+ All Categories
Home > Engineering > Smart antenna

Smart antenna

Date post: 14-Feb-2017
Category:
Upload: ali-samari
View: 84 times
Download: 4 times
Share this document with a friend
47
1 Communication Systems Lab. / AJOU Univ. SMART ANTENNAS SMART ANTENNAS IN WIRELESS COMMUNICATIONS IN WIRELESS COMMUNICATIONS SEONG KEUN OH 1999. 7. 6 SCHOOL OF ELECTRONICS ENGINEERING, AJOU UNIVERSITY, SUWON, 442-729, KOREA. Tel: 0331-219-2370 / Fax: 0331-212-9531 E-mail: [email protected] Comm. Sys. Lab. / AJOU Univ. Course Outline 1. Introduction 2. Propagation Channel Models 3. Smart Antenna Systems 4. Adaptive Arrays 5. Adaptive Beamforming 6. Performance 7. Research Trends 8. Concluding Remarks
Transcript
Page 1: Smart antenna

1

Communication Systems Lab. / AJOU Univ.

PP

SMART ANTENNASSMART ANTENNAS

IN WIRELESS COMMUNICATIONSIN WIRELESS COMMUNICATIONS

SEONG KEUN OH

1999. 7. 6

SCHOOL OF ELECTRONICS ENGINEERING,

AJOU UNIVERSITY, SUWON, 442-729, KOREA.

Tel: 0331-219-2370 / Fax: 0331-212-9531

E-mail: [email protected]

Comm. Sys. Lab. / AJOU Univ.

Course Outline

1. Introduction2. Propagation Channel Models3. Smart Antenna Systems4. Adaptive Arrays5. Adaptive Beamforming6. Performance7. Research Trends8. Concluding Remarks

Page 2: Smart antenna

2

Comm. Sys. Lab. / AJOU Univ.

1. Introduction1. Introduction

Comm. Sys. Lab. / AJOU Univ.

z What are Smart Antennas ?

- Or Intelligent antennas, Adaptive arrays

- Can change automatically its radiation pattern in response to its signal

environments

z Spatial filters (or Beamformers)

- Optimum directional beam toward the direction of the wanted user and

pattern nulls towards directions of other co-channel users

- Combine the signals from an array of antennas

- Construct a composite antenna pattern by adjusting the amplitude

and phase of the individual antenna signals

What are Smart Antennas ?

Page 3: Smart antenna

3

Comm. Sys. Lab. / AJOU Univ.

Useful Analogy

SignalProcessor

P

P

P

T x

Ear(sensor)

Bra in(s ignal p rocessor)

QRLVH

QRLVH

Comm. Sys. Lab. / AJOU Univ.

Conceptual Beam Pattern

Beamfo rmer

PPP

Wanted Signal

InterfererCo-ChannelInterferers

Beam Pat tern

Mult ipath Signal

ww������ qq����

ww����� v� v����

Page 4: Smart antenna

4

Comm. Sys. Lab. / AJOU Univ.

Smart Antennas in Cellular Systems

2 4

3

23

4

1

1

1

1

CochannelInterference

CochannelInterference

Comm. Sys. Lab. / AJOU Univ.

Smart Antennas : Potential Benefits

z Spatial diversity : Reduce undesirable effects of fast fading by multipath propagation

Ö Improve coverage, capacity and quality

z Multipath rejection : Reduce the effective delay spread of the channel, allowing

higher bit rates to be operated without an equalizer

Ö Improve capacity and high data rate

z Optimum beamforming toward the wanted signal : Improve the signal to noise ratio

by array gain

Ö Improve coverage and reduce power consumption

z Pattern nulls towards co-channel interference sources : Reduce co-channel interference

Ö Improve capacity and quality

z Spatial filtering : Re-use frequency channels

Ö Improve capacity and spectral efficiency

Page 5: Smart antenna

5

Comm. Sys. Lab. / AJOU Univ.

Smart Antennas - Different Problems

C D M A

F DM A

T DM A

U pl ink

D ow nlin k

C ells i te

M o bil ie

M ic ro ce ll

M ac ro ce ll

F D D

T D D

M obi le

P ed estr ian

R u ra l

U rban

M o du lation

F ram ing

ff���������������� ���������������� OO ������������������ ������������������

- Single User / M ulti-user, Multipath,

Combined Signal Processing Techniques, etc.

Comm. Sys. Lab. / AJOU Univ.

Basic Principle

Adap tiveP rocesso r

∑y ( t)

C o m b in ero u tp u t

PP

PP

PP

x M (t)

x 2( t)

x 1( t)1

2

M

Wave

front

θ

s(t)

W 1

W M

W 2n o r m al

A v a ilab leIn fo r m a tio n

Page 6: Smart antenna

6

Comm. Sys. Lab. / AJOU Univ.

Basic Principle (cont.)

z The array output

)()()()( ttst nax += θ

where Tc

dMj

c

djT

M eetxtxtxt ],,,1[)(,])(,,)(,)([)(sin)1(sin

21

00 θωθωθ

−== �� ax

z The combiner output)()( tty H xw=

)( Assuming θaw =

)()()()()()()()()( ttMsttsty HHH nanaaa θθθθ +=+=

z ii

SNRMtnM

tsMSNR =

=

]|)(|E[

]|)(|E[2

22

: M-times increase

[ ] 2)()()()(E nHH Mtt σθθ =anna

Comm. Sys. Lab. / AJOU Univ.

