+ All Categories
Home > Documents > Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On...

Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On...

Date post: 22-Mar-2018
Category:
Upload: doancong
View: 229 times
Download: 6 times
Share this document with a friend
119
Smart Mobility ARChitecture Design Guide SMARC Design Guide 2.0 March 23, 2017
Transcript
Page 1: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

Smart Mobility ARChitecture Design Guide

SMARC Design Guide 2.0 March 23, 2017

Page 2: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 2 of 119 Mar 23, 2017 ©SGeT e.V.

© Copyright 2017, SGeT Standardization Group for Embedded Technology e.V. Note that some content of this SGeT document may be legally protected by patent rights not held by SGeT. SGeT is not obligated to identify the parts of this specification that require licensing or other legitimization. The contents of this SGeT document are advisory only. Users of SGeT documents are responsible for protecting themselves against liability for infringement of patents. All content and information within this document are subject to change without prior notice. SGeT provides no warranty with regard to this SGeT document or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. SGeT assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and this SGeT document. In no event shall SGeT be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this SGeT document or any other information contained herein or the use thereof.

Page 3: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 3 of 119 Mar 23, 2017 ©SGeT e.V.

REVISION HISTORY

Revision Comments Originator Date

1.0 Initial Release S. Milnor / Kontron July 1, 2013

1.1 Created sharper images for Fig 19, 60, 69 Fixed small typos and grammar mistakes

S. Milnor / Kontron July 5, 2013

2.0 Update to SMARC 2.0 Hardware Specification

B. Mayer / Technagon March 23, 2017

Page 4: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 4 of 119 Mar 23, 2017 ©SGeT e.V.

CONTENTS

1 Introduction .......................................................................................................................................... 10 1.1 General Introduction .................................................................................................................... 10 1.2 Purpose of This Document .......................................................................................................... 10 1.3 Design Help ................................................................................................................................. 10 1.4 Abbreviations and Acronyms Used ............................................................................................. 11 1.5 Document References ................................................................................................................ 13

1.5.1 SGET Documents ............................................................................................................... 13 1.5.2 Industry Standards Documents ........................................................................................... 13

1.6 Schematic Example Correctness ................................................................................................ 15 1.7 Software Support ........................................................................................................................ 15 1.8 Schematic Example Conventions ............................................................................................... 16

2 Infrastructure: Connector, Power Delivery, System Management ...................................................... 18 2.1 Module Connector ....................................................................................................................... 18 2.2 Module Power ............................................................................................................................. 21

2.2.1 Input Voltage Range ........................................................................................................... 21 2.2.2 Input Voltage Rise Time ...................................................................................................... 21 2.2.3 Module Maximum Input Power ............................................................................................ 21 2.2.4 Power Path .......................................................................................................................... 21

2.3 Module I/O Voltage ..................................................................................................................... 23 2.4 VIN_PWR_BAD# ........................................................................................................................ 24 2.5 CARRIER_PWR_ON .................................................................................................................. 24 2.6 Reset In to Module ...................................................................................................................... 24 2.7 Power Button ............................................................................................................................... 25 2.8 Force Recovery ........................................................................................................................... 26 2.9 Power Up Sequence ................................................................................................................... 27

2.9.1 CARRIER_STBY# ............................................................................................................... 28 2.10 Boot Selection ............................................................................................................................. 29

2.10.1 Boot Definitions ................................................................................................................... 29 2.10.2 SMARC BOOT_SEL Pins ................................................................................................... 30

2.11 RTC Backup Power ..................................................................................................................... 31 2.12 Reserved / Test Interfaces .......................................................................................................... 32

3 Display Interfaces ................................................................................................................................ 33 3.1 Module LVDS .............................................................................................................................. 33

3.1.1 NEC 1280 x 768 Single Channel LVDS Example ............................................................... 33 3.1.2 LVDS Dual Channel example ............................................................................................. 35 3.1.3 Display Parameters and EDID ............................................................................................ 37

3.2 HDMI ........................................................................................................................................... 38 3.3 DisplayPort (DP++) ..................................................................................................................... 39

3.3.1 HDMI over DP++ ................................................................................................................. 39 3.4 Embedded DisplayPort (eDP) ..................................................................................................... 40 3.5 MIPI DSI ...................................................................................................................................... 41

4 Low / Medium Speed Serial I/O Interfaces ......................................................................................... 42 4.1 Asynchronous Serial Ports .......................................................................................................... 42

4.1.1 RS232 Ports ........................................................................................................................ 42 4.1.2 RS485 Half-Duplex.............................................................................................................. 43

4.2 I2C Interfaces .............................................................................................................................. 45 4.2.1 General ................................................................................................................................ 45 4.2.2 I2C Level Translation, Isolation and Buffering .................................................................... 45 4.2.3 I2C_PM Bus EEPROMs ...................................................................................................... 47 4.2.4 General I2C Bus EEPROMs ............................................................................................... 49 4.2.5 I2C Based I/O Expanders ................................................................................................... 50 4.2.6 Other I2C Devices ............................................................................................................... 51

4.3 Touch Screen Controller Interfaces ............................................................................................ 53 4.3.1 General ................................................................................................................................ 53 4.3.2 Interface Types / Driver Considerations .............................................................................. 53

Page 5: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 5 of 119 Mar 23, 2017 ©SGeT e.V.

4.3.3 Touch Controller Modules / ICs / Screens .......................................................................... 53 4.3.4 I2C Interface to Touch Controller ........................................................................................ 55

4.4 I2S Interfaces .............................................................................................................................. 56 4.4.1 General Information ............................................................................................................ 56 4.4.2 Cirrus Logic I2S Audio Example ......................................................................................... 56 4.4.3 Texas Instruments TLV320AIC3105 I2S Audio Example ................................................... 57 4.4.4 lntel High Definition Audio over I2S2................................................................................... 58 4.4.6 Audio Switch ........................................................................................................................ 59

4.5 SPI Interfaces .............................................................................................................................. 59 4.5.1 General ................................................................................................................................ 59 4.5.2 SMARC Implementation ...................................................................................................... 60 4.5.3 SPI Device Examples – 1.8V I/O ........................................................................................ 61

4.6 CAN Bus ...................................................................................................................................... 62 4.6.1 General ................................................................................................................................ 62 4.6.2 SMARC Implementation ...................................................................................................... 63 4.6.3 Isolation ............................................................................................................................... 63

5 High Speed Serial I/O Interfaces......................................................................................................... 64 5.1 USB ............................................................................................................................................. 64

5.1.1 General ................................................................................................................................ 64 5.1.2 USB0 Client / Host Direct From Module ............................................................................. 64 5.1.3 USB1 and USB2 Host Ports direct from Module ................................................................. 66 5.1.4 USB 3.0 ............................................................................................................................... 67 5.1.5 USB 3.0 OTG ...................................................................................................................... 67 5.1.6 USB Hub On Carrier ........................................................................................................... 69

5.2 GBE ............................................................................................................................................. 72 5.2.1 GBE Carrier Connector Implementation Example .............................................................. 72 5.2.2 GBE Mag-Jack Connector Recommendations ................................................................... 74 5.2.3 GBE LEDs ........................................................................................................................... 75 5.2.4 GBE software-defined Pins ................................................................................................. 77

5.3 PCIe ............................................................................................................................................ 77 5.3.1 General ................................................................................................................................ 77 5.3.2 PCIe x1 Device Down on Carrier ........................................................................................ 78 5.3.3 Mini-PCIe ............................................................................................................................. 79 5.3.4 PCIe Reference Clock buffer .............................................................................................. 80

5.4 SATA ........................................................................................................................................... 81 5.4.1 General ................................................................................................................................ 81 5.4.2 mSATA / MO-300 ................................................................................................................ 82

5.5 M.2 .............................................................................................................................................. 82 5.5.1 B keying ............................................................................................................................... 83 5.5.2 M keying .............................................................................................................................. 84 5.5.3 E keying ............................................................................................................................... 84

6 Memory Card Interfaces ...................................................................................................................... 86 6.1 SD Card ....................................................................................................................................... 86

7 Camera Interfaces ............................................................................................................................... 87 7.1 General ........................................................................................................................................ 87 7.2 Camera Data Interface Formats.................................................................................................. 87 7.3 Camera Sensors and Camera Module Vendors ......................................................................... 87 7.4 Serial Camera Interface Example ............................................................................................... 87 7.5 Other Camera Options ................................................................................................................ 88

8 GPIO ................................................................................................................................................... 89 8.1 SMARC Module Native GPIO ..................................................................................................... 89 8.2 GPIO Expansion ......................................................................................................................... 89

9 Carrier Power Circuits ......................................................................................................................... 90 9.1 Power Budgeting ......................................................................................................................... 90 9.2 Input Power Sources ................................................................................................................... 91 9.3 Power Budgeting, Continued – Fixed 5V Power Source ............................................................ 92 9.4 Fixed 5V DC Power Input Circuit Example ................................................................................. 93 9.5 Power Hot Swap Controller ......................................................................................................... 96

Page 6: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 6 of 119 Mar 23, 2017 ©SGeT e.V.

9.6 High Voltage LED Supply ............................................................................................................ 97 9.7 3.0V to 5.25V Power Input Example ........................................................................................... 98 9.8 12V Input ..................................................................................................................................... 99 9.9 Wide Range Power Input .......................................................................................................... 100 9.10 Power Monitoring ...................................................................................................................... 100 9.11 Power Over Ethernet ................................................................................................................. 102 9.12 Li-ION Battery Charger ............................................................................................................. 104

9.12.1 General .............................................................................................................................. 104 9.12.2 Battery Charger Circuit Example ....................................................................................... 105

10 Thermal Management ................................................................................................................... 109 10.1 General ...................................................................................................................................... 109 10.2 Heat Spreaders ......................................................................................................................... 109 10.3 Heat Sinks ................................................................................................................................. 111 10.4 Thermal Resistance Calculations.............................................................................................. 112

11 Carrier PCB Design Rule Summary .............................................................................................. 113 11.1 General – PCB Construction Terms ......................................................................................... 113 11.2 Differential Pair Cautions .......................................................................................................... 114 11.3 General Routing Rules and Cautions ....................................................................................... 115 11.4 Trace Parameters for High-Speed Differential Interfaces ......................................................... 116 11.5 Trace Parameters for Single Ended Interfaces ......................................................................... 117 11.6 PCB Construction Suggestions ................................................................................................. 118

Page 7: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 7 of 119 Mar 23, 2017 ©SGeT e.V.

FIGURES

Figure 1 Schematic Symbol Conventions .................................................................................................. 16 Figure 2 Module Connector Pins P1-74 and S1-75 ................................................................................... 19 Figure 3 Module Connector Pins P75-156 and S76-158 ........................................................................... 20 Figure 4 Basic Module and Carrier Power Path ........................................................................................ 22 Figure 5 Reset Switch ................................................................................................................................ 24 Figure 6 Power Button Switch .................................................................................................................... 25 Figure 7 Force Recovery Switch ................................................................................................................ 26 Figure 8 SMARC Carrier Power up Sequence - No Power Button Case .................................................. 27 Figure 9 SMARC Carrier Power up Sequence - With Power Button Case ................................................ 28 Figure 10 Boot Selection Jumpers ............................................................................................................. 30 Figure 11 RTC Backup: Coin Battery / Super Cap .................................................................................... 31 Figure 12 Module LVDS: NEC Single Channel Display ............................................................................. 33 Figure 13 LVDS Dual Channel ................................................................................................................... 36 Figure 14 LVDS Dual Channel Power Supply ........................................................................................... 36 Figure 15 Carrier EDID EEPROM .............................................................................................................. 37 Figure 16 HDMI Implementation ................................................................................................................ 38 Figure 17 DisplayPort ++ ........................................................................................................................... 39 Figure 18 HDMI over DP++........................................................................................................................ 40 Figure 19 Embedded DisplayPort (eDP) .................................................................................................... 41 Figure 20 MIPI DSI ..................................................................................................................................... 41 Figure 21 Asynchronous Serial Port Transceiver – RS232 – TRS3253E ................................................. 42 Figure 22 Asynchronous Serial Port Transceiver – RS232 – MAX13235E ............................................... 43 Figure 23 Asynchronous Serial Port Transceiver - RS485 – Half Duplex ................................................. 44 Figure 24 I2C Power Domain Isolation – using FETs ................................................................................ 45 Figure 25 I2C Power Domain Isolation and Buffer – Fairchild FXMA2102 ................................................ 46 Figure 26 I2C_PM EEPROM: Carrier Power Domain ............................................................................... 47 Figure 27 I2C_PM EEPROM: Module Power Domain ............................................................................... 48 Figure 28 I2C_GP EEPROM...................................................................................................................... 49 Figure 29 I2C Device: I/O Expander .......................................................................................................... 50 Figure 30 I2C Device: Accelerometer ........................................................................................................ 51 Figure 31 I2C Device: Accelerometer and Magnetometer ......................................................................... 51 Figure 32 I2C Device: Gyroscope .............................................................................................................. 52 Figure 33 Touch Screen Connector – I2C Interface .................................................................................. 55 Figure 34 I2S Audio Codec Cirrus Logic WM8904 .................................................................................... 56 Figure 35 I2S Audio CODEC: Texas Instruments ..................................................................................... 57 Figure 36 Audio Amplifier: Texas Instruments ........................................................................................... 57 Figure 37 HD Audio .................................................................................................................................... 58 Figure 38 Audio switch ............................................................................................................................... 59 Figure 39 SPI Flash Socket ....................................................................................................................... 60 Figure 40 CAN Bus Implementation .......................................................................................................... 63 Figure 41 USB0 Client / Host Direct From Module .................................................................................... 65 Figure 42 USB1 and USB4 Host Ports Direct From Module ..................................................................... 66 Figure 43 USB 3.0 host dual ...................................................................................................................... 67 Figure 44 USB 3.0 OTG ............................................................................................................................. 68 Figure 45 USB Hub (1 of 2)........................................................................................................................ 70 Figure 46 USB Hub (2 of 2)........................................................................................................................ 71 Figure 47 GBE without POE ...................................................................................................................... 72 Figure 48 GBE separate magnetic for current and voltage mode line driver ............................................. 73 Figure 49 GBE LED Current Sink .............................................................................................................. 75 Figure 50 GBE LED Current Sink / Source ................................................................................................ 76 Figure 51 Interfacing a PCIe x1 Carrier Board Device .............................................................................. 78 Figure 52 Mini-PCIe Slot ............................................................................................................................ 79 Figure 53 PCIe Clock buffer ....................................................................................................................... 80 Figure 54 mSATA / MO-300....................................................................................................................... 82

