+ All Categories
Home > Documents > SMAM 345 Assignment 3 Name - Rochester Institute of …mjgsma/smam345spring12/ca3sol.pdf · SMAM...

SMAM 345 Assignment 3 Name - Rochester Institute of …mjgsma/smam345spring12/ca3sol.pdf · SMAM...

Date post: 22-May-2018
Category:
Upload: vuongthien
View: 217 times
Download: 2 times
Share this document with a friend
7
SMAM 345 Assignment 3 Name____________ Before attemping this assignment please review double integrals and double integrals in polar coordinates. The material should be available in Stewart or any standard Calculus Textbook. Do these problems by hand and show your work. Put your final solutions in the space provided. 1. Find the constant k where k (2x + 3y)dydx = 1 0 2 1 3 (2x + 3y)dydx = 2xy + 3 2 y 2 1 3 0 2 1 3 0 2 dx = (4x + 6 1 3 )dx = 2x 2 + 6x 1 3 = 28 28k = 1 k = 1 / 28 2. A.Evaluate 4xydxdy R ∫∫ where R = {(x,y): 0<x<y<1} [Draw the region before you set up the integral.]
Transcript

SMAM 345 Assignment 3 Name____________ Before attemping this assignment please review double integrals and double integrals in polar coordinates. The material should be available in Stewart or any standard Calculus Textbook. Do these problems by hand and show your work. Put your final solutions in the space provided. 1. Find the constant k where

k (2x + 3y)dydx = 10

2

∫1

3

∫(2x + 3y)dydx = 2xy + 3

2 y2

1

3

∫0

2

∫1

3

∫ 0

2

dx = (4x + 61

3

∫ )dx = 2x2 + 6x1

3= 28

28k = 1k = 1/ 28

2. A.Evaluate

4xydxdy

R∫∫ where R ={(x,y) : 0<x<y<1} [Draw the region before you

set up the integral.]

4xydxdy = 2x2y

0

1

∫0

y

∫0

1

∫ 0

y

dy = 2y3 dy =120

1

B. Set up and evaluate the integral in A with the order of integration reversed.

4xydydx

x

1

∫0

1

∫ = 2xy2

0

1

∫ x

1

dx = (2x − 2x3

0

1

∫ )dx = x2 − 12 x4

0

1=

12

3.A. Evaluate

23

xydydxR∫∫ R ={(x,y) :0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 < 3x + 2y ≤ 6}

230

3− 32

x

∫0

2

∫ xydydx = 130

2

∫ xy2

0

3− 3x2 dx = 1

30

2

∫ x(3− 32 x)2dx = (3x − 3x2

0

2

∫ + 34 x3)dx

= 32 x2 − x3 + 3

16 x4

0

2= 1

B. Set up and evaluate the integral in part A with the order of integration reversed.

230

2− 23

y

∫0

3

∫ xydxdy = 130

3

∫ x2y0

2− 23

ydy = 1

30

3

∫ (2 − 23 y)2 ydy = 4

3 (y − 230

3

∫ y2 + 19 y3)dy

= 43 ( y2

2 − 19 y3 + 1

36 y4 )0

3

= 1

4. A.Evaluate

e−(x+2y) dydx

R∫∫ R ={(x,y) :0 ≤ 2x + y ≤1}

e−(x+2y) dydx0

1−2x

∫0

12∫ = − 1

2 e−(x+2y)

0

12∫ 0

1−2x

dx = (− 120

12∫ e−(2−3x) + 1

2 e−x )dx

= − 16 e−(2−3x) − 1

2 e−x

0

12 = 1

2 +16 e−2 − 2

3 e− 12 = .118

B. Set up and evaluate the integral in A with the order of integration reversed.

e−(x+2y) dx dy = −e−(x+2y)

0

1

∫0

1−y2∫0

1

∫ 0

1−y2

dy = (−e( 3y+12

)

0

1

∫ + e−2y )dy

= 23 e−( 3y+1

2) − 1

2 e−2y

0

1

= 16 e−2 − 2

3 e− 12 + 1

2 = .118

5. Evaluate

e− 1

2(x2+y2 )

0

∫0

∫ dxdy by using polar coordinates.

e− 12(x2+y2 )

0

∫0

∫ dxdy = e− 12r2

0

π2∫0

∫ rdθdr =π2 a→∞lim r

0

a

∫ e− 12r2

dr =π2 a→∞lim(−e− r2

2 )0

a

=π2

Note that if

I = e−x2 / 2 dx0

∫ , I2 = e−x2 / 2 dx0

∫ e−y2 / 2 dy0

∫ = e− x2+y2

2

0

∫0

∫ dxdy =π2

I =π2

2I = e−x2 / 2

−∞

∫ dx = 2π2= 2π

so 12π

e−x2 / 2

−∞

∫ dx = 1

and

letting z=x − µσ

,so dz=dxσ

12πσ−∞

∫ exp −(x − µ)2

2σ2

⎣⎢

⎦⎥dx =

12π

e−z2 / 2

−∞

∫ dx = 1

,

Thus, the normal probability density function is indeed a bonafide pdf.

You may earn up to five points of Extra credit and earn more than a perfect score by checking your answers using a Computer Algebra system. Please attach the computer printout.


Recommended