Beamforming Concept for Multiple Access

W 11

W 12

W1M

WL1

WL2

WLM

ΣP

P

P

ΣP

P

P

P

P

P

y�����

e��� ����

w��� n

P

P

P

Demodulator

Demodulator

P

P

P

y�����

e��� ����

w��� S

c������

w��� S

w��� n

P

P

P

Page 7: Smart antenna

7

Comm. Sys. Lab. / AJOU Univ.

2. Propagation Channel Models2. Propagation Channel Models

Comm. Sys. Lab. / AJOU Univ.

Fading

z Average trend : 40 dB / decade z Slow fading : Caused by shadowing. Typically log-normal distribution ( σ = 8 dB ) z Fast fading : Caused by local scatterers near mobile. Typically Rayleigh distribution (σ = 5.57 dB)

Page 8: Smart antenna

8

Comm. Sys. Lab. / AJOU Univ.

Doppler, Delay and Angle Spreads

z Local and remote scattering, and mobile motion spread the signal

� Delay spread� Angle spread� Doppler spread

: 0.5 to 20 µs: 2 to 60±( ~ 360±for indoor or micro-, pico-cells ): 5 to 200 Hz

Comm. Sys. Lab. / AJOU Univ.

Multipath Propagation in Macrocells

z High base station antenna elevation, multipath scatterers arise

from three sources

Ö Local to mobile

: Cause Doppler spread (time selective fading along with mobile motion),

and small delay and angle spreads

Ö Local to base

: No additional Doppler spread, small delay spread, large angle spread

(space selective fading)

Ö Remote dominant

: Independent fading on paths, no additional Doppler spread,

large delay spread (frequency selective fading),

large angle spread (space selective fading)

Page 9: Smart antenna

9

Comm. Sys. Lab. / AJOU Univ.

Multipath Propagation in Microcells

z Base station antenna at a low elevation below the rooftop level Ö Difficult to identify distinct classes of scatterers Ö Usually characterized by high angle spreads and small delay spreads

Comm. Sys. Lab. / AJOU Univ.

Macrocells vs. Microcells - Impulse Response

z Macrocell impulse response - Dominant path exists

z Microcell impulse response - No dominant impulse at the origin - High angle spread and low delay spread

Page 10: Smart antenna

10

Comm. Sys. Lab. / AJOU Univ.

Mobile Vector Channel with Base Station Arrays

zz Channel impulse response

),,2,1(),()()()()(1 1

)()( MmttathL

ll

N

nnlnl

mnl

ml

∑ ∑= =

=−= �τδβθθω

v

scatterers

building

m ountain

ϕϕn lθθn l

ϖϖn l(θθn l)

l th pa thgroup

Nl

Comm. Sys. Lab. / AJOU Univ.

Mobile Vector Channel (cont.)

z Vector channel impulse response

∑=

−=L

lll ttt

1

)()()( τδAh

)cosexp()exp()(

)()()()(

],,)([)(

])(,,)([)(

1

)()(

)()1(

)()1(

nlnlnlnl

N

nnlnl

mnl

ml

TMll

TM

vtjjgt

tatA

AtAt

ththt

l

ϕβφβ

βθθω

=

=

==

∑=

A

h

m : antenna index

: array response of m-th antenna

: angle of arrival of path

: amplitude, phase of path

: signal distribution

: phase constant

: speed of mobile

: angle between scatterer

and the MS

)(θma

nlθ

nlnlg θ,

)(θω

βv

nlϕ

Page 11: Smart antenna

11

Comm. Sys. Lab. / AJOU Univ.

3. Smart Antenna Systems3. Smart Antenna Systems

Comm. Sys. Lab. / AJOU Univ.

Antenna Systems

• Adaptive Array Antennas

• Sectored Antenna • Diversity Antennas

• Switched Beam Antennas

Page 12: Smart antenna

12

Comm. Sys. Lab. / AJOU Univ.

Antenna Diversity

∑U SER

AN TEN NA 1

AN TEN NA 2

AN TEN NA M

OU TPU T

SIGN AL

z Antenna diversity

- Weighting and combining of signals from multiple antenna elements

- Space, Angle, Time, Polarization, etc.

z Diversity gain with multipath

- Require independent fading

Ö Directions-of-arrival

Ö Polarization

Comm. Sys. Lab. / AJOU Univ.

Antenna and Diversity Gain

z Antenna gain : Increased average signal power

- Power gain M with M antennas

z Diversity gain : Decreased required signal power for a given BER

averaged over fading

- Dependent on BER ( M=2 )

Ö 5.2 dB at 10-2 BER

Ö 14.7 dB at 10-4 BER

- Gain increase with M ( BER =10-2 )

Ö 5.2 dB for M=2

Ö 7.6 dB for M=4

Ö 9.5 dB for M=∞ - Dependent on fading correlation

Page 13: Smart antenna

13

Comm. Sys. Lab. / AJOU Univ.

Diversity Types

z Spatial : Horizontal separation

- Correlation depends on angular spread

z Polarization : Vertical and horizontal polarizations

- Low correlation

- 6-10 dB lower horizontal than vertical with vertical transmit and LOS

z Angle : Adjacent narrow beams

- Low correlation typical

Comm. Sys. Lab. / AJOU Univ.