Page 8: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 8 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 55 M.2 Key B .................................................................................................................................. 83 Figure 56 M.2 Key M .................................................................................................................................. 84 Figure 57 M.2 Key E .................................................................................................................................. 85 Figure 58 Micro SD Card Implementation .................................................................................................. 86 Figure 59 Serial Camera Implementation .................................................................................................. 88 Figure 60 5V Input Connector .................................................................................................................... 93 Figure 61 5V Carrier Power Switch ............................................................................................................ 93 Figure 62 3.3V 2A Buck Converter ............................................................................................................ 94 Figure 63 1.8V Buck Converter .................................................................................................................. 94 Figure 64 1.5V Buck Converter .................................................................................................................. 95 Figure 65 12V Boost Converter for Backlight Power ................................................................................. 95 Figure 66 Hot Swap Controller ................................................................................................................... 96 Figure 67 LP8545 LED Backlight Power .................................................................................................... 97 Figure 68 5V, 2A Buck-Boost Converter .................................................................................................... 98 Figure 69 3.3V 2A Buck-Boost Converter .................................................................................................. 98 Figure 70 12V Step Down Switcher ........................................................................................................... 99 Figure 71 Wide Range Power Input Switcher .......................................................................................... 100 Figure 72 Power Monitor - Incoming Power............................................................................................. 101 Figure 73 GbE with PoE ........................................................................................................................... 103 Figure 74 Li-ION Battery Charger - Block Diagram ................................................................................. 106 Figure 75 Li-ION Battery Charger - Schematic ........................................................................................ 107 Figure 76 Battery Fuel Gauge .................................................................................................................. 108 Figure 77 Charger Present Detection ...................................................................................................... 108 Figure 78 Heat Spreader Example – 82mm x 50mm Module .................................................................. 110 Figure 79 Heat Sink Add-On to Heat Spreader ....................................................................................... 111 Figure 80 Stand-Alone Heat Sink ............................................................................................................ 111 Figure 81 PCB Cross Section – Striplines and Asymmetric Microstrips .................................................. 114

TABLES Table 1 Schematic Power Net Naming ...................................................................................................... 17 Table 2 Boot Select Pins ............................................................................................................................ 30 Table 3 I2C Device Examples - 1.8V I/O ................................................................................................... 52 Table 4 Popular Touch Technologies ........................................................................................................ 53 Table 5 Touch Controller Module / IC / Screen Vendors ........................................................................... 53 Table 6 SPI Device Examples - 1.8V I/O ................................................................................................... 61 Table 7 Recommended Gigabit Ethernet Connectors with Magnetics ...................................................... 74 Table 8 PCIe Data Transfer Rates ............................................................................................................. 77 Table 9 SMARC PCIe Signal Summary ..................................................................................................... 77 Table 10 SATA SSD Form Factors ............................................................................................................ 81 Table 11 SATA SSD Vendors .................................................................................................................... 81 Table 12 Camera Sensors ......................................................................................................................... 87 Table 13 Camera Module Vendors ............................................................................................................ 87 Table 14 Hypothetical Power Budget Example – Part 1 ............................................................................ 90 Table 15 Input Power Source Possibilities................................................................................................. 91 Table 16 Hypothetical Power Budget Example – Part 2 ............................................................................ 92 Table 17 Lithium- Ion Battery Cell Voltages ............................................................................................. 104 Table 18 Heat Spreader Hole Types ....................................................................................................... 110 Table 19 Hypothetical Thermal Parameters ............................................................................................ 112 Table 20 PCB Terms and Symbols .......................................................................................................... 113 Table 21 High-Speed Differential Trace Parameters ............................................................................... 116 Table 22 Single Ended Trace Parameters ............................................................................................... 117 Table 23 PCB Construction Example - 4 Layers ..................................................................................... 118 Table 24 PCB Construction Example - 6 Layers ..................................................................................... 118 Table 25 PCB Construction Example – 8 Layers .................................................................................... 119

Page 9: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 9 of 119 Mar 23, 2017 ©SGeT e.V.

Page 10: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 10 of 119 Mar 23, 2017 ©SGeT e.V.

1 INTRODUCTION

1.1 General Introduction

SMARC (“Smart Mobility Architecture”) is a computer Module standard maintained by the SGeT (“Standardization Group for Embedded Technologies”). SMARC Modules are small form factor (82mm x 50mm and 82mm x 80mm), low power (typically <6W) computer Modules that are used on a Carrier board that utilizes a 314 pin 0.5mm pitch right-angle memory socket style connector to host the Module. SMARC Modules may utilize ARM, low power RISC or low power x86 CPUs / SOCs. The SMARC Modules are specified in the SGeT Smart Mobility Architecture Hardware Specification 2.0. The specification document and an errata document are available free of charge from the SGET web site (www.sget.org), subject to their terms of use. Similarly, this SMARC Design Guide is available free of charge from the SGET web site, subject to the SGET terms of use.

1.2 Purpose of This Document

The primary purpose of this document is to serve as a Design Guide for developers of SMARC Carrier Boards and for SMARC Module customers who wish to have a SMARC based system developed. A secondary purpose of this document is to serve as a reference to SMARC Module developers, to help them understand the application of the Modules they are developing. Finally, this document should be valuable to FAEs and Product managers to help them understand the SMARC infrastructure.

1.3 Design Help

There are a number of ways to have a SMARC Carrier board developed:

Design internally, but have your SMARC Module vendor review your design. Make sure to also have the appropriate semiconductor companies review the portions of the design that utilize their components.

Use a 3rd party firm that specializes in SMARC Carrier development. Such resources may be listed on the SGET web page (www.sget.org).

Contact your SMARC Module vendor. The Module vendor will have an FAE available for advice. Many vendors will also undertake custom Carrier design projects, for significant opportunities.

Page 11: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 11 of 119 Mar 23, 2017 ©SGeT e.V.

1.4 Abbreviations and Acronyms Used

ADC Analog to Digital Converter

ARM Advanced RISC Machines www.arm.com

BCT Boot Configuration Table

BSP (software) Board Support Package

CAD Computer Aided Design

CAN Controller Area Network

CPLD Complex Programmable Logic Device

CODEC Coder – Decoder

CSI Camera Serial Interface www.mipi.org

DAC Digital to Analog Converter

DB-9 Connector, D shaped, B shell size, 9 pins

DDC Display Data Channel

DDI Digital Display Interface

DE Differential Ended (signal pair)

DNI Do Not Install (component is not loaded)

DP DisplayPort

DP++ Dual-mode DisplayPort

DSP Digital Signal Processor

DSI Display Serial Interface

EDID Extended Display Identification Data www.vesa.org

EEPROM Electrically Erasable Programmable Read Only Memory

eMMC Embedded Multi Media Card www.jedec.org

ESD Electro Static Discharge

FET Field Effect Transistor

FIFO First In First Out (buffer memory)

FS Full Speed (USB 2.0 12 Mbps)

GBE Gigabit Ethernet www.ieee.org

Gbps Gigabit per second

GPIO General Purpose Input / Output

GPS Global Positioning System

HDA High Definition Audio – Intel defined format www.intel.com

HDMI High Definition Multimedia Interface www.hdmi.org

HID Human Interface Device: USB device class

HS High Speed (USB 2.0 480 Mbps)

IC Integrated Circuit

I2C Inter-Integrated Circuit www.nxp.com

I2S Inter-Integrated Circuit – Sound www.nxp.com

IEEE Institute of Electrical and Electronics Engineers www.ieee.org

IO Input Output

ISO International Organization for Standardization (French) www.iso.org

JEDEC Joint Electron Device Engineering Council www.jedec.org

JPEG Joint Photographic Experts Group www.jpeg.org

LED Light Emitting Diode

Li-Ion Lithium Ion (rechargeable battery technology)

LVDS Low Voltage Differential Signaling

M2.5 Metric 2.5mm

M3 Metric 3.0mm

MAC Media Access Controller (e.g. logic circuits in GBE)

Mbps Megabit per second

MIPI Mobile Industry Processor Interface www.mipi.org

MLC Multi Level Cell (flash memory reference)

MOD Module (the SMARC Module) (schematic notation)

Page 12: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 12 of 119 Mar 23, 2017 ©SGeT e.V.

MO-297 Module Outline 297 (“Slim SATA” format) www.jedec.org

MO-300 Module Outline 300 (mini-PCIe Express card format) www.jedec.org

MPEG Motion Picture Experts Group www.mpeg.org

MXM Mobile pci eXpress Module www.mxm-sig.org

MXM3 MXM Revision 3

NAND A high density flash memory technology

ns Nano second (10 E -9)

NC Not Connected

NXP A semiconductor company www.nxp.com

OS Operating System

OTG On the Go (USB term – device can be host or client)

PCB Printed Circuit Board

PHY Physical (transceiver) – drives cable

PICMG PCI Industrial Computer Manufacturing Group www.picmg.org

PCI Peripheral Component Interface www.pcisig.org

PCIe PCI Express www.pcisig.org

PCI-SIG PCI Special Interest Group www.pcisig.org

PCM Pulse-Code Modulation

PLL Phase Locked Loop

POE Power Over Ethernet

ps Pico second (10 E -12)

PWM Pulse Width Modulation

RGB Video data in Red Green Blue pixel format

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RS232 Recommend Standard 232 (asynchronous serial ports)

RS485 Asynchronous serial data, differential, multidrop

RTC Real Time Clock (battery backed clock and memory)

SAR Successive Approximation Register

SATA Serial ATA (serial mass storage interface) www.sata-io.org

SD Secure Digital (memory card)

SE Single Ended (signal, as opposed to differential)

SGeT Standardization Group for Embedded Technologies www.sget.org

SLC Single Level Cell (flash memory reference)

SMARC Smart Mobility Architecture www.sget.org

SMSC A semiconductor company, now MICROCHIP www.smsc.com

SOC System On Chip

S/PDIF Sony/Philips Digital Interconnect Format

SPI Serial Peripheral Interface

SSD Solid State Disk

TI Texas Instruments – semiconductor company www.ti.com

TIM Thermal Interface Material

UART Universal Asynchronous Receiver Transmitter

UL Underwriters Laboratories www.ul.com

USB Universal Serial Bus www.usb.org

VESA Video Electronics Standards Association www.vesa.org

WEC7 Windows Embedded Compact 7 (an OS)

YUV Video data format, more common in television

X5R Ceramic capacitor dielectric – good quality

X7R Ceramic capacitor dielectric – best quality

X86 Intel architecture (80x86) CPUs

Page 13: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 13 of 119 Mar 23, 2017 ©SGeT e.V.

1.5 Document References

1.5.1 SGET Documents

Smart Mobility Architecture Hardware Specification, V 2.0, June 2, 2016 © SGET (Standardization Group For Embedded Technologies) www.sget.org

1.5.2 Industry Standards Documents

BT.656 (“Recommendation ITU-R BT.656-5 Interface for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601”), International Telecommunications Union, December 2007 (www.itu.int)

CAN (“Controller Area Network”) Bus Standard – ISO 11898

CSI-2 (Camera Serial Interface version 2) The CSI-2 standard is owned and maintained by the

MIPI Alliance (“Mobile Industry Processor Interface Alliance”) (www.mipi.org).

CSI-3 (Camera Serial Interface version 3) The CSI-3 standard is owned and maintained by the

MIPI Alliance (“Mobile Industry Processor Alliance”) (www.mipi.org)

COM Express – the formal title for the COM Express specification is “PICMG® COM.0 COM

Express Module Base Specification”, Revision 2.1, May 14, 2012. This standard is owned and

maintained by the PICMG (“PCI Industrial Computer Manufacturer’s Group”) (www.picmg.org)

DisplayPort and Embedded DisplayPort These standards are owned and maintained by VESA

(“Video Electronics Standards Association”) (www.vesa.org)

D-PHY CSI-2 physical layer standard – owned and maintained by the MIPI Alliance

(www.mipi.org)

DSI (Display Serial Interface) The DSI standard is owned and maintained by the MIPI Alliance (“Mobile Industry Processor Alliance”) (www.mipi.org)

eMMC (“Embedded Multi-Media Card”) the eMMC electrical standard is defined by JEDEC

JESD84-B45 and the mechanical standard by JESD84-C44 (www.jedec.org).

eSPI (“Enhanced Serial Peripheral Interface”) The eSPI Interface Base Specification is defined

by Intel (https://downloadcenter.intel.com/de/download/22112)

Fieldbus - this term refers to a number of network protocols used for real – time industrial control. Refer to the following web sites: www.profibus.com/downloads and www.canopen.org

GBE MDI (“Gigabit Ethernet Medium Dependent Interface”) defined by IEEE 802.3. The

1000Base-T operation over copper twisted pair cabling defined by IEEE 802.3ab

(www.ieee.org).

HDA (HD Audio), High Definition Audio Specification, Intel, Revision 1.0a, June 17, 2010 (http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/high-definition-audio-specification.pdf)

HDMI Specification, Version 1.3a, November 10, 2006 © Hitachi and other companies

(www.hdmi.org).

