )Kernel function : ( , )

    ( )

    I x yk x y y

    x y

    =

    ( , )U x t ( , )w x t (0, ) 0( , ) ( ) ( )

    t xx

    w

    w w cww tw l t Q t f t

    = == +

    0x = x l=

  • Extended Research Problems

    Distributed Parameter Systems

    2008/11/17Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting 53

    0( ) = sgn( ( ))

    Sliding Mode Control:t

    mQ t K S d

    0

    ( ) ( , ) 0

    ( ) ( , ) ( , ) ( , ) ( , ) ( , )

    Sliding surface: xl

    x x

    S t w l t

    S t U l t k l l U l t k l y U y t dy

    = =

    =

  • Conclusions

    Merits of VSS

    Robustness (against disturbances and system

    parameter variations)

    Reduced-order system design

    Simple control structure

    Fits switching power electronics control

    2008/11/17 54Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Conclusions

    Chattering Reduction (Elimination) Discrete-Time Sliding Mode

    Filtering methods

    Interesting Problems Output feedback

    Singular Perturbations

    Infinite-dimensional systems

    Systems with delays (e.g. wireless network)

    2008/11/17 55Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

  • Thank You!

    http://www.chneic.sh.cn/

    2008/11/17 56Princeton/Central Jersey Section of IEEE - Circuits and Systems Chapter Meeting

    http://tw.wrs.yahoo.com/_ylt=A3eg8qx0hCBJ6aYAlQxt1gt./SIG=1k5n82qhu/EXP=1226954228/**http:/tw.info.search.yahoo.com/search/images/view?back=http://tw.info.search.yahoo.com/search/images?p=%E6%BC%8F%E6%96%97&ei=UTF-8&fr=yfp&x=wrt&w=335&h=365&imgurl=static.flickr.com/3212/2454169225_9ca81eabfc.jpg&rurl=http://www.flickr.com/photos/g-economy/2454169225/&size=26.6kB&name=%E6%BC%8F%E6%96%970&p=%E6%BC%8F%E6%96%97&type=jpeg&no=2&tt=8,651&oid=9d25d034aa1fe444&ei=UTF-8&fusr=G-economy.com&hurl=http:/www.flickr.com/photos/g-economy/&src=flickr

    Sliding Mode Control with Industrial ApplicationsPreludeThe Old Oil-Peddler Ouyang Show(1007~1072A.D.)Sliding Mode: an illustrationA funnel-like domainA Physical ExampleContents (1/2)Contents (2/2)A funnel-like domain (cont.)A funnel-like domain (cont.)Introduction to Sliding mode - Variable Structure SystemsIntroduction to Sliding mode - Variable Structure SystemsIntroduction to Sliding mode - Invariance ConditionIntroduction to Sliding mode - Invariance ConditionIntroduction to Sliding mode - Invariance ConditionIntroduction to Sliding mode - Invariance ConditionA funnel-like domain (revisit)A funnel-like domain (revisit)VSS DesignVSS DesignVSS DesignVSS DesignVSS DesignVSS DesignVSS Design - Sliding Surface VSS Design - Discontinuous ControlDiscrete-Time Sliding ModeDiscrete-Time Sliding ModeDiscrete-Time Sliding ModeDiscrete-Time Sliding ModeContents (1/2)Contents (2/2)Switched Reluctance MotorsSwitched Reluctance MotorsSwitched Reluctance MotorsSwitched Reluctance MotorsMinimum-Time Torque ControlMinimum-Time Torque ControlTemperature Control - A Plastic Extrusion ProcessTemperature Control - A Plastic Extrusion ProcessTemperature Control - A Plastic Extrusion ProcessTemperature Control - A Plastic Extrusion ProcessRod-less Pneumatic Cylinder ServoRod-less Pneumatic Cylinder ServoRod-less Pneumatic Cylinder ServoWireless Network Power ControlWireless Network Power ControlWireless Network Power ControlContents (2/2)Extended Research Problems Extended Research Problems Extended Research Problems Extended Research Problems ConclusionsConclusionsThank You!


Recommended