Combining Techniques

%ODFN +ROHV

&RYHUDJH ZLWK

6ZLWFKHG 'LYHUVLW\

6LQJOH�(OHPHQW

&RYHUDJH ZLWK

)DGLQJ

$QWHQQD

$QWHQQD

&RYHUDJH�

6LQJOH (OHPHQW

&RYHUDJH�

&RPELQHG 'LYHUVLW\

z Selection combining - Select antenna with the highest received signal power - z Maximal ratio combining - Weight and combine signals to maximize signal-to-noise ratio - Optimum technique with noise only - BERM ≈ BERM (M-fold diversity gain)z Optimum combining (Adaptive antennas) - Weight and combine signals to maximize signal-to-interference-plus-noise ratio (SINR) - Utilize correlation of interferences at the antennas - Same as MRC in the case of no interference

MooM

PP =

Page 14: Smart antenna

14

Comm. Sys. Lab. / AJOU Univ.

Combining Performance

z Selective combining

- Outage voltage probability,

)( where

),,(

0

1

si

MosMoM

prob P

PprobP

Γ≤==Γ≤=

γγγ �

z Maximal ratio combining

- Mean signal-to-noise ratio,

oMP

sMΓ

where 0

0

γγMsM =Γ

: Mean signal-to-noise ratio of a path

MM

MMM ee

e

)BER(BER -

)(BER -

BER -00

0

∝=∝

∝−−

γγ

γ

Comm. Sys. Lab. / AJOU Univ.

Smart Antenna Systems

z Switched beam systems

- A finite number of fixed, pre-defined patterns

- Detect signal strength

Ö Choose one of several predetermined beams

Ö Switch from one beam to another

z Adaptive array systems

- An infinite number of patterns that are adjusted in real time

- A variety of new signal-processing algorithms

- Provide optimal gain and minimize interfering signals

Page 15: Smart antenna

15

Comm. Sys. Lab. / AJOU Univ.

Switched Beam Systems

ddQQhh uu����������

u�u�����������

z Major focus within industry todayz Advantages of narrow beams : Improves coverage, reduces interference, and can improve capacity

Comm. Sys. Lab. / AJOU Univ.

Switched Beam Systems (cont.)

z Many narrow beams : Improve coverage, capacity and reduce interference

z Performance depends on a number of factors : Angle- Doppler- Delay spread,

relative angles of arrival of signal and interference, array topology

z Performance gains from array gain, space diversity gain, interference reduction

and trunking efficiency

z Performance losses from cusping loss, mismatch loss, beam selection loss,

path diversity loss

Page 16: Smart antenna

16

Comm. Sys. Lab. / AJOU Univ.

Switched Beam Systems - Rx Performance

z Beam selection in angle spread environments is a major problem and involves many compromises - how do you select strongest beam before identifying channelz Beam qualification using training signals needs framing, STR and carrier recovery

B /F S elec t

S n if fer

G a insA rr ay G a inD iv ers it y G ainIn ter fe re nce R ed uct ion G ain

L o ssesM ism atch L ossC usp ing L os sB eam Selec tion L ossP ath D ive rsi ty L os s

Comm. Sys. Lab. / AJOU Univ.

Switched Beam Systems - Tx Performance

z Again similar to Rx processing, but constraints in angle spread environmentsz EIRP limits mean no coverage gainz Beam selection losses can translate to coverage losses

R X S n iffe r

T x B eam S e lec t

GainsA rra y G a inIn te r fe ren ce R ed u c tio n G a in

Lossesoo�������������� nn������

ee������������ nn������

u�u��������������� n�n�����

gkgkttrr d������d������

ff���������������� n�n�����

B/F

Page 17: Smart antenna

17

Comm. Sys. Lab. / AJOU Univ.

System Comparison - Coverage Pattern

A d ap t iv eA r r ay s

S w itc h ed B ea m

ConventionalSectorization

L o wIn te r fe r e n ceE n v ir o n m en t

distance

A d ap tiv eA r r ay s

S w itch e d Be am

ConventionalSector ization

S ig n i f ican tIn te r fe r en ceE n v ir o n m en t

distance

Comm. Sys. Lab. / AJOU Univ.

4. Adaptive Arrays4. Adaptive Arrays

Page 18: Smart antenna

18

Comm. Sys. Lab. / AJOU Univ.

Adaptive Arrays - System Design Considerations

z Array geometry

z Number of elements

z Beamforming algorithms

z Propagation conditions

z Radiation patterns of elements

z Transmitter/Receiver nonlinearity

Comm. Sys. Lab. / AJOU Univ.

Array Geometry - Uniform Linear Array

Uniform linear array Beam pattern of an eight-element linear array

Page 19: Smart antenna

19

Comm. Sys. Lab. / AJOU Univ.

Array Geometry - Uniform Circular Array

θ

φ

φK RK

rk

r

Uniform Circular array with M elements Three-dimensional beam pattern of an 8-element circular array with R=0.8710

Comm. Sys. Lab. / AJOU Univ.

Number of Elements

z Beamwidth

Ö With high M (No. of elements), higher resolution (narrower beam)

z Performance improvement

Ö With high M, improve the signal quality, capacity and coverage

z Hardware/Software complexity

Ö With high M, higher H/W and S/W complexity

Page 20: Smart antenna

20

Comm. Sys. Lab. / AJOU Univ.