The I2C Specification, Version 2.1, January 2000, Philips Semiconductor (now NXP)

(www.nxp.com).

I2S Bus Specification, Feb. 1986 and Revised June 5, 1996, Philips Semiconductor (now NXP)

(www.nxp.com).

IEEE1588 - 2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (http://standards.ieee.org/findstds/standard/1588-2008.html)

Page 14: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 14 of 119 Mar 23, 2017 ©SGeT e.V.

JTAG (“Joint Test Action Group”) This is defined by IEEE 1149.1-2001 - IEEE Standard Test Access Port and Boundary Scan Architecture (www.ieee.org )

JEDEC MO-300 (mSATA) defines the physical form factor of the mSATA format

(www.jedec.org). The electrical connections are defined in the Serial ATA document.

MXM3 Graphics Module Mobile PCI Express Module Electromechanical Specification,

Version 3.0, Revision 1.1, © 2009 NVidia Corporation (www.mxm-sig.org ).

PICMG® EEEP Embedded EEPROM Specification, Rev. 1.0, August 2010 (www.picmg.org).

PCI Express Specifications (www.pci-sig.org).

PCI Express Mini Card Electromechanical Specification Revision 2.0, April 21, 2012, © PCI-

SIG (www.pci-sig.org).

RS-232 (EIA “Recommended Standard 232”) this standard for asynchronous serial port data

exchange dates from 1962. The original standard is hard to find. Many good descriptions of the

standard can be found on-line, e.g. at Wikipedia, and in text books.

Serial ATA Revision 3.1, July 18, 2011, Gold Revision, © Serial ATA International Organization

(www.sata-io.org).

SD Specifications Part 1 Physical Layer Simplified Specification, Version 3.01, May 18,

2010, © 2010 SD Group and SD Card Association (“Secure Digital”) (www.sdcard.org).

SM Bus – “System Management Bus” Specification Version 3.0, 2© 2014 System Management Interface Forum, Inc. (http://www.smbus.org )

SPDIF (aka S/PDIF) (“Sony Philips Digital Interconnect Format) - IEC 60958-3.

SPI Bus – “Serial Peripheral Interface” – de-facto serial interface standard defined by Motorola. A

good description may be found on Wikipedia

(http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus).

UL 1642 Lithium Batteries – safety standard governing the use of lithium batteries

(www.ul.com)

USB Specifications (www.usb.org).

VESA Enhanced Extended Display Identification Data Standard, Rev. 1, Feb 9, 2000, VESA

(www.vesa.org) See also the “EDID” page on Wikipedia.

Page 15: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 15 of 119 Mar 23, 2017 ©SGeT e.V.

1.6 Schematic Example Correctness

The schematic examples shown in this Design Guide are believed to be correct but correctness cannot be guaranteed. Most of the examples have been pulled from designs that have been built, tested, and are known to work. Most of them have been re-formatted to fit better in this design guide.

1.7 Software Support

Many hardware examples and suggestions are given in the following pages. SMARC Carrier hardware design is generally straightforward. However, before committing to a particular hardware selection, it is wise to check out the software driver support. A particular device may be supported in, say, for example, Linux but not in Windows. Your overall project may go smoother if you pick out hardware that already has software support in your target OS. There are various possible sources for software drivers for a particular IC: the IC vendor, the OS vendor, the OS community, your Module vendor, your Carrier design partner, other independent sources and of course writing your own. Most SMARC Module vendors offer a BSP (Board Support Package) for their Module. Your target Carrier device may be supported in the BSP – check this angle out as well.

Page 16: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 16 of 119 Mar 23, 2017 ©SGeT e.V.

1.8 Schematic Example Conventions

Some of the conventions used in the schematic examples are described below. Note off-page connections that tie directly to the SMARC Module have the notation “MOD” in the off-page connect symbol.

Figure 1 Schematic Symbol Conventions

V _ 3 V 0 _R T CV _M O D _ IN _ L E D

M O D

M O D

M O D

V _ 1 2 V0 V _ 3 V3V _ 5 V0 V _ 1 V8 V _ 1 V5

V _M O D _ IN V _C A R R IE R _ IN

O ff-S h e e t In te r-c o n n e c t: R e g u la r

O ff-S h e e t In te r-c o n n e c t: T o /F ro m S M A R C M o d u le

O n -S h e e t In te r-c o n n e c t

In p u t

O u tp u t

B id ire c t io n a l

B id ire c t io n a l

O u tp u t

In p u t

G lo b a l P o w e r S y m b o ls

D N I

A b b re v ia t io n s

D o N o t In s ta ll

Page 17: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 17 of 119 Mar 23, 2017 ©SGeT e.V.

Table 1 Schematic Power Net Naming

V_IN_RAW

Power in to the overall system, before any filtering, fusing, polarity or rise time protection

V_IN

Power in to the overall system, after (optional) filtering, fusing, polarity or rise time protection

V_MOD_IN

Power into the SMARC Module. It must be within the 3.0V to 5.25V range defined by the SMARC specification

V_CARRIER_IN

Power in to the Carrier Board. It may be the same as V_MOD_IN, depending on the design at hand. On SMARC Evaluation Carrier boards, V_CARRIER_IN is sometimes kept separate from V_MOD_IN to allow easier measurements and tracking of where the power goes.

V_5V0

5V supply on the Carrier Board

V_3V3

3.3V supply on the Carrier Board

V_1V8

1.8V supply on the Carrier Board

V_1V5

1.5V supply on the Carrier Board

V_3V0_RTC

Supply voltage from the Carrier Board to the SMARC VDD_RTC pin (pin S147) This is a low voltage, low current supply separate from V_MOD_IN, used to supply the Module RTC (Real Time Clock) in the absence of V_MOD_IN.

V_MOD_IN_LED

Same as V_MOD_IN except isolated by a series jumper – used for power status LEDs – jumper can be removed to prevent status LEDs from consuming power

Page 18: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 18 of 119 Mar 23, 2017 ©SGeT e.V.

2 INFRASTRUCTURE: CONNECTOR, POWER DELIVERY, SYSTEM MANAGEMENT

2.1 Module Connector

The SMARC Module connector is well described in the Smart Mobility ARChitecture Hardware Specification 2.0 and the complete description is not repeated here. Briefly, the SMARC Module connector is a low profile, right angle 314 pin memory – socket style connector. The same connector is commonly used for MXM3 graphics cards. However, it is important to understand that the SMARC usage and pin-out of this connector is totally different from the usage as graphics card. The SMARC Module connector is available from multiple sources, including at least one vendor that has qualified their offering for automotive use. Various height profiles are available for the SMARC Module connector. The lowest profile available has a Carrier Board PCB top-side to Module PCB bottom-side separation of 1.5mm, and a connector body height of 4.3mm.

Page 19: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 19 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 2 Module Connector Pins P1-74 and S1-75

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

X1-1

SMARC-Connector_2parts_SM2.0<Assembly>

SMB_ALERT_1V8P1

GND_01P2

CSI1_CK+P3

CSI1_CK-P4

GBE1_SDPP5

GBE0_SDPP6

CSI1_RX0+P7

CSI1_RX0-P8

GND_02P9

CSI1_RX1+P10

CSI1_RX1-P11

GND_03P12

CSI1_RX2+P13

CSI1_RX2-P14

GND_04P15

CSI1_RX3+P16

CSI1_RX3-P17

GND_05P18

GBE0_MDI3-P19

GBE0_MDI3+P20

GBE0_LINK100P21

GBE0_LINK1000P22

GBE0_MDI2-P23

GBE0_MDI2+P24

GBE0_LINK_ACTP25

GBE0_MDI1-P26

GBE0_MDI1+P27

GBE0_CTREFP28

GBE0_MDI0-P29

GBE0_MDI0+P30

SPI0_CS1P31

GND_06P32

SDIO_WPP33

SDIO_CMDP34

SDIO_CDP35

SDIO_CKP36

SDIO_PWR_ENP37

GND_07P38

SDIO_D0P39

SDIO_D1P40

SDIO_D2P41

SDIO_D3P42

SPI0_CS0P43

SPI0_CKP44

SPI0_DINP45

SPI0_DOP46

GND_08P47

SATA_TX+P48

SATA_TX-P49

GND_09P50

SATA_RX+P51

SATA_RX-P52

GND_10P53

ESPI_CS0P54

ESPI_CS1P55

ESPI_CKP56

ESPI_IO_0P57

ESPI_IO_1P58

GND_11P59

USB0+P60

USB0-P61

USB0_EN_OCP62

USB0_VBUS_DETP63

USB0_OTG_IDP64

USB1+P65

USB1-P66

USB1_EN_OCP67

GND_12P68

USB2+P69

USB2-P70

USB2_EN_OCP71

RSVD_01P72

RSVD_02P73

USB3_EN_OCP74

CSI1_TX+/I2C_CAM1_CKS1

CSI1_TX-/I2C_CAM1_DATS2

GND_25S3

RSVD_05S4

CSI0_TX-/I2C_CAM0_CKS5

CAM_MCKS6

CSI0_TX+/I2C_CAM0_DATS7

CSI0_CK+S8

CSI0_CK-S9

GND_26S10

CSI0_RX0+S11

CSI0_RX0-S12

GND_27S13

CSI0_RX1+S14

CSI0_RX1-S15

GND_28S16

GBE1_MDI0+S17

GBE1_MDI0-S18

GBE1_LINK100S19

GBE1_MDI1+S20

GBE1_MDI1-S21

GBE1_LINK1000S22

GBE1_MDI2+S23

GBE1_MDI2-S24

GND_29S25

GBE1_MDI3+S26

GBE1_MDI3-S27

GBE1_CTREFS28

PCIE_D_TX+S29

PCIE_D_TX-S30

GBE1_LINK_ACTS31

PCIE_D_RX+S32

PCIE_D_RX-S33

GND_30S34

USB4+S35

USB4-S36

USB3_VBUS_DETS37

AUDIO_MCKS38

I2S0_LRCKS39

I2S0_SDOUTS40

I2S0_SDINS41

I2S0_CKS42

ESPI_ALERT0S43

ESPI_ALERT1S44

RSVD_06S45

RSVD_07S46

GND_31S47

I2C_GP_CKS48

I2C_GP_DATS49

HDA_SYNC/I2S2_LRCKS50

HDA_SDO/I2S2_SDOUTS51

HDA_SDI/I2S2_SDINS52

HDA_CK/I2S2_CKS53

SATA_ACTS54

USB5_EN_OCS55

ESPI_IO_2S56

ESPI_IO_3S57

ESPI_RESETS58

USB5+S59

USB5-S60

GND_32S61

USB3_SSTX+S62

USB3_SSTX-S63

GND_33S64

USB3_SSRX+S65

USB3_SSRX-S66

GND_34S67

USB3+S68

USB3-S69

GND_35S70

USB2_SSTX+S71

USB2_SSTX-S72

GND_36S73

USB2_SSRX+S74

USB2_SSRX-S75

SMB_ALERT_1V8#

CSI1_CK_PCSI1_CK_NGBE1_SDPGBE0_SDPCSI1_D0_P

CSI1_D1_PCSI1_D1_N

CSI1_D2_PCSI1_D2_N

CSI1_D3_NCSI1_D3_P

GBE0_MDI3_N

GBE0_MDI0_N

GBE0_MDI3_PGBE0_LINK100#GBE0_LINK1000#GBE0_MDI2_NGBE0_MDI2_PGBE0_LNK#_ACT#GBE0_MDI1_NGBE0_MDI1_PGBE0_CTREF

GBE0_MDI0_PSPI0_CS1#

SDIO_WPSDIO_CMDSDIO_CD#SDIO_CLKSDIO_PWR_EN

SDIO_D0SDIO_D1SDIO_D2SDIO_D3

SDIO_D[0..3]

SPI0_CS0#SPI0_CKSPIO_DINSPIO_DO

SATA_TX_PSATA_TX_N

SATA_RX_PSATA_RX_N

ESPI_CS0#ESPI_CS1#ESPI_CKESPI_IO_0ESPI_IO_1

USB0_D_PUSB0_D_N

USB1_D_PUSB1_D_N

USB2_D_PUSB2_D_N

USB0_EN_OC#USB0_VBUS_DETUSB0_OTG_ID

USB1_EN_OC#

USB2_EN_OC#RESERVED_01RESERVED_02USB3_EN_OC#

CSI1_TX_P/I2C_CAM1_CKCSI1_TX_N/I2C_CAM1_DAT

RESERVED_05CSI0_TX_N/I2C_CAM0_CKCAM_MCKCSI0_TX_P/I2C_CAM0_DAT

CSI0_CK_NCSI0_CK_P

CSI0_RX0_PCSI0_RX0_N

CIS0_RX1_PCIS0_RX1_N

GBE1_MDI0_PGBE1_MDI0_NGBE1_LINK100#GBE1_MDI1_PGBE1_MDI1_NGBE1_LINK1000#GBE1_MDI2_PGBE1_MDI2_N

GBE1_MDI3_PGBE1_MDI3_NGBE1_CTREFPCIE_D_TX_PPCIE_D_TX_N

PCIE_D_RX_PGBE1_LINK_ACT#

PCIE_D_RX_N

USB4_D_PUSB4_D_NUSB3_VBUS_DETAUDIO_MCKI2S0_LRCKI2S0_SDOUTI2S0_SDINI2S0_CKESPI_ALERT0#ESPI_ALERT1#RESERVED_06RESERVED_07

I2C_GP_CKI2C_GP_DATHDA_SYNC/I2S2_LRCKHDA_SDO/I2S2_SDOUTHDA_SDI/I2S2_SDINHDA_CK/I2S2_CKSATA_ACT#USB5_EN_OC#ESPI_IO2ESPI_IO3ESPI_RESET#USB5_D_PUSB5_D_N

USB3_SSTX_PUSB3_SSTX_N

USB3_SSRX_NUSB3_SSRX_P

USB3_D_PUSB3_D_N

USB2_SSTX_PUSB2_SSTX_N

USB2_SSRX_PUSB2_SSRX_N

CSI1_D0_N

Page 20: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 20 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 3 Module Connector Pins P75-156 and S76-158

V_MOD_IN

V_RTC

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

X1-2

SMARC-Connector_2parts_SM2.0<Assembly>

PCIE_A_RSTP75

USB4_EN_OCP76

RSVD_03P77

RSVD_04P78

GND_13P79

PCIE_C_REFCK+P80

PCIE_C_REFCK-P81

GND_14P82

PCIE_A_REFCK+P83

PCIE_A_REFCK-P84

GND_15P85

PCIE_A_RX+P86

PCIE_A_RX-P87

GND_16P88

PCIE_A_TX+P89

PCIE_A_TX-P90

GND_17P91

HDMI_D2+/DP1_LANE0+P92

HDMI_D2-/DP1_LANE0-P93

GND_18P94

HDMI_D1+/DP1_LANE1+P95

HDMI_D1-/DP1_LANE1-P96

GND_19P97

HDMI_D0+/DP1_LANE2+P98

HDMI_D0-/DP1_LANE2-P99

GND_20P100

HDMI_CK+/DP1_LANE3+P101

HDMI_CK-/DP1_LANE3-P102

GND_21P103

HDMI_HPD/DP1_HPDP104

HDMI_CTRL_CK/DP1_AUX+P105

HDMI_CTRL_DAT/DP1_AUX-P106

DP1_AUX_SELP107

GPIO0/CAM0_PWRP108

GPIO1/CAM1_PWRP109

GPIO2/CAM0_RSTP110

GPIO3/CAM1_RSTP111

GPIO4/HDA_RSTP112

GPIO5/PWM_OUTP113

GPIO6/TACHINP114

GPIO7P115

GPIO8P116

GPIO9P117

GPIO10P118

GPIO11P119

GND_22P120

I2C_PM_CKP121

I2C_PM_DATP122

BOOT_SEL0P123

BOOT_SEL1P124

BOOT_SEL2P125

RESET_OUTP126

RESET_INP127

POWER_BTNP128

SER0_TXP129

SER0_RXP130

SER0_RTSP131

SER0_CTSP132

GND_23P133

SER1_TXP134

SER1_RXP135

SER2_TXP136

SER2_RXP137

SER2_RTSP138

SER2_CTSP139

SER3_TXP140

SER3_RXP141

GND_24P142

CAN0_TXP143

CAN0_RXP144

CAN1_TXP145

CAN1_RXP146

VDD_IN_01P147

VDD_IN_02P148

VDD_IN_03P149

VDD_IN_04P150

VDD_IN_05P151

VDD_IN_06P152

VDD_IN_07P153

VDD_IN_08P154

VDD_IN_09P155

VDD_IN_10P156

PCIE_B_RSTS76

PCIE_C_RSTS77

PCIE_C_RX+S78

PCIE_C_RX-S79

GND_37S80

PCIE_C_TX+S81

PCIE_C_TX-S82

GND_38S83

PCIE_B_REFCK+S84

PCIE_B_REFCK-S85

GND_39S86

PCIE_B_RX+S87

PCIE_B_RX-S88

GND_40S89

PCIE_B_TX+S90

PCIE_B_TX-S91

GND_41S92

DP0_LANE0+S93

DP0_LANE0-S94

DP0_AUX_SELS95

DP0_LANE1+S96

DP0_LANE1-S97

DP0_HPDS98

DP0_LANE2+S99

DP0_LANE2-S100

GND_42S101

DP0_LANE3+S102

DP0_LANE3-S103

USB3_OTG_IDS104

DP0_AUX+S105

DP0_AUX-S106

LCD1_BKLT_ENS107

LVDS1_CK+/eDP1_AUX+/DSI1_CLK+S108

LVDS1_CK-/eDP1_AUX-/DSI1_CLK-S109

GND_43S110

LVDS1_0+/eDP1_TX0+/DSI1_D0+S111

LVDS1_0-/eDP1_TX0-/DSI1_D0-S112

eDP1_HPDS113

LVDS1_1+/eDP1_TX1+/DSI1_D1+S114

LVDS1_1-/eDP1_TX1-/DSI1_D1-S115

LCD1_VDD_ENS116

LVDS1_2+/eDP1_TX2+/DSI1_D2+S117

LVDS1_2-/eDP1_TX2-/DSI1_D2-S118

GND_44S119

LVDS1_3+/eDP1_TX3+/DSI1_D3+S120

LVDS1_3-/eDP1_TX3-/DSI1_D3-S121

LCD1_BKLT_PWMS122

RSVD_08S123

GND_45S124

LVDS0_0+/eDP0_TX0+/DSI0_D0+S125

LVDS0_0-/eDP0_TX0-/DSI0_D0-S126

LCD0_BKLT_ENS127

LVDS0_1+/eDP0_TX1+/DSI0_D1+S128

LVDS0_1-/eDP0_TX1-/DSI0_D1-S129

GND_46S130

LVDS0_2+/eDP0_TX2+/DSI0_D2+S131

LVDS0_2-/eDP0_TX2-/DSI0_D2-S132

LCD0_VDD_ENS133

LVDS0_CK+/eDP0_AUX+/DSI0_CLK+S134

LVDS0_CK-/eDP0_AUX-/DSI0_CLK-S135

GND_47S136

LVDS0_3+/eDP0_TX3+/DSI0_D3+S137

LVDS0_3-/eDP0_TX3-/DSI0_D3-S138

I2C_LCD_CKS139

I2C_LCD_DATS140

LCD0_BKLT_PWMS141

RSVD_09S142

GND_48S143

eDP0_HPDS144

WDT_TIME_OUTS145

PCIE_WAKES146

VDD_RTCS147

LIDS148

SLEEPS149

VIN_PWR_BADS150

CHARGINGS151

CHARGER_PRSNTS152

CARRIER_STBYS153

CARRIER_PWR_ONS154

FORCE_RECOVS155

BATLOWS156

TESTS157

GND_49S158

PCIE_A_RST# PCIE_B_RST#

USB_4_EN_OC#RESERVED_03RESERVED_04

PCIE_C_REFCK_PPCIE_C_REFCK_N

PCIE_A_REFCK_PPCIE_A_REFCK_N

PCIE_A_RX_PPCIE_A_RX_N

PCIE_A_TX_PPCIE_A_TX_N

HDMI_D2_P/DP1_LANE0_PHDMI_D2_N/DP1_LANE0_N

HDMI_D1_P/DP1_LANE1_PHDMI_D1_N/DP1_LANE1_N

HDMI_D0_P/DP1_LANE2_PHDMI_D0_N/DP1_LANE2_N

HDMI_CK_P/DP1_LANE3_PHDMI_CK_N/DP1_LANE3_N

HDMI_HDP/DP1_HPDHDMI_CTRL_CK/DP1_AUX_PHDMI_CTRL_DAT/DP1_AUX_NDP1_AUX_SELGPIO0/CAM0_PWRGPIO1/CAM1_PWRGPIO2/CAM0_RSTGPIO3/CAM1_RSTGPIO4/HDA_RSTGPIO5/PWM_OUTGPIO6/TACHINGPIO7GPIO8GPIO9GPIO10GPIO11

I2C_PM_CKI2C_PM_DATBOOT_SEL0#BOOT_SEL1#BOOT_SEL2#RESET_OUT#RESET_IN#POWER_BTN#SER0_TXSER0_RXSER0_RTS#SER0_CTS#

SER1_TXSER1_RXSER2_TXSER2_RXSER2_RTS#SER2_CTS#SER3_TXSER3_RX

CAN0_TXCAN0_RXCAN1_TXCAN1_RX

PCIE_C_RST#PCIE_C_RX_PPCIE_C_RX_N

PCIE_C_TX_PPCIE_C_TX_N

PCIE_B_REFCK_PPCIE_B_REFCK_N

PCIE_B_RX_PPCIE_B_RX_N

PCIE_B_TX_PPCIE_B_TX_N

DP0_LANE0_PDP0_LANE0_NDP0_AUX_SELDP0_LANE1_PDP0_LANE1_NDP0_HPDDP0_LANE2_PDP0_LANE2_N

DP0_LANE3_PDP0_LANE3_N

DP0_AUX_PDP0_AUX_NLCD1_BKLT_ENLVDS1_CK_P/eDP1_AUX_P/DSI1_CLK_P

LVDS1_D0_P/eDP1_TX0_P/DSI1_D0_PLVDS1_D0_N/eDP1_TX0_N/DSI1_D0_NeDP1_HPDLVDS1_D1_P/eDP1_TX1_P/DSI1_D1_P

LVDS1_CK_N/eDP1_AUX_N/DSI1_CLK_N

UDB3_OTG_ID

LVDS1_D1_N/eDP1_TX1_N/DSI1_D1_NLCD1_VDD_ENLVDS1_D2_P/eDP1_TX2_P/DSI1_D2_PLVDS1_D2_N/eDP1_TX2_N/DSI1_D2_N

LVDS1_D3_P/eDP1_TX3_P/DSI1_D3_PLVDS1_D3_N/eDP1_TX3_N/DSI1_D3_NLCD1_BKLT_PWMRESERVED_08

LVDS0_D0_P/eDP0_TX0_P/DSI0_D0_PLVDS0_D0_N/eDP0_TX0_N/DSI0_D0_NLCD0_BKLT_ENLVDS0_D1_P/eDP0_TX1_P/DSI0_D1_P

LVDS0_D2_P/eDP0_TX2_P/DSI0_D2_PLVDS0_D2_N/eDP0_TX2_N/DSI0_D2_NLCD0_VDD_ENLVDS0_CK_P/eDP0_AUX_P/DSI0_CLK_P

LVDS0_D1_N/eDP0_TX1_N/DSI0_D1_N

LVDS0_CK_N/eDP0_AUX_N/DSI0_CLK_N

LVDS0_D3_P/eDP0_TX3_P/DSI0_D3_PLVDS0_D3_N/eDP0_TX3_N/DSI0_D3_NI2C_LCD_CLKI2C_LCD_DATLCD0_BKLT_PWM

LID#SLEEP#VIN_PWR_BAD#

CHARGING#CHARGER_PRESENT#

eDP0_HPDWDT_TIME_OUT#PCIE_WAKE#

RESERVED_09

CARRIER_STANDBY#CARRIER_PWR_ONFORCE_RECOV#BAT_LOW#

TEST#

VDD_RTC

Page 21: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 21 of 119 Mar 23, 2017 ©SGeT e.V.

2.2 Module Power

2.2.1 Input Voltage Range

Per the SMARC Module Hardware Specification, the SMARC Modules may accept input power over the voltage range 3.0V to 5.25V. This range coincides with the range of a single-level lithium – ion cells and allows the use of common 5V or 3.3V fixed DC supplies.

2.2.2 Input Voltage Rise Time

There are currently no limits in the SMARC Module Hardware Specification on the Module power supply rise times. In general, it is not wise to expose the Module and Carrier electronics to extremely fast power supply rise times (as may be the case if a low impedance power source such as a battery pack or power brick is “hot-plugged”). Input power supply rise times faster than 50V / millisecond to the Module should be avoided. If a unit is to be “hot-plugged” to a low impedance power source, then the Carrier should implement measures to slow the power rise time as seen by the Module and Carrier circuits. The Carrier can do this by implementing a FET and hot-swap controller in the input power path. This is discussed in Section 9.5 Power Hot Swap Controller.

2.2.3 Module Maximum Input Power

The SMARC V2.0 specification document states that the allowable input voltage range is 3.0V to 5.25V. The rationale for this is that this range coincides with the voltage range of single level lithium-ion cells, and that it also allows the use of common 5V or 3.3V bench supplies. However, it is not mandatory in the V2.0 specification that Modules are required to work at the lower end (3.0V) of this range. The SMARC Module physical connector is a MXM3 connector (although the pinout is completely different). The MXM3 specification document requires that the MXM3 connector pins be able to carry 0.5A current minimum. SMARC Modules allocate 10 pins for input power (and 49 GND pins for signal and power return). Thus, per the MXM3 connector requirement, the 10 pins should be capable of handling 5A. This allows a maximum power input range of 15W (for 3.0V power in) to 26W (for 5.25V power in). For conservative design, let us operate the MXM3 connector pins at no more than 70% of their capacity. Then the following maximum power inputs are achieved:

10 pins * 0.5A * 70% * 3.0V = 10.5W (low end of Li-Ion battery) 10 pins * 0.5A * 70% * 4.75V = 16.6W (low end of 5V bench supply)

These numbers apply to the Module only, and not to the Carrier circuits. The 10.5W is adequate for low power Modules that are to be served by single level Lithium-Ion cells. The 16.6W should be adequate for higher power Modules (Including x86 designs) operating from a 5V supply.