Radiation Patterns

z Isotropic radiation pattern

Ö Simple to analyze and to control

Ö Practically, difficult to produce

z Sectored pattern

Ö Widely used in the current cellular base stations

z Arbitrary radiation pattern

Ö Difficult to control and analyze

Ö All elements may have minor arbitrary factors

Comm. Sys. Lab. / AJOU Univ.

Propagation Conditions

z Macro cells (Rural)

Ö Low angular spread (Easy to estimate DOA)

Ö Large delay spread

Ö Spatial techniques

z Pico cells

Ö High angular spread

Ö Small delay spread

Ö Temporal techniques

z Micro cells

Ö Medium angular spread (Urban, Suburban)

Ö Medium delay spread

Ö Spatial and temporal techniques

Page 21: Smart antenna

21

Comm. Sys. Lab. / AJOU Univ.

Beamforming Techniques

z Beamforming(or Spatial filtering) ? Ö Focussing the energy radiated by an aperture antenna along a specific direction Ö To receive/to transmit preferentially a signal from/to that directionz Examples 1) Parabolic antenna system - Energy aligned with the preferred direction is summed coherently - Sources unaligned may be added incoherently 2) Antenna arrays - Sampled aperture - Subject to various signal processing functions Ö Phase and amplitude weightings Ö Concurrent angular information for signals arriving in several different directionsz Beamforming network - Phasing network Ö Arranged to add coherently the outputs of all the elements for a given direction Ö Must implement another phasing network for a different direction

Comm. Sys. Lab. / AJOU Univ.

Beamforming - Basic Principle

wave f ron t

a r ray ax issensor 1sensor 2

a r ray no rma l

s(t)

dsin

θ

θ

d

z Array response vector ( No. of antennas = M)

=

−−

θω

θω

θ

sin)1(

sin

0

0

1

)(

c

dMj

c

dj

e

e

�a

Page 22: Smart antenna

22

Comm. Sys. Lab. / AJOU Univ.

Digital Beamforming

z Advantages

- Greater flexibility

Ö Different types of beams, such as scanned beams, multiple beams,

arbitrarily-shaped beams, or beams with steered nulls

Ö Can be easily integrated with other receiver functions, such as

demodulation, equalization and so on.

- Well suited to adaptive techniques

- Greater accuracy in amplitude and phase control

- Self-calibration capability

Comm. Sys. Lab. / AJOU Univ.

Beamforming Constraints

z Spatial references - Direction-of-arrivals (DOAs) of the target signals Ö Must be estimated prior to beamforming - Spatial signatures - ML method - Subspace-based method

zz Temporal references - Training sequences, pilot signals or color codes - Finite alphabet - Constant modulus - Higher order statistics - Cyclostationarity

Page 23: Smart antenna

23

Comm. Sys. Lab. / AJOU Univ.

Spatial Reference Beamforming (SRB)

d�d�����

u����u������������

fqfqcc g��g����������������

������ v�v�������������

cc��������������

yy����������

e�e�������������������

��

g�g�����������

u��u����������

cc������������

cc��������

zzSSJJ��KK

zzppJJ��KK

zzUUJJ��KK

zzTTJJ��KK

{{JJ��KK

d�d�����������������������������

uu��������������

tt������������������

dd������ r���r���������

������ w��w���S�S

IIee������II ���� oo����������������

ee������������������ ��������ww������TT

ww������TT

ww������SS

yySS

yypp

yyUU

yyTT

Comm. Sys. Lab. / AJOU Univ.

Temporal Reference Beamforming (TRB)

cc��������������cc����������������

cc��������������yy����������

ee����������������������

gg������������uu������������

cc������������cc��������

zzSSJ�J�KK

zzppJ�J�KK

zzUUJ�J�KK

zzTTJ�J�KK

{{J�J�KK

d�d�����������������������������

kk����������������������uu����������

d�d�����r��r����������

yySS

yypp

yyUU

yyTT

yy����������uu����������

ee��������������oo����������������

gg��������uu����������

tt����������������uu����������

�J�K�J�K ��J�KJ�K

Page 24: Smart antenna

24

Comm. Sys. Lab. / AJOU Univ.

SRB vs TRB

z SRB - Low angle spread multipath channel - Work for any modulation schemes - Not require unique user signature signals - Easy to derive downlink weight vectors - Require good calibrationz TRB - High angle spread channel - Optimum combining Ö Can obtain the optimum spatial signature of the specific user - Require unique user signature signals Ö e.g., training sequences or color codes - Difficult to derive downlink weight vectors from uplink weight vectors

Comm. Sys. Lab. / AJOU Univ.

DOA Estimation Algorithms for SRB

z Arbitrary array geometry

- MVDR, MUSIC, WSF, MEM, Min-Norm, ML

z Uniform linear array

- Root-MUSIC, ESPRIT, IQML, Root-WSF

Page 25: Smart antenna

25

Comm. Sys. Lab. / AJOU Univ.

Subspace-Based Method

z Based on the eigenvector decomposition of the covariance matrix

z Use singular value decomposition(SVD)

- Partition into noise subspace eigenvectors and signal subspace eigenvectors

- The covariance matrix can be written as

z The projection operator separates signal subspace from input signal

- Use the signal characteristics of orthogonality to noise

xxR

)( HHnnn

Hsss

Hxx UUIUUUUUUR =Λ+Λ=Λ= �

Comm. Sys. Lab. / AJOU Univ.

Blind Temporal Finite Alphabet (FA) Methods

z In this method we exploit the finite alphabet (FA) property of digital signals to construct the beamformer. The approach uses both the digital modulation and channel coding structure. The adaptive beamformer attempts to fit the underlying FA model to the array data.

oo���������� ���� ��������������������� ��� ��������������������

X = A S +N

Least Squaressolve for S

Projec t Son to FA

Least Squaressolve for A

Page 26: Smart antenna

26

Comm. Sys. Lab. / AJOU Univ.

Blind Temporal Property Restoral Methods - CM

z We exploit the temporal structure such as Constant Modulus or Self-Coherence to construct the beamformer. The waveform property is damaged by the presence of interference. The adaptive beamformer attempts to restore signal property at its output and thus automatically reduces interference. Many variants of CM have been studied

r������� ��������

q����� ������ ��� �� �� ����������

hhoo ������������OO SS

hhoo ������������OO TT

uuSSJJ�K�K

uuTTJJ�K�K

uuSSJJ��KK

yy

Comm. Sys. Lab. / AJOU Univ.

5. Adaptive Beamforming5. Adaptive Beamforming

Page 27: Smart antenna

27

Comm. Sys. Lab. / AJOU Univ.

Adaptive Beamforming

c�c������������� uu����������r�r���������������

uu���������� SS

uu���������� oo

uu���������� TT

yySS

yyoo

yyTT

e�e�������������������������

��TTJJ��KK ��JJ��KK

��TTJJ��KK

��TTJJ��KK

cc���������������� k��k������������������

oo����������

z Spatial processing dynamically creates a different sector for each user

z Because it transmits an infinite number of combinations, its narrower focus

creates less interference to neighboring users than a switched-beam approach

Comm. Sys. Lab. / AJOU Univ.

Signal Model for Adaptive Beamforming

z Received signal vector at base station antenna array

z Array covariance matrix

z Undesired signal vector covariance

)()()()(~)( 00 tttst nivx ++= θ

∑=

=N

iii tst

1

)()(~)( θvi

{ } IvvxxR xx2

0

2 )()()()(E niH

i

N

ii

H tt σθθσ +== ∑=

{ } IvvuuRuu2

1

2 )()()()(E niH

i

N

ii

H tt σθθσ +== ∑=

)()()( ttt niu +=

Page 28: Smart antenna

28

Comm. Sys. Lab. / AJOU Univ.

Optimum Beamforming Weights

z Maximum SINR beamformer - Output SINR

00

2

0020

20

200

0

)(

]|)(|[E

]|)()(~|[E0

wRw

vw

uw

vw

uuH

H

H

H

t

tsSINR

θσθ==

- Optimum weight)( 0

1 θζ vRw uu−=SINR

z Maximum likelihood beamformer - Likelihood function ( Assuming being a multivariate Gaussian ))(tu

)]()(~)([)]()(~)([ 01

01

))(())(( θθ

πvxRvx

uu

uu

Rxx tsttst

U

H

etftL −−− −

==

- ML Optimum weight

)()(

)(

01

0

01

θθθ

vRvvR

wuu

uu−

= HML

Comm. Sys. Lab. / AJOU Univ.

Optimum Beamforming Weights (cont.)

z MMSE beamformer - Error between the beamformer output and the desired signal

)()(~)( 0ttste H xw−=

- Mean squared error{ } 00~0

20

20 2Re]|)(|[E)( wRwrww xxx

Hste +−== σε

- MSE optimum weight

sMSE ~1

xxxrRw −=

sHMSE ~1

01

0

20

)()(1 xuuuu

rRvRv

w −−+

=θθ

σ

z Beamforming based on training signals

)(1

ˆith w

ˆˆˆ

1

1

ldN

N

lld

dMSE

∑=

=

=

xr

rRw

x

xxx

Page 29: Smart antenna

29

Comm. Sys. Lab. / AJOU Univ.

Adaptive Algorithms

z LMS (Least mean square) algorithm

)()()(ˆ)1(ˆ * nnnn εµxww +=+

)(ˆ)()()(with ntndn H wx−=ε

z DMI (Direct matrix inversion) algorithm

rRw ˆˆˆ 1−=

∑∑==

==2

1

2

1

)()(ˆ and )()(ˆwith *N

Ni

N

Ni

H iidii xrxxR

z RLS (Recursive least squares) algorithm

)()()1(~)(~ and )()()1(~

)(~ * nndnnnnnn H xrrxxRR +−=+−= γγ

)]()1(ˆ)()[()1(ˆ)(~)(~

)(ˆ *1 nnndnnnnn H rwqwrRw −−+−== −

)()1()(1

)()1()(with

11

11

nnn

nnn

H xRxxR

q−+

−= −−

−−

γγ

Comm. Sys. Lab. / AJOU Univ.