2.2.4 Power Path

The power path for a basic, fixed input voltage arrangement SMARC Module and Carrier board system is shown in Figure 4 Basic Module and Carrier Power Path below. A number of features in the figure are optional and may be omitted (and bypassed) in a minimal implementation. The figure also shows Carrier Board power supply sections assuming a typical system powered by a power source in the 3.0V to 5.25V range

Page 22: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 22 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 4 Basic Module and Carrier Power Path

SMARCModule

Optional

Power

SupervisorVIN_PWR_BAD#

RESET_IN#

PWR_BTN#

VDD_IN

Open Drain - pulled

low if input power

is out of spec

CARRIER_PWR_ON

EN

IN OUT

IN OUT

EN

LCD_BKLT_EN

IN

EN

OUT

IN

IN

EN

EN

OUT

OUT

V_5V0

V_BKLT

V_3V3

V_1V8

V_1V5

USB Power

Switches

LCD Backlight

Voltage depends on

backlight type

Mini-PCIe

SATA MO-300

USB Hub

General Purpose 3.3V

Module I/O

Low voltage I2C and

I2S peripherals

Mini PCIe

SATA MO-300

Optional

Hot Swap

Controller + FET

Carrier Board Power Supplies – Enabled by Module CARRIER_PWR_ON signal

FET Switch (if 5V input)

Buck-Boost Converter (if 3.0 to 5.25V input)

Boost converter (if 3.3V input)

RESET_OUT#Active low reset

to Carrier Board

Boost Converter

Buck Converter (if 5V input)

Buck-Boost (if 3.0 to 5.25V)

FET Switch (if 3.3V input)

Optional

Common – Mode

Choke / Filter

Buck Converter

Buck Converter

Optional

LDO V_1V8_ALWAYS

For optional I2C_PM

Periphals that need to be

powered when

CARRIER_PWR_ON

Is inactive

V_IN

V_IN_RAW

I2C_PM

Optional I2C_PM

devices active when

CARRIER_PWR_ON

is low

Power

domain

Isolation

I2C_PM

devices active when

CARRIER_PWR_ON

is high

V_1V8_ALWAYS

Power Rail

V_1V8

Power Rail

Module IO Module – Carrier IO

.

Page 23: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 23 of 119 Mar 23, 2017 ©SGeT e.V.

2.3 Module I/O Voltage

The SMARC Module Hardware Specification specifies the use of 1.8V Module I/O I/O at 1.8V is used in general for low power interfaces. Many contemporary peripherals of interest are available with I/O interfaces that support 1.8V and 3.3V; some are available at 1.8V only, and others at 3.3V only. Specific examples are given in various document sections below. If devices that support only 3.3V are implemented, a level shifter has to be used to interface them to the SMARC Module.

Page 24: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 24 of 119 Mar 23, 2017 ©SGeT e.V.

2.4 VIN_PWR_BAD#

This optional signal may be used to tell the Module that the input power to the Module is not ready. An open-drain driver should be used.

2.5 CARRIER_PWR_ON

The CARRIER_PWR_ON signal is driven by the Module at a 1.8V level. It is a signal to Carrier that the Carrier board specific power supplies may be enabled. This is illustrated in Figure 4 Basic Module and Carrier Power Path above.

2.6 Reset In to Module

The SMARC RESET_IN# signal may be used to force a SMARC system reset. It is an input to the Module. The signal is pulled up on the Module. If used, by the Carrier board, then an open drain device or switch to GND should be used. A switch example is shown in the following figure. The signal is ESD protected in this example, as the switch (and the switch interaction with humans) introduces an ESD hazard.

Figure 5 Reset Switch

MOD

TH

Panasonic EVQ-PBC04MSW1

G

A1

A2

B1

GND

B2

D212

3

1

50V100nF

21C285

V_MOD_IN

RESET_IN#

Page 25: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 25 of 119 Mar 23, 2017 ©SGeT e.V.

2.7 Power Button

SMARC defines a pin to allow the implementation of a Carrier based power button. However - caution - the SMARC Hardware Specification does not define the power up behavior of a Module. The following possibilities exist after a cold power on:

a) Module boots

b) Module waits for a Power Button press to boot

c) The Module is configurable – either behavior a) or behavior b) may be configured

Users are advised to check with your Module vendor on this topic. A Power Button switch example is shown in the figure below. If your Module waits for a Power Button press on power up and you want it to always boot on power up, you have to arrange for a “power button press” on power up, using an open drain device to interface to the SMARC Module.

Figure 6 Power Button Switch

MOD

TH

G

SW2Panasonic EVQ-PBC04M

A1

A2

B1

GND

B2

D202

3

1

C284

50V100nF

21

V_MOD_IN

POWER_BTN#

Page 26: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 26 of 119 Mar 23, 2017 ©SGeT e.V.

2.8 Force Recovery

Some Modules support a “force recovery” function in which the primary boot media can be re-initialized over a designated I/O interface, such as a USB client interface, asynchronous serial port, or Ethernet port. This is Module specific; refer to your Module documentation for further details.

Figure 7 Force Recovery Switch

MOD

D222

3

1

C283100nF50V

21

SW3Panasonic EVQ-PBC04M

TH

G

A1

A2

B1

GND

B2

V_MOD_IN

FORCE_RECOV#

Page 27: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 27 of 119 Mar 23, 2017 ©SGeT e.V.

2.9 Power Up Sequence

The basic power up sequence for SMARC Modules and Carriers is shown in the following two figures. There is a Module design and / or configuration dependence with regard to the power button behavior. Depending on design and / or configuration, the Module may always boot without waiting for a power button press, or it may wait for a power button press. These cases are shown in the figures. It is recommended to arrange that the main Carrier power supplies not come up until the Module asserts the CARRIER_PWR_ON signal. When this is high, you know that the Module power supplies are all up. If the Carrier power is up before the Module supplies are up, there is a risk that the Carrier circuits will back-feed power to the Module I/O pins, which might interfere with a Module boot.

Figure 8 SMARC Carrier Power up Sequence - No Power Button Case

POWER IN (3-5.25V)

V_MOD_IN (3-5.25V)

POWER_BTN#

CARRIER_PWR_ON

CARRIER_STBY#

Carrier Power Rails

V_5V0

V_3V3

V_1V8

V_1V5

RESET_OUT#

ACPI-State

(only for x86 designs)S0S5 >> S3

Page 28: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 28 of 119 Mar 23, 2017 ©SGeT e.V.

The case of a Module that is designed or configured to wait for a power button press before it comes up is diagramed below. When power is applied to the Module, in this case, only a small portion of the Module is using that power – typically, the Module Power Management section – and that circuitry waits for a power button press. When it sees one, the Module proceeds with the boot. When the main Module power rails are up, the Module asserts CARRIER_PWR_ON. The Carrier should use this signal to enable the various Carrier power rails. However, Carrier circuits that are involved in power management (battery charge level, reset monitors, etc.) may be powered ahead of CARRIER_PWR_ON, coincident with the Module power.

Figure 9 SMARC Carrier Power up Sequence - With Power Button Case

POWER IN (3-

5.25V)

V_MOD_IN (3-

5.25V)

POWER_BTN#

CARRIER_PWR_ON

CARRIER_STBY#

Carrier Power Rails

V_5V0

V_3V3

V_1V8

V_1V5

RESET_OUT#

ACPI-State

(only for x86 designs)S0S5 >> S3

NOT x86 chipset

Power button signal

2.9.1 CARRIER_STBY#

A low level on CARRIER_STBY# indicates that the system is going into the standby state, where only power management functions and system memory are powered. The ACPI equivalent is suspend to ram (S3). This signal can be used to switch off power supplies on the Carrier board that are not necessarily needed during standby. Any devices that should be able to wake the system out of the standby state should use the CARRIER_PWR_ON signal instead.

Page 29: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 29 of 119 Mar 23, 2017 ©SGeT e.V.

2.10 Boot Selection

2.10.1 Boot Definitions

Most SOCs used on SMARC Modules have the following attributes:

1) An internal ROM exists. The internal ROM code is executed after the SOC comes out of reset. This ROM code is provided by the silicon vendor and is generally not available or visible to users.

2) A set of SOC strap pins is used to select what SOC physical device interface (SD Card, SPI, eMMC, etc.) will be used for the second – stage boot process (also known as BCT or Boot Configuration Table boot). There is no commonality between various SOCs as to how the strap pins are defined.

3) The SOC pin configuration is very flexible – most SOC pins can be used for several functions, and the SMARC Module designer must choose a pin configuration that works for the design at hand. The SOC pin configuration is set by a Boot Configuration Table that is read out from the external boot media (SD Card, SPI, eMMC, etc.).

There are several stages in the boot process:

1) Internal SOC ROM execution

2) second stage boot, from non-volatile memory external to the SOC: BCT is loaded and various other system parameters are set

3) Operating System load

The Operating System load may occur from the same memory as the second stage BCT boot, or the second stage code may pass the Operating System load off to another device, such as a USB drive or SATA drive.

Page 30: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 30 of 119 Mar 23, 2017 ©SGeT e.V.

2.10.2 SMARC BOOT_SEL Pins

The SMARC Hardware Specification defines 3 SMARC pins, designated BOOT_SEL0# through BOOT_SEL2#, that may be used to tell the Module what physical device to do a BCT boot from. The SMARC BOOT_SELx# pins serve to abstract the SOC – dependent strap definitions into a common SMARC definition. The table below is reproduced from the SMARC Hardware Specification document.

Table 2 Boot Select Pins

Carrier Connection BOOT_SEL2# BOOT_SEL1# BOOT_SEL0#

Boot Source

0 GND GND GND Carrier SATA

1 GND GND Float Carrier SD Card

2 GND Float GND Carrier eMMC Flash

3 GND Float Float Carrier SPI

4 Float GND GND Module device (NAND, NOR) – vendor specific

5 Float GND Float Remote boot (GBE, serial) – vendor specific

6 Float Float GND Module eMMC Flash

7 Float Float Float Module SPI

The Module BOOT_SELx# pins may be set by jumpers on the Carrier Board, as shown in the figure below. The diodes and capacitors are for ESD protection, as the jumpers may experience ESD events. Alternatively, the BOOT_SELx# pins can be set by low value option resistors to GND on the Carrier. The resistors are either installed (for a GND connection) or not installed, per the table above.

Figure 10 Boot Selection Jumpers

THT2/1x2/2.54

FCI 77311-118-02LFJ45

2

11

2

THT2/1x2/2.54

FCI 77311-118-02LFJ46

2

11

2

D232

3

1 D24

2

3

1

C286100nF

50V

21

C287

50V100nF

21C288

50V100nF

21

D25

2

3

1

R288

0402

1KOhm

21

1KOhmR289

0402

21

R290

0402

1KOhm

21

V_MOD_INV_MOD_IN

V_MOD_IN

MOD MODMOD

THT2/1x2/2.54

FCI 77311-118-02LFJ44

2

11

2

BOOT_SEL0#BOOT_SEL2# BOOT_SEL1#

Page 31: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 31 of 119 Mar 23, 2017 ©SGeT e.V.

2.11 RTC Backup Power

The Module RTC (Real Time Clock) circuit requires a backup power source if the Module RTC circuit is expected to keep time in the absence of the primary power source (i.e. the power to Module VDD_IN pins, P147 through P156). The RTC backup power, if used, is applied to the Module VDD_RTC pin, pin S147. The RTC backup power may be provided by a battery or by a large value capacitor, known as a “Supercap”. If a battery is used, the battery is typically a small lithium coin cell with a capacity of a few hundred mAh. Lithium coin cells offer a high energy density, low self-discharge rate, and are not rechargeable. For safety reasons, they must be protected against charging on the Carrier board by a redundant set of circuit elements – typically either two diodes in series or a diode and a resistor. The resistor, if used, must be large enough to limit the battery charging current to be equal to or lower than the amount specified as allowable by the battery vendor. The safety aspects of lithium battery use is governed by a UL document (UL 1642 Lithium Batteries, www.ul.com). The Supercap solution differs from the lithium battery solution in that it needs to be charged by the Module (when the Module has its primary power source); hence a blocking diode should not be used with the Supercap. The time period over which the RTC backup power is effective depends on the Module RTC backup current draw, the exact voltage range over which the Module RTC circuit is functional, on the capacity characteristics of the battery or Supercap, on the drops incurred across the Carrier board circuit protection elements, and on the operating temperature. In general terms, a suitable lithium battery solution can provide RTC backup current on a scale of years; the Supercap solution on a scale of days to weeks.

Figure 11 RTC Backup: Coin Battery / Super Cap

0402

1KOhm

R269

21

0402 R270

1KOhm

21

Renata SMTU2032-LFBT1

2PSMT

21

+

-

V_3V0_RTC

3.3V200mF

Elna DSK-3R3H204T614-H2L

C2401

2

V_3V0_RTC

Vishay BAT54W-V

D12

CA

Coin Battery Holder, R/A, SMT

Super Cap

Page 32: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 32 of 119 Mar 23, 2017 ©SGeT e.V.

2.12 Reserved / Test Interfaces

The Module TEST# pin (pin S157) should normally be left not connected. If pulled low, then Module specific test function(s) may be enabled. Reserved pins should be left not connected and may be used in future revisions of the SMARC specification.

Page 33: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 33 of 119 Mar 23, 2017 ©SGeT e.V.

3 DISPLAY INTERFACES

3.1 Module LVDS

3.1.1 NEC 1280 x 768 Single Channel LVDS Example

The Module LVDS interface may be used with single channel LVDS displays. SMARC Modules typically support LVDS 18 bit single channel operation (three data pairs plus one clock pair). They may also support LVDS 24 bit single channel operation (four data pairs plus one clock pair). Recall that there are two 24 bit color mappings in common use: most significant color bits on fourth data pair (sometimes referred to as the standard 24 bit mapping), and least significant color bits on the fourthLVDS data pair (referred to as 24 bit / 18 bit compatible or as 24 bit / 6 bit pack or similar). The standard 24 bit color mapping is more common but is incompatible with the 18 bit packing. The example below shows an implementation used with an NEC 1280 x 768 single channel LVDS panel (NL 12876AC18-03). This panel uses a discrete wire 30 pin Hirose DF19 series connector. The panel backlight electronics accepts a 12V supply, and panel brightness is controlled by a 3.3V PWM signal. There is no EDID EEPROM on this particular NEC display. This display happens to support 18 bit, 24 bit / 18 bit compatible and standard 24 bit LVDS packings. The panel also allows the image to be reversed. This can be useful if you find the panel connector orientations to be inconvenient – you can rotate the display 180 degrees, alter the scan direction strap, and have the image appear in the correct orientation. These options are set by pull-up and pull-down choices on connector pins 11, 26 and 27 in the image below. Refer to the display data sheet for further information. The display LVDS data and clock differential pairs may be connected directly to the SMARC Module. The backlight PWM and panel enable need level translation and / or buffering as shown in the figure.

Figure 12 Module LVDS: NEC Single Channel Display

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

V_3V3

21

R52

DNI0402

1KOhm

10V

C1381uF

2

1 C14122uF10V

2

1

C173

16V1uF

2

1

SMT

J2

Hirose DF19G-30P-1H

30/1x30/1.0

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

M1

M2

4.7KOhmR19

0402

21

V_3V3

1KOhmDNI0

402

R53

21

TI TPS22924C

U3

BGA6

B1

A1

C1

C2

B2

A2VIN_A2

VIN_B2

ON

GND

VOUT_A1

VOUT_B1

V_3V3

V_12V0

R511KOhm

0402

21

DNI0402

R184.7KOhm

21

0402

R20

4.7KOhm

21

MOD

0402

R1690Ohm

21

25V100nFC116 2

1

C117100nF25V

2

1

MOD

V_1V8

U9TI SN74AVC2T244DQ

MicroQFN8

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_3V3

10KOhm

DNI

R240

0402

21

V_1V8

MOD

V_3V3

C183470nF6.3V2

1

1uF16V

C174

2

1

0402

100KOhmR257

21

MOD

LVDS_CK_P

LVDS3_N

LVDS3_P

LVDS_CK_N

LVDS2_N

LVDS2_P

LVDS1_N

LVDS1_P

LCD_BKLT_EN

LVDS0_N

LVDS0_P

LCD_VDD_EN

SIX_BIT_PACK#

SC

MODE

LVDS_BKLT_PWM_3V3LVDS_BKLT_PWM_3V3

BUFFER_OE#

LVDS_BKLT_EN_3V3

LVDS_BKLT_EN_3V3

LCD_BKLT_PWM

V_3V3_SWITCHED_A

V_3V3_SWITCHED_A

Vil = 0.6V

Vih = 1.2 V

NEC Panel Connector

30 Pin, 1mm Pitch, R/A, SMT

Page 34: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 34 of 119 Mar 23, 2017 ©SGeT e.V.

Power for the display’s logic is gated by the Module LCD_VDD_EN signal, as shown above. The NEC LVDS display in the example above accepts a 12V feed to power the display’s LED backlight. The SMARC Module provides two backlight control signals, LCD_BKLT_EN and LCD_BKLT_PWM (enable and brightness). Some displays require a higher voltage feed to their LED backlight electronics. An example of this is given in Section 9.6 High Voltage LED Supply.

Page 35: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 35 of 119 Mar 23, 2017 ©SGeT e.V.

3.1.2 LVDS Dual Channel example

The schematic example below shows an implementation on the Carrier that can be used either for a dual channel LVDS display or two single channels LVDS displays with common supply voltage. The LVDS signals are routed through common mode chokes to the LVDS connector. All display signals include ESD devices. Supply voltage for LVDS display and backlight can be selected by jumper settings. The control signals for backlight, LVDS display and I2C bus are routed over level shifters from 1.8V on SMARC connector side to the display I/O voltage. Additional comments to schematic example: • Signal LVDS_VDDEN:

If FET power switching is used this signal pin can also be connected to EN_PANELPOWER instead of PG_VPANEL. In this case PU resistor R15 and diode D1 can be removed.

• LVDS connector type: Neither connector type nor pinout of the connector underlies any standards specification. So everyone is free to select a suitable LVDS connector for best application fit.

• Comment on jumper settings: CN1-JP1: Default: JP1 shorting 1-2 => Panel supply = 3.3V Alternate: JP1 shorting 5-6 => Panel supply = 5.0V CN2-JP2: Default: JP2 shorting 3-4 => Backlight voltage = 12.0V Alternate: JP2 shorting 5-6 => Backlight voltage = 5.0V

• Comment on alternate power switching: If leakage currents are not considered as an issue for the design, the load switch might be replaced by a P-Channel FET and N-Channel FET for the Gate control.

• Comment on different power rails for both LVDS channels: It might be considered to implement different voltage rails for both channels, which is not covered with this design example.

• Comment on ESD-Devices: Place the ESD device close to the LVDS connector and close to the backlight pin header.

In a LVDS implementation with two single LVDS channels, the panel EDID EEPROMs would be in conflict and measures need to be taken to avoid this. One possible solution is that the second LVDS EDID EEPROM could be read over the I2C_GP pin pair rather than the I2C_LCD pin pair.

Page 36: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 36 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 13 LVDS Dual Channel

Figure 14 LVDS Dual Channel Power Supply

+VDD_PANEL

+VDD_PANEL

+VDD_PANEL

+VDD_PANEL

+VDD_PANEL +VCC_BKLT

+VDD_PANEL +VDD_PANEL+V1P8

+V1P8

+VDD_PANEL+VDD_PANEL

+VDD_PANEL

+VDD_PANEL

+VDD_PANEL

DDC_CKDDC_DAT

PG_VPANEL

LVDS0_CK-LVDS0_CK+

LVDS0_3-LVDS0_3+

LVDS0_2-LVDS0_2+

LVDS0_1-LVDS0_1+

LVDS0_0-LVDS0_0+

LVDS1_CK-LVDS1_CK+

LVDS1_3-LVDS1_3+

LVDS1_2-LVDS1_2+

LVDS1_1-LVDS1_1+

LVDS1_0-LVDS1_0+

I2C_LCD_CK

I2C_LCD_DAT

LCD_BKLT0_CTRLLCD_BKLT0_EN

LCD_BKLT1_CTRLLCD_BKLT1_EN

BKLT0_VDD_EN

TVS6RCLAMP0504FA

1234 5 6

CN5

BH_8_S2.54mm

1 23 45 67 8

ESD6

RClamp7534P.TNT

2

34

51

L7

90_100MHz_0.5A

1 2

4 3

TV

S5

06

03

-24

0E

2R

5P

P

12

L2

90_100MHz_0.5A

1 2

4 3

C150.1uF_16V

ESD2

RClamp7534P.TNT

2

34

51

C1

12

20

pF

_5

0V

R82.2K_+-1%

TVS3

0603-240E2R5PP

12

CN3

BH_34_S2.0mm

1 23 45 67 89 10

11 1213 1415 1617 1819 2021 2223 2425 2627 2829 3031 3233 34

TV

S4

06

03

-24

0E

2R

5P

P

12

C130.1uF_16V

ESD3

RClamp7534P.TNT

2

34

51

L8

90_100MHz_0.5A

1 2

4 3

R92.2K_+-1%

R15100K_+-1%

L3

90_100MHz_0.5A

1 2

4 3

L10

90_100MHz_0.5A

1 2

4 3

D1

USCD022HA K

C9 0.1uF_16VL4

90_100MHz_0.5A

1 2

4 3

L9

90_100MHz_0.5A

1 2

4 3

L5

90_100MHz_0.5A

1 2

4 3

R2

01

00

K_

+-1

%

C10 0.1uF_16V

R2

11

00

K_

+-1

%

C170.1uF_16V

C1

22

20

pF

_5

0V

TVS7RCLAMP0504FA

1234 5 6

ESD5

RClamp7534P.TNT

2

34

51

TVS2

0603-240E2R5PP

1 2

C8 0.1uF_16V

ESD1

RClamp7534P.TNT

2

34

51

TVS1RCLAMP0504FA

1234 5 6

R2

31

00

K_

+-1

%

C160.1uF_16V

S1

S2D1

D2G1

G2

Q5BSS138DW-7-F_0.2A/50V

6

34 5

2 1

C140.1uF_16V

L6

90_100MHz_0.5A

1 2

4 3

ESD4

RClamp7534P.TNT

2

34

51

L1

90_100MHz_0.5A

1 2

4 3

CN4

BH_8_S2.54mm

1 23 45 67 8

R2

41

00

K_

+-1

%

LVDS_VDDENLVDS0_L_0+LVDS0_L_0-

LVDS0_L_1-LVDS0_L_2+LVDS0_L_1+

LVDS0_L_2-

LVDS0_L_3+LVDS0_L_3-

LVDS0_L_CK+LVDS0_L_CK-

LVDS1_L_0+LVDS1_L_0-

LVDS1_L_1+LVDS1_L_1-

LVDS1_L_2+LVDS1_L_2-

LVDS1_L_3+ LVDS1_L_3-

LVDS1_L_CK+LVDS1_L_CK-

LVDS0_L_0-LVDS0_L_0+

LVDS0_L_1+LVDS0_L_1-

LVDS0_L_2+LVDS0_L_2-

LVDS0_L_3+LVDS0_L_3-

LVDS0_L_CK+LVDS0_L_CK-

BKLT0_CTRLBKLT0_EN

DDC_DAT

DDC_CK

DDC_DAT

DDC_CK

BKLT1_CTRLBKLT1_EN

LVDS1_L_0-LVDS1_L_0+

LVDS1_L_1+LVDS1_L_1-

LVDS1_L_2+LVDS1_L_2-

LVDS1_L_3+LVDS1_L_3-

LVDS1_L_CK+LVDS1_L_CK-

LVDS0_L_0+LVDS0_L_0-

LVDS0_L_1+

LVDS0_L_2+

LVDS0_L_1-

LVDS0_L_2-

LVDS0_L_3+

LVDS0_L_CK+

LVDS0_L_3-

LVDS1_L_0+

LVDS0_L_CK-

LVDS1_L_1-

LVDS1_L_0-

LVDS1_L_1+

LVDS1_L_2+LVDS1_L_2-

LVDS1_L_3-

LVDS1_L_CK+

LVDS1_L_3+

LVDS1_L_CK-

DDC_CKDDC_DAT

MOD

MOD

MODMOD

MOD

MOD

MOD

MOD

MOD

MOD

MODMOD

MODMOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

+V1P8S

+VDD_PANEL

+V1P8S

+VDD_PANEL

+V3P3_IN

+V5P0_IN

+V12P0_IN +VLCD_12P0

+VLCD_5P0

+VLCD_3P3

+VLCD_5P0

+VLCD_12P0

+VLCD_5P0

+VCC_BKLT

+VDD_PANEL

+VLCD_3P3

+VLCD_5P0

+VLCD_5P0

+VLCD_3P3

LCD0_VDD_ENLCD0_BKLT_PWM

LCD0_BKLT_EN

LCD1_VDD_EN

LCD1_BKLT_ENLCD1_BKLT_PWM LCD_BKLT1_CTRL

LCD_BKLT1_ENLCD_BKLT0_CTRLLCD_BKLT0_EN

PG_VPANEL

B3 120_100MHz_5A

R2

100K_+-1%

U1

SN74AUP1T97DCKR

B1

GND2

A3

Y4

VCC5

C6

CN

2

PH

_6

_S

2.0

mm

12

34

56

B2 120_100MHz_5A

C10.1uF_10V

B1 120_100MHz_5A

C60.1uF_10V

R3

100K_+-1%

TC122uF_25V

U4

TXB0104_QFN12

VC

CA

1

A12

A23

A34

A45

GND6

OE12

B47

B38

B29

B110V

CC

B1

1

JP2

MINI-JUMP_2_S2.0mm

U5

TXB0104_QFN12

VC

CA

1

A12

A23

A34

A45

GND6

OE12

B47

B38

B29

B110V

CC

B1

1

R110K_+-1%

JP1

MINI-JUMP_2_S2.0mm

C40.1uF_10V

C30.1uF_10V

TC222uF_25V

U2

NCP45520IMNTWG-H_ON

Vin11

EN2

Vcc3

GND4

BLEED5

PG6

Vout7

Vin29

CN

1

PH_6_S2.0mm

12

34

56

C70.1uF_10V

U3

NCP45520IMNTWG-H_ON

Vin11

EN2

Vcc3

GND4

BLEED5

PG6

Vout7

Vin29

C50.1uF_10V

F2

F_

MF

-SM

20

0-2

12

C20.1uF_10V

+VCC_BKL_IN

+VLCD_12P0_F

+VDD_PANEL_INEN_PANELPOWER

LCD_PANEL1_VDD_EN

LCD_PANEL0_VDD_EN

PG_VPANEL

LCD_PANEL0_VDD_EN

LCD_PANEL1_VDD_EN

LCD_PANEL0_VDD_EN LCD_PANEL1_VDD_ENMODMODMOD MOD

MODMOD

Page 37: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 37 of 119 Mar 23, 2017 ©SGeT e.V.

3.1.3 Display Parameters and EDID

Flat panel display parameters (horizontal resolution, vertical resolution, pixel clock rate, blanking periods, etc.) may be hard-coded into a boot-loader or they may be read by boot-loader code from an industry standard data structure known as EDID (Extended Display Identification Data). EDID data is stored in an EEPROM accessed via I2C. The EDID EEPROM may reside on the display assembly or elsewhere in the path between the SOC and the display – on the Carrier or on a display adapter assembly. If the EDID EEPROM resides on the display, then the cabled interface to the display must include the SMARC Module I2C_LCD interface. The interface should be level translated and possibly buffered. The I2C voltage levels on the display are most likely to be at 3.3V levels. A set of back-to-back FETs may be used for I2C level translation, as shown in the figure immediately below. Alternatively, a device such as the Fairchild FXMA2102 I2C buffer / level translator may be used. There is a circuit example using the FXMA2102 later in this document. In the display interface example above, with the 30 pin Hirose DF19 series connector, pins 9 and 10 could be used for the buffered I2C_LCD clock and data, respectively. The figure below shows an EDID EEPROM implementation that may be used on a Carrier. It might be advantageous to use a socket for the EEPROM to allow display parameters to be swapped out. Alternatively, system software could update the EEPROM if the EEPROM WP (Write Protect) pin is set to enable writes. Or, the system designer could implement an EEPROM programming header for update purposes. Caution: if there is an EDID EEPROM on the Carrier and on the display, there will be an I2C address conflict unless one of the two is disabled or set to an alternate address. VESA EDID EEPROMs are expected at 7 bit I2C address 0x50. There are many EDID editors available, some for free. It can be very useful to have access to one if you are trying to adapt a new panel, and if your SMARC Module software knows what to do with EDID data. Alternatively, your SMARC Module and / or Carrier board vendor may well be able to help with display adaptations.