Digital Beamforming with Multiple Access

uuooJnJnKKuu

SSJSJSKK

TDBF #1 TDBF #M

SS

A/D A/D

Receivermodule

Receivermodule

pp

FDM DEMUX#NFDM DEMUX #1

uuSSJnJnKK uu

ooJJSSKK

SS ooooSS

ppSSppSS

��oo

��SS

SS ppppSS

ooSSooSS

��oo

��SS

D/A D/A

Transmittermodule

Transmittermodule

ppSS

FDM MUX #1 FDM MUX #1

RDBF #1 RDBF #M

DEMOD DEMOD DEMOD DEMOD

SS SS nnnn

MOD MODMOD MOD

nn nnSSSS

uuSSJSJSKK uu

SSJnJnKK uu

ooJJSSKK uu

ooJnJnKK

z DBF with FDMA

Uplink configuration for FDMA system Downlink configuration for FDMA system

Page 30: Smart antenna

30

Comm. Sys. Lab. / AJOU Univ.

Digital Beamforming with Multiple Access (cont.)

uuSSJJnnKK

SS

SS

pp

nn

Receive dig ital beam forming network

DEMOD DEMOD

A/D A/D

Receivermodule

Receivermodule

uuooJJSSKK uu

ooJJnnKK

TD M D E M U X #1 TD M D E M U X #L

SS

pp

uuSSJJSSKK

SS pp

nn

Transm it d igital beamforming network

D/A D/A

MOD MOD

TD M MU X#LTD M MU X#1

TX m odule TX m odule

SS

uuSSJJnnKKuu

ooJJSSKK uu

ooJJnnKKuu

SSJJSSKK

ppSS

z DBF with TDMA

Uplink configuration for TDMA system Downlink configuration for TDMA system

Comm. Sys. Lab. / AJOU Univ.

Digital Beamforming with Multiple Access (cont.)

uuooJJnnKKuu

SSJJSSKK

SS

A /D A /D

R ece iverm o du le

R ece iverm o du le

pp

uuSSJJnnKK uu

ooJJSSKK

��SS

R D BF #1 RD B F #M

SS SS nnnn

SS ooooSS

ppSSppSS

D E MO D #1 D E MO D #Meeoo

eeSS

M O D #1 M O D #N

SS ppppSS

ooSSooSS

D /A D /A

T ransm itte rm o du le

T ransm itte rm o du le

ppSS

nn nnSSSS

eeSS

eeoo

T DB F #1 T DB F #M

uuSSJJSSKK uuSS

JJnnKK uuooJJSSKK uuoo

JJnnKK

z DBF with CDMA

Uplink configuration for CDMA system Downlink configuration for CDMA system

Page 31: Smart antenna

31

Comm. Sys. Lab. / AJOU Univ.

Digital Beamforming with Multiple Access (cont.)

ee��JJ��nnKK

ee��JJ��nnKKMO D

uu��JJSSKK

MO D

TDBF#m

uu��JJnnKK

nnSS

SS pp

RDBF #m

DEM OD DEM OD

SS pp

SS nn

uu��JJSSKK uu��JJnnKK

ee�� JJ��SSKK

ee�� JJ��SSKK

z DBF with CDMA (Alternative configuration)

(a) Uplink (b) Downlink

Comm. Sys. Lab. / AJOU Univ.

Beamformer-RAKE Receiver Structure

uu������������

oo������������ hh����������

vv��������������

oo������������ hh����������

dd������������������

yyLLSS

dd������������������

yyLLnn

dd������������������

yyLLTT

||SSJ�J�)

||nnJ�J�)

||TTJ�J�)

eeLLJ�J�OOτ1)

eeLLJ�J�OOτnn)

eeLLJ�J�OOτ2)

x(t)

x(t)

x(t)

Page 32: Smart antenna

32

Comm. Sys. Lab. / AJOU Univ.

Downlink Beamforming

z FDD Downlink beamforming techniques

- Direct channel sounding and feedback techniques, Probing techniques

- DOA-based methods

- Subspace mapping methods

- Switched-beam systems

- Spatial signature translation methods

z TDD

- In most, uplink and the downlink channels can be considered reciprocal

- Use the uplink channel information

Comm. Sys. Lab. / AJOU Univ.

6. Performance6. Performance

Page 33: Smart antenna

33

Comm. Sys. Lab. / AJOU Univ.

Range Increase

z M-element adaptive array and a switched beam provide a M-fold increase in antenna gain

- Increase the range by , where is the propagation loss exponent - Reduces the number of base stations required to cover a given area by

γ1Mγ

γ2M

Comm. Sys. Lab. / AJOU Univ.

Capacity and Data Rate Increase

z Capacity - In CDMA systems, switched beam with M beams reduces the number of interferers per beam by a factor of M, and increases the capacity M-fold - In TDMA systems, adaptive array with an M-element array having the potential to permit greater than an M-fold increase

z Data rate (example of IS-136) - 48.6Kb/s in a single 30KHz channel - Using M antennas at the mobile and base station Ö M spatially separate channels are permitting M • 48.6Kb/s in a single 30KHz channel

Page 34: Smart antenna

34

Comm. Sys. Lab. / AJOU Univ.

BER Performance with Fading

z Average BER vs average SINR for optimum combining

A single interferers A pair of interferers

Comm. Sys. Lab. / AJOU Univ.

Co-Channel Interference Reduction

z Outage probability and relative spectral efficiency

Outage prob. with six cochannel cells Relative spectral efficiency

Page 35: Smart antenna

35

Comm. Sys. Lab. / AJOU Univ.

Improvement in CDMA Systems

z Outage probability for uplink

Comm. Sys. Lab. / AJOU Univ.