Figure 15 Carrier EDID EEPROM

V_3V3

V_1V8

MOD

MOD

V_1V8

R241

0402

10K

Ohm

21

R242

0402

10K

Ohm

21

DiodesInc BSS138DW-7-F

Q4

35

4

DN

I10K

Ohm

R2

43

0402

21

0402

DN

I10K

Ohm

R2

44

21

R2

45

DN

I10K

Ohm

0402

21

0402

R2

59

2.4

9K

Ohm

21

2.4

9K

Ohm

0402

R2

60

21

0402

2.4

9K

Ohm

R2

61

21

V_3V3

C118

100nF25V2

1

V_3V3

R24

6

DN

I10K

Ohm

0402

21

V_3V3

R2

47

0402

10K

Ohm

21

Atmel AT24HC02

SOIC8

U13

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

DiodesInc BSS138DW-7-F

Q3

62

1

Q3

35

4

Q4

62

1I2C_LCD_DAT

I2C_LCD_DAT

I2C_LCD_CK

I2C_EDID_CK

I2C_ADDR_A0

I2C_ADDR_A1

I2C_ADDR_A2

I2C_WP

I2C Addr :0x50

(7 bit Address)

Page 38: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 38 of 119 Mar 23, 2017 ©SGeT e.V.

3.2 HDMI

Note: a license may be needed to market HDMI capable products. Check with the HDMI organization (www.hdmi.org) and with your SMARC Module vendor. The SMARC HDMI data pairs may be routed directly from the SMARC Module pins to a suitable Carrier HDMI connector. Since HDMI is a hot-plug capable interface, it is important for the Carrier to implement ESD protection on all of the HDMI lines. The ESD protection on the data lines must be low capacitance so as not to degrade high speed signaling. The data lines must route through the ESD protection device pins in a no-stub fashion. The ESD protection should be located close to the HDMI connector. The SMARC pins HDMI_CTRL_CK and HDMI_CTRL_DAT require level translation from V_1V8 to the 5V levels that HDMI uses on those pins. These lines also require pull-up resistors to V_1V8 (the pull-ups are not included on the SMARC Module, because integrated HDMI protection devices such as the Texas Instruments TPD12S016 include the pull-ups in their parts). And, finally, 5V power switching / current limiting to the HDMI connector is required on the Carrier. The ESD protection, level translation and power switching / limiting are all dealt with in integrated devices such as the TI TPD12S016. A circuit diagram is shown in the following figure. The TPD12S016 must be placed close to the HDMI connector, and the HDMI data traces routed in daisy chain fashion (and as differential pairs) from the SMARC Module pins, to and through the TPD12S016 pins, and on to the HDMI connector pins. The TPD12S016 pin-out is specifically designed to facilitate this.

Figure 16 HDMI Implementation

MOD

MOD

MOD

MOD

0402R96

0Ohm

2 1

MOD

MOD

MOD

MOD

TSSOP24

U22

TI TPD12S016

19

14

6

3

2

1

4

5

12

11

24

13

9

8

7

16

15

17

18

20

21

22

23

10HPD_B-

D2+

D2-

D1+

D1-

D0+

D0-

CLK-

CLK+

CEC_B

SCL_B

SDA_B

5V_OUT

VCCA

VCC5V

CT_HPD

LS_OE

HPD_A-

CEC_A

SCL_A

SDA_A

GND_6

GND_14

GND_19

MOD

4.7KOhmR3

DNI 04

02

2

1

MOD

C31

25V100nF

2

1

V_5V0 V_1V8

C1551uF16V

2

1

MOD

R4

04

02

4.7KOhm

2

1

19/1/0.5

SMT

FCI 10029449-001TLF

J25

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1TMDS_DATA2_P

TMDS_DATA2_SHLD

TMDS_DATA2_M

TMDS_DATA1_P

TMDS_DATA1_SHLD

TMDS_DATA1_M

TMDS_DATA0_P

TMDS_DATA0_SHLD

TMDS_DATA0_M

TMDS_CLK_P

TMDS_CLK_SHLD

TMDS_CLK_M

CEC

RSVD

SCL

SDA

DDC/CEC_GND

5V

HPD

MH

1

MH

2

MH

3

MH

4

25V100nFC32

2

1

10uF16V

C216

2

1

HDMI_CTRL_DAT

HDMI_CTRL_CK

HDMI_HPD_CONN

HDMI_DDC_SDA_5V0

HDMI_DDC_SCL_5V0

HDMI_HPD

CT_HPD

LS_OE

V_5V0_HDMI

HDMI_D2_P

HDMI_D2_N

HDMI_D1_P

HDMI_D1_N

HDMI_D0_N

HDMI_D0_P

HDMI_CK_N

HDMI_CK_P

HDMI_D2_P

HDMI_D2_N

HDMI_D1_P

HDMI_D1_N

HDMI_D0_P

Layout Note :

without any stubs

The HDMI trace pairs are to be routed

from the SMARC connector, through the

TPD12S016 pads and to the HDMI connector,

HDMI_D0_N

HDMI_CK_P

HDMI_CK_N

HDMI, R/A, SMT

Page 39: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 39 of 119 Mar 23, 2017 ©SGeT e.V.

3.3 DisplayPort (DP++)

DisplayPort is directly supported by a dual-source DDI. ESD protection, DC blocking capacitors and hot plug detect are the only components required. The DisplayPort differential data pairs (Lane [0..3]) are AC coupled off Module with capacitors C19-C26. Place the AC blocking capacitors close to the DisplayPort connector. The Aux differential pair is AC coupled on the Module. ESD clamping diodes D1, D2 and D3 protect the Module from external ESD events and should be placed near the DisplayPort connector. The pin-out of the ESD clamp diodes allows for a trace to run under the chip connector to two pins. The Carrier provides up to 500 mA of 3.3V power to the DisplayPort connector. Diode D71 prevents back feeding of power in the event that the monitor is powered up when the Carrier is powered down. Config lines 1 and 2 are pulled to ground per the VESA specification. The DisplayPort Hot Plug Detect signal is buffered by U50 which prevents back feeding of power from the display to the Module as well as level translation to 3.3V levels. R14 connect logic and chassis ground together. Other techniques may be used depending on the overall grounding strategy. Note: The reference schematics assume that the Module’s DisplayPort is dual-source capable – dual source indicates that the Module can output DisplayPort or HDMI/DVI based on the DDC_AUX_SEL signal.

Figure 17 DisplayPort ++

3.3.1 HDMI over DP++

A Dual-mode source Module requires level shifters on the Carrier to convert the low-swing AC coupled differential pairs from the video source to HDMI compliant current mode differential outputs. The example schematics use a Chrontel CH7318C translator which supports data rates up to 1.65GB/s per lane. FET based passive level translators can be used for lower data rates. The DisplayPort AUX channel is configured as a DDC interface for HDMI. Further information on pre-emphasis as well as output current trim capabilities of the CH7318C can be found in the Chrontel datasheet.

i max. 500 mA

0.5A

DP0_HPD_C

V3.3_S0_DP_3

DP0_LANE1_C-

V3.3_S0_DP_3

DP0_LANE0_C+

DP0_LANE0_C-

DP0_Config2

DP0_LANE1_C+

DP0_LANE1_C-DP0_LANE2_C+

DP0_LANE2_C-

DP0_LANE1_C+

DP0_LANE3_C+

DP0_LANE3_C-

DP0_LANE3_C+

DP0_LANE2_C-

DP0_LANE2_C+

DP0_LANE3_C-

DP0_LANE0_C-

DP0_LANE0_C+

DP0_HPD_C

DP0_HPD_C

DP0_CTRLDATA_AUX-

DP0_CTRLCLK_AUX+

DP0_HPD_B

V_3V3

V_1V8

MODDP0_LANE0+

MODDP0_LANE0-MODDP0_LANE1+

MODDP0_LANE1-MODDP0_LANE2+

MODDP0_LANE2-MODDP0_LANE3+

MODDP0_LANE3-

MODDP0_HPD

MODDP0_AUX_SEL

MODDP0_AUX+

MODDP0_AUX-

U50

NC7SZ125 1

2

3

4

5

R16

1M

1%

C24

J3

Molex 47272-0001

ML_Lane0+GNDML_Lane0-ML_Lane1+GNDML_Lane1-ML_Lane2+GNDML_Lane2-ML_Lane3+GNDML_Lane3-Config1Config2AUX CH+GNDAUX CH-Hot PlugReturnDP_PWR

S1

S1

S2

S2

S3

S3

S4

S4

R32

0R

5%

C25

D71

MBR130LSFT1

C21

R15

5M1

FB4

60R@100MHz

C26

R46

100k

1%

D1

Rclamp 0524P

5

1

4

29

3

10

7

6C23

R14

0R

5%

D2

Rclamp 0524P

5

1

4

29

3

10

7

6

C20

C19

C22

D3

Rclamp 0524P

5

1

4

29

3

10

7

6

C305

10n

C6

100n

123456789

1011121314151617181920

100n

10%50V

Page 40: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 40 of 119 Mar 23, 2017 ©SGeT e.V.

ESD clamping diodes D159, D160 and D161 protect the Module from external ESD events and should be placed near the HDMI connector. The pin-out of the ESD clamp diodes allows for a trace to run under the chip connector to two pins. HDMI uses I2C signaling for the DDC. Resistors R1319 and R1322 provide the necessary pull-up. The FET U35 provides the Hot Plug Detect signal The Carrier provides 5V power to the HDMI connector. A series diode (D72) should be used to prevent back feeding of power in the event that the monitor is powered up when the Carrier is powered down. The HDMI Hot Plug Detect signal is buffered by two FETs U32 and U33 which prevent back feeding of power from the display to the Module as well as level translation to 3.3V levels. Note: The reference schematics assumes that the Module’s DDI ports are dual-source capable – dual source indicates that the Module can output DisplayPort or HDMI/DVI based on the DDC_AUX_SEL signal.

Figure 18 HDMI over DP++

3.4 Embedded DisplayPort (eDP)

The reference schematic provides a generic eDP interface. The eDP connector used in the design is an example only. Other connectors can be used based on the design requirements. JP83 selects 3.3 or 5V for the panel power. R1125 ensures that panel power is disabled when the Module is powering up and before the signal is actively driven. The panel control signals eDP_BKLT_EN, eDP_BKLT_CTRL as well as eDP_HPD are 3.3V level signals, check your panel specifications for correct voltage levels and provide translation if necessary. The reference design supports individual backlight control signals. It should be noted that some panels handle these functions over the AUX channel. The traces from JP83 and associated FETs to the eDP connector carry power to the panel. The traces should be routed with appropriate thickness to handle the current expected. eDP_TX and eDP_AUX differential pairs should be routed as high speed differential pairs. The panel control signals are low speed and do not require any additional care.

use wide traces with minimum 2 VIAs to GND-planePlace ESD-protection diodes close to connector