7. Research Trends7. Research Trends

Page 36: Smart antenna

36

Comm. Sys. Lab. / AJOU Univ.

Space-Time Processing

z Space-time optimum receiver

z Space-time optimum multi-user receiver

z Space-time joint equalization multi-user transmitter-receiver system

z Space-time coding

Comm. Sys. Lab. / AJOU Univ.

Space-Time Optimum Receiver

z VD(Viterbi Detector) connected to an ST-WMF(Spatially and Temporally Whitened

Matched Filter) which is constructed by a TDL(Tapped Delay Line) antenna array

Page 37: Smart antenna

37

Comm. Sys. Lab. / AJOU Univ.

Space-Time Optimum Receiver (cont.)

BER of optimum receiver (single user) BER of optimum CDMA multi-user receiver (multi-user)

Comm. Sys. Lab. / AJOU Univ.

Space-Time Joint Equalizer in the Tx and Rx

z ST joint transceiver system which consists of an ST transmission filter(ST-TF) based on a transmitting TDL array, an ST-WMF based on a receiving TDL array, and a VD for MLSE

a space-time joint transmitter-receiver system

ST-TFW t(t,Φ)

Mu ltipathchannel

ST-TFW t(t,Φ)

l ������ p ������

Viterb ialgorithm

Channelestim atior

zRzS

� �

|R|S

u������ ��� ��������

������������ ������

u������ ��� ��������

�������� ������� ������

zRzS

Page 38: Smart antenna

38

Comm. Sys. Lab. / AJOU Univ.

Space-Time Joint Equalizer in the Tx and Rx (cont.)

BER according to the number of users Transmission rate according to the number of users

Comm. Sys. Lab. / AJOU Univ.

Space-Time Coding

z Transmit diversity : Significant improvements in data rates or BER performance

z Transmitter functions - N-element antenna arrays - Space-time encoding is splitting into N streams using N-element antenna arrays - Periodic orthogonal pilot sequences to obtain channel estimates

z Receiver functions - M-element antenna arrays - Using orthogonal pilot sequences to estimate fading channel - Using interpolation filter to obtain accurate channel state information - Block symbol-to-symbol deinterleaver Æ vector ML sequence decoder Æ RS decoder

Page 39: Smart antenna

39

Comm. Sys. Lab. / AJOU Univ.

Space-Time Coding (cont.)

Im fo rm ationSo ur ce

Space-T im e E ncoder

B lock E ncoder(R eed Solo m on )

C oncatenated S pace-T im e E n co der

In ter leav ingBurst

Build ing

P ulseShaper

Burst 2

In ter leav ingBurst

Build ing

P ulseShaper

Burst 1

R eed So lom o nD ecod er

D e in te r leav ing

C h ann e l E stim a t io nand

In te rpo la tionM atchedF il te r

D e in te r leav ingC h ann e l E stim a t io n

andIn te rpo la tion

M atchedF il te r

Space-T im eV ec tor V i te r b i

D ecod er

C onca ten ated Space-T im e D ecod er

< Base station transmitter with STCM and 2 transmit antennas >

< Mobile receiver with STCM and 2 receiver antennas >

Comm. Sys. Lab. / AJOU Univ.

Smart Antenna Systems for IMT2000

z Difference Between IS-95 & cdma2000

z 2-D Space-Frequency Rake in UTRA FDD

- SIEMENS scheme

z Adaptive Antenna Array Combined with Rake Receiver

- NTT DoCoMo scheme

z Transmit Diversity for WCDMA

- NOKIA scheme

Page 40: Smart antenna

40

Comm. Sys. Lab. / AJOU Univ.

Difference Between IS-95 & cdma2000

z Issues affecting the performance of adaptive antenna arrays:

� IS-95 - Uniform (in rate and space) voice user population

- No pilot channel for the uplink â Blind training required

- Interference rejection capabilities of adaptive antenna arrays are

diffused due to uniform spatial distribution of voice users

� cdma2000 - Multi-rate traffic processing gain range

Ö PG = 3.56 ( high speed data ) ~ 768 ( voice )

- Pilot channel available in the uplink

- High data rate users introduce non-uniformity in the spatial

distribution of interfering sources

Comm. Sys. Lab. / AJOU Univ.

UMTS Terrestrial Radio Access (UTRA)

z UTRA FDD uplink � Uplink data and control channels I/Q-multiplexed � 2-D space-frequency rake smart antenna system

z UTRA FDD downlink � Downlink data and control channels time multiplexed � Connection-dedicated pilot bits enable downlink beamforming � Support the use of space-selective beamforming

z UTRA TDD � Efficient support of asymmetrical services � Joint space-time processing smart antenna system on the uplink � Connection-dedicated midamble sequences are also transmitted � Spatial beamforming on the downlink

- SIEMENS scheme -

Page 41: Smart antenna

41

Comm. Sys. Lab. / AJOU Univ.

2-D Space-Frequency Rake in UTRA FDD

��������

������������

cQf

o��������Q����

����������

reej

����������

rfej

����������

reej

����������

rfej

��������������������

cQfo

��������Q����

f hv f hv

f hv f hv

���� ����

tuM kM p

tkM p

� �

p��������

oU�������

oU�������

p��������

f hv

f hv

�������

����� ������

�������

����� ������

oU�������

oU�������

p��������

p��������

W 1

W 2

W M MU

Σ ������

��������

P

P

P

P

P

P

P

P

P

o ������� �������

- SIEMENS scheme -

Comm. Sys. Lab. / AJOU Univ.

Raw BER Performance in UTRA FDD

No. of rake fingers / antenna (space-time rake) = 3

~y} �� ~zt X \[ �m

~y} �� ���������� \ {\ h ][ �m

~y} �� ���������� ] {] h \[ �m

~y} �� ���������� ^ {^ h \` �m

,,,, 29M4M79N2M 3c ==== ϖ

- SIEMENS scheme -

Page 42: Smart antenna

42

Comm. Sys. Lab. / AJOU Univ.

Adaptive Antenna Array Combined with Rake Receiver

z Frame structure

- Reverse link : time-multiplexed pilot

- Forward link : I/Q-multiplexed

z Algorithm & Receiver Structure - Antenna beamforming criteria

Ö Decision directed MMSE criteria using data symbols as well as pilot

Ö Implemented by the normalized least mean square (N-LMS)

- Channel estimation : weighted multi-slot averaging (WMSA) filter

- Coherent rake : adaptive antenna array combined with rake receiver

- NTT DoCoMo scheme -

Comm. Sys. Lab. / AJOU Univ.

Adaptive Antenna Array Combined with Rake Receiver (cont.)

ccQQff oohh

ccQQff oohh

ccQQff oohh

yy���������� ��������������JJoooouuggKK���� ����������O�O�������

����������������

MM

d��� �d��� �������������

ee������������

��������������������

LL

MMOO

MM

v�v���������������

��������

����������������

c�c���������������

��������������������������

uu������������ �������������������� ���� � �� ��� ��������

v����v���������� �������������������� ���� ������ ����������

v�v�

��O��O���������������������� HH

x�x����������� ��������������

���� ����������

����������

t���t���

gg��������

- NTT DoCoMo scheme -

Page 43: Smart antenna

43

Comm. Sys. Lab. / AJOU Univ.

Performance Comparison

� Omni-cell is assumed� Adaptive antenna array provides the best performance

- NTT DoCoMo scheme -

Comm. Sys. Lab. / AJOU Univ.

Transmit Diversity for WCDMA

z Code-Division-Transmit-Diversity (Orthogonal Transmit Diversity) - Encoding and interleaving identical to single-antenna Tx

- Different spreading

z Time-Division-Transmit-Diversity (TDTD)

- Encoding, interleaving & spreading identical to single-antenna Tx

� Selective Transmit Diversity (STD)

- Superior to TSTD and CDTD in low mobility application, but requires

more control

- Best antenna determined from common and/or traffic channel measurements

- Joint power control and antenna selection

� Time-Switched-Transmit-Diversity (TSTD), "antenna hopping"

- Used e.g. when closed loop is unreliable or ineffective (high speed/doppler)

- NOKIA scheme -

Page 44: Smart antenna

44

Comm. Sys. Lab. / AJOU Univ.

Time-Division-Transmit-Diversity- NOKIA Scheme -

z Time-Switched-Transmit-Diversity

z Selective Transmit Diversity e.g AS=(1 1 -1 , ... , 1), 800 Hz switching

Slot 1

S lot 2

S lot 3

S lot 2

S lot 3PPP

Slot 1 PPPSlot 2

S lot 3 S lot 4 S lot 5 S lot 6 S lot 16

Comm. Sys. Lab. / AJOU Univ.

STD(-), TSTD(--), CDTD(...), single-antenna(-.-)

Performance, 10 km/h- NOKIA scheme -

Page 45: Smart antenna

45

Comm. Sys. Lab. / AJOU Univ.

Software Radio with Smart Antennas

z Software Radio

- Great flexibility such that it can be programmed for emerging standard

- Dynamically updated with new software without changes in hardware

and infrastructure

z Software Radio with Smart Antennas

- Increasing the number of beams and users is a software process within

the constraints of hardware costs

- A joint beamforming and power control algorithm can be implemented

in CDMA network

- Traffic improvement in a network

z Software Radio Architecture with Smart Antenna Systems

- IF(Intermediate Frequency) software radio architecture

- Baseband DSP radio architecture

Comm. Sys. Lab. / AJOU Univ.

Software Radio with Smart Antennas (cont.)

z Functional block diagram of the software radio for a base station with smart antenna

Page 46: Smart antenna

46

Comm. Sys. Lab. / AJOU Univ.

Software Radio with Smart Antennas (cont.)

z Block diagram of the software beamforming for each user

Comm. Sys. Lab. / AJOU Univ.

Software Radio with Smart Antennas (cont.)

z Channel Assignment Algorithm

- (i-1) cochannel Tx successfully

share the same channel

- Newly arrived ith Tx shares that

channel if

- : SINR

z Threshold

Ö IS-54 : 14dB

Ö AMPS : 18dB

γ≥Γi

)(γ

Page 47: Smart antenna

47

Comm. Sys. Lab. / AJOU Univ.

Software Radio with Smart Antennas (cont.)

z Call admission success probability for assigned channel

Success probability for a 2-beamadaptive array for different values

of M, SNR and threshold γ

Success probability for a 3-beamadaptive array for different values

of M, SNR and threshold γ

Comm. Sys. Lab. / AJOU Univ.

Concluding Remarks

Too many works already done.

Too many works doing.

Too many problems are waiting you to be defeated.


Recommended