NOTE44

D159

TVS_RCLAMP0524P

6

7

9

10

8

5

4

2

1

3

D160

TVS_RCLAMP0524P

6

7

9

10

8

5

4

2

1

3

D161

TVS_RCLAMP0524P

6

7

9

10

8

5

4

2

1

3

GND_HDMI

R1322

R1319

V_5V0

R1

%1

K5

0S

02

R1

32

3

R1

%1

K5

0S

02

R1

32

4

DN

IR

13

25

R1

%1

K5

0S

02

DN

IR

1%

1K

50

S0

2R

13

26

R1

%1

K5

0S

02

R1

32

7D

NI

R1

%1

K5

0S

02

DN

IR

13

28

DN

IR

1%

1K

50

S0

2R

13

30

V_3V3

C1

0U

S0

5V

6C

10

68

C1

00

N0

2V

16

C1

06

9

FB

17

6L

CB

14

0R

03

PF

US

E0

_4

A

F1

5

V_5V0

C1

08

2C

47

PS

02

C1

08

3C

47

PS

02

LCB140R03FB177

FB178LCB140R03

V_3V3

FB179LCB140R03

C1

07

0C

10

0N

02

V1

6

C1071C100N02V16

C1072C100N02V16

C1073C100N02V16

C1074C100N02V16

C1

00

N0

2V

16

C1

07

5

C1076C100N02V16

C100N02V16C1077

R1

31

8

GND_HDMI

V_3V3

DNI

R1316

C100N02V16C1078

C1

00

N0

2V

16

C1

07

9

C1

08

0C

10

0N

02

V1

6

U364

CH7318C

2

11

15

21

26

33

40

32

3

25

7

10

45

41

42

38

39

44

49

12

23

22

20

19

18

17

16

29

28

14

13

24

5

1

35

6

4

43

27

34

30

37

46

36

8

9

47

48

31GND6

IN_D4+

IN_D4-

SCL

SDA

GND7

VCC8

GND8

HPD_SINK

CCT1

GND11

GND9

HPDEN

REXT

CCT2

GND1

GND2

GND5

OUT_D4+

OUT_D4-

SCL_SINK

SDA_SINK

OUT_D3+

OUT_D3-

GND4

OUT_D2+

OUT_D2-

OUT_D1+

OUT_D1-

GND3

GND10

IN_D3-

IN_D1+

IN_D1-

IN_D2+

IN_D2-

IN_D3+

NC

HPD

OE#

TRIM

DDC_EN

VCC7

VCC6

VCC5

VCC4

VCC3

VCC2

VCC1

C1081C100N02V16

STP10

R1

%1

K2

1S

02

R1

33

2

R1

33

3

R1

%2

0K

0S

02

J118

J_TH_HDMI

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1TMDS_DAT2+

SHLD_D2

TMDS_DAT2-

TMDS_DAT1+

SHLD_D1

TMDS_DAT1-

TMDS_DAT0+

SHLD_D0

TMDS_DAT0-

TMDS_CLK+

SHLD_CLK

TMDS_CLK-

CEC

Reserved

SCL

SDA

GND_DDC

VCC5

HPD

MH1

MH2

MH3

MH4

BO1

SHIELD_GND

DN

IR

13

65

R1

%1

K5

0S

02

DN

IR

13

66

R1

%1

K5

0S

02

R1331

DP0_AUX+

DP0_HPD3_3

DP0_LANE1_C_+

DP0_LANE0_C_-

DP0_LANE0_C_+

DP0_LANE0-

DP0_HDMI_LS_REXT

DP0_HDMI_LS_OE#

DP0_HPD_LS

V_

5V

0_

S0

_H

DM

ICO

N_

F

V_3V3_S0_HDMI

DP0_LANE3-

DP0_LANE3+

DP0_LANE2-

DP0_LANE2+

DP0_LANE1-

DP0_LANE1+

DP0_LANE0+

DP0_AUX-

DP0_LANE1_C_-

DP0_LANE2_C_+

DP0_LANE2_C_-

DP0_LANE3_C_+

DP0_LANE3_C_-

DP0_LANE1_EXT_-

DP0_LANE1_EXT_-

DP0_LANE1_EXT_-

DP0_LANE1_EXT_+

DP0_LANE1_EXT_+

DP0_LANE1_EXT_+

DP0_LANE0_EXT_-

DP0_LANE0_EXT_-

DP0_LANE0_EXT_-

DP0_LANE0_EXT_+

DP0_LANE0_EXT_+

DP0_LANE0_EXT_+

DP0_LANE3_EXT_-

DP0_LANE3_EXT_-

DP0_LANE3_EXT_-

DP0_LANE3_EXT_+

DP0_LANE3_EXT_+

DP0_LANE3_EXT_+

DP0_LANE2_EXT_-

DP0_LANE2_EXT_-

DP0_LANE2_EXT_-

DP0_LANE2_EXT_+

DP0_LANE2_EXT_+

DP0_LANE2_EXT_+

V_5V0_S0_HDMICON

V_5V0_S0_HDMICON

V_5V0_S0_HDMICON

DP0_HPD_EXT

DP0_HPD_EXT

DP0_CTRLDAT_C

DP0_CTRLDAT_C

DP0_CTRLCLK_C

DP0_CTRLCLK_C

DP0_CTRLCLK_EXT

DP0_CTRLCLK_EXT

DP0_CTRLCLK_EXT

DP0_CTRLDAT_EXT

DP0_CTRLDAT_EXT

DP0_CTRLDAT_EXT

DP0_HDMI_LS_PC0

DP0_HDMI_LS_PC0

DP0_HDMI_LS_PC1

DP0_HDMI_LS_PC1

DP0_HDMI_LS_TEST0

DP0_HDMI_LS_TEST0

DP0_HDMI_LS_TEST1

DP0_HDMI_LS_TEST1

DP0_HPD_EXT

DP0_HDMI_LS_I2C_EN

DP0_HDMI_LS_I2C_EN

FOR TEST PURPOSE ONLY

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

D72MBR130LSFT1

R1321MOD

DP0_AUX_SEL

R1%100KS02

R1%2K21S02

R1%2K21S02

R1%0R0S02

R1

%0

R0

S0

2

R1%4K7S02

V_1V8

DP0_HPD

BSS138DW-7F

2

6

U35

1

5

43

V_1V8

DP0_HPD3_3

MOD

MOD

MOD

Page 41: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 41 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 19 Embedded DisplayPort (eDP)

3.5 MIPI DSI

The LVDS signal lines may alternatively be used to support up to two MIPI DSI (Display Serial Interface) displays. DSI is a high-speed differential bus and includes one clock lane and up to four data lanes. There is no AC coupling required. VDD and Backlight signals are the same is in LVDS mode. It is recommended to check with your SMARC Module vendor if MIPI DSI is supported by the used SMARC Module.

Figure 20 MIPI DSI

SM

AR

C M

OD

UL

E

DSI_D1+

DSI_D1-

DSI_CLK+

DSI_CLK-

DSI_TE

MIP

I D

SI D

isp

lay

DSI_D0+

DSI_D0-

DSI_D1+

DSI_D1-

DSI_CLK+

DSI_CLK-

DSI_TE

DSI_D0+

DSI_D0-

DSI_D3+

DSI_D3-

DSI_D2+

DSI_D2-

DSI_D3+

DSI_D3-

DSI_D2+

DSI_D2-

eDP_HPDeDP_HPD

eDP_TX0+_CeDP_TX0-_C

eDP_TX1+_CeDP_TX1-_C

eDP_TX2+_CeDP_TX2-_C

eDP_TX3+_CeDP_TX3-_C

V12_S0_eDP_PWR

V5/V3.3_S0_eDP_PWR

eDP_BKLT_ENeDP_BL_PWM

V12_S0_eDP_PWR

V5/V3.3_S0_eDP_PWR

VCC_5V0

VCC_3V3

eDP_TX0+eDP_TX0-

eDP_TX1+eDP_TX1-

eDP_TX2+eDP_TX2-

eDP_TX3+eDP_TX3-

eDP_AUX+

eDP_AUX-

LCD0_BKLT_ENLCD0_BKLT_PWM

LCD0_VDD_EN MOD

C421 C100N03X7R

C898

C1US03V6

C885

C100N03X7R

R1123R1%200K03

eDPJ212

JEDP_40

RSVD_1

1

H_GND_2

2

Lane3_N

3

Lane3_P

4

H_GND_5

5

Lane2_N

6

Lane2_P

7

Lane1_N

9

H_GND_8

8

Lane1_P

10

H_GND_11

11

Lane0_N

12

Lane0_P

13

H_GND_14

14

AUX_CH_P

15

AUX_CH_N

16

H_GND_17

17

LCD_VCC_18

18

LCD_VCC_19

19

LCD_VCC_2020LCD_VCC_21

21

LCD_Self_Test(NC)

22

LCD_GND_23

23

RSVD_40

40

BL_PWR_39

39

BL_PWR_38

38

BL_PWR_37

37

BL_PWR_36

36

RSVD_35

35

RSVD_34

34

BL_PWM_DIM(NC)

33

BL_ENABLE(NC)

32

BL_GND_31

31

BL_GND_30

30

BL_GND_29

29

BL_GND_28

28

HPD

27

LCD_GND_26

26

LCD_GND_25

25

LCD_GND_24

24

M141M242

M343

M444

C886

C100N03X7R

C418 C100N03X7R

C887

C639 C100N03X7R

R1124

R1%10K03

C889C100N03X7R

C419 C100N03X7R

C422 C10US06V25

C888

R1125

R1%10K03

C630 C100N03X7R

C890

C100N03X7R

C423 C100N03X7R

C420 C10US05V16

C891

Q69BS138

C637 C100N03X7R

JP83JMPRM254RED_LF

Q68A

QIRF7329

1

2

87

J104XST1X3S

Q68B

QIRF7329

3

4

56

C892C100N03X7R

MOD

MOD

VCC_12V

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

eDP_AUX-_CeDP_AUX+_C

C882

C100N03X7R

MOD

C883

SHLDGND

MOD

MOD

Page 42: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 42 of 119 Mar 23, 2017 ©SGeT e.V.

4 LOW / MEDIUM SPEED SERIAL I/O INTERFACES

4.1 Asynchronous Serial Ports

4.1.1 RS232 Ports

The SMARC Module asynchronous serial ports run at 1.8V logic levels. The transmit and receive data lines from and to the Module are active high, and the handshake lines are active low, per industry convention. If the asynchronous ports are to interface with RS232 level devices, then a Carrier RS-232 transceiver is required. The logic side of the transceiver must be able to run at 1.8V levels. The selection of 1.8V compatible transceivers is a bit limited, although more are appearing with time. Two such devices are the Texas Instruments TRS3253E, and the Maxim MAX13235E, illustrated in the figures below. The TI part is more cost effective, but has a top speed of 1 Mbps. The MAX 13235E can operate at maximum speeds over 3 Mbps (but your SMARC Module may or may not - check with your Module vendor). The transceivers invert the polarity of the incoming and outgoing data and handshake lines.

Figure 21 Asynchronous Serial Port Transceiver – RS232 – TRS3253E

Pin 6 of U35 (INVALID#) may be connected to a GPIO of the SMARC Module (GPIO10 in this example) but it has to be checked if this GPIO is not needed for another function.

4.7KOhm

0402 R12

21

V_1V8

QFN32

TI TRS3253EIRSMU35

33

26

6

17

18

19

20

21

22

23

25

3

30

15

27

8

32

24

16

28

9

10

11

12

13

14

7

5

4

2

1

31

29C1+

C1-

C2+

C2-

DIN1

DIN2

DIN3

ROUT1

ROUT2

ROUT3

ROUT4

ROUT5

FORCEON

FORCEOFF#

NC_16

NC_24

NC_32

NC_8

VCC

VL

V+

V-

DOUT1

DOUT2

DOUT3

RIN1

RIN2

RIN3

RIN4

RIN5

INVALID#

GND

TPAD

MOD

C92

25V100nF

2

1

R167

0OhmDNI

040221

100nFC93

25V2

1

V_5V0

C254330nF

1 2

1KOhmR48

0402

21

V_1V8

330nF C252

1 2C253330nF

1

2

MOD

47nF16V

C25921

V_1V8

DNI4.7KOhmR10

0402

21

5/1/1x5/1.0

JST SM05B-SRSS-TBJ39

SMT

7 6

5

4

3

2

11

2

3

4

5

M1

M2

SMT

J40

5/1/1x5/1.0

JST SM05B-SRSS-TB

7 6

5

4

3

2

11

2

3

4

5

M1

M2

MOD

MOD

MOD

MOD

MOD

GPIO10

SER1_RX

SER0_TX

SER0_RX

SER1_TX

SER0_1_INVALID#

SER0_SER1_XCVR_OFF#

TRS3253E_V-_1

TRS3253E_V+_1

FORCEON_1

TRS3253E_C2-_1

TRS3253E_C2+_1

TRS3253E_C1-_1

TRS3253E_C1+_1

SER1_TXD_RS232

SER1_RXD_RS232

SER0_TXD_RS232

SER0_RXD_RS232

SER0_RTS_RS232#

SER0_CTS_RS232#

SER0_RTS#

SER0_CTS#

5 Pin, 1mm Pitch, R/A, SMT

5 Pin, 1mm Pitch, R/A, SMT

Page 43: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 43 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 22 Asynchronous Serial Port Transceiver – RS232 – MAX13235E

4.1.2 RS485 Half-Duplex

A half-duplex RS485 asynchronous serial port implementation is shown below. This hardware implementation is suitable for multi-drop RS485 networks. The Maxim MAX13451E transceiver accepts 1.8V logic I/O and has other, flexible features of interest such as internal termination options. Multi-drop RS485 nodes should be strung together in daisy chain fashion using shielded twisted pair cable with a defined differential impedance (usually 120 ohms; sometimes 100 ohm cables are used). The two end-points of the system should be resistively terminated across the pair. The termination value should equal the differential impedance of the twisted pair cable used. The Maxim transceiver allows the termination to be enabled or disabled on the TERM# pin, and can be selected to be 100 ohms or 120 ohms via the TERM100 pin state. These pins can be controlled by Carrier GPIOs if desired. The RS485 driver is enabled when the SMARC SER2_RTS# signal is asserted low (if the resistor options in front of the XOR gate are loaded as shown, such that the XOR gate inverts the SER2_RTS2# signal for the RS485_DE2 function). A suitable, likely application specific, software driver is required to make the multi-drop RS485 network work.

U70

TSSOP20

18

9

16

8

17

7

3

11

19

1

20

14

10

15

12

13

6

5

4

2C1+

C1-

C2+

C2-

T1IN

T2IN

R1OUT

R2OUT

FORCEON

FORCEOFF

READY

VCC

VL

V+

V-

T1OUT

T2OUT

R1IN

R2IN

GND

MAX13235E

J60

7 6

5

4

3

2

11

2

3

4

5

M1

M2

SM05B-SRSS-TB

TP5

R460

DNI0402

4.7KOhm

21

V_1V8

1KOhm

0402 R461

21

V_1V8

C4631uF16V

2

1

C461330nF

060316V

2

1

C462

47nF

16V2

1

V_5V0

MOD

MOD

16V0603

330nFC465

2

1C464330nF

060316V

2

1

C460

47nF

16V2

1

MOD

MOD

SER2_RX

SER2_TX

SER2_FORCEOFF

READY_SER2

SER2_RX_RS232

SER2_RX_RS232SER2_TX_RS232SER2_TX_RS232

FORCEON_SER2

SER2_CTS_RS232

SER2_CTS_RS232

SER2_RTS_RS232SER2_RTS_RS232

SER2_CTS

SER2_RTS

Page 44: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 44 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 23 Asynchronous Serial Port Transceiver - RS485 – Half Duplex

MOD

MOD

JST SM06B-SRSS-TB

1x6-1.0RA

J61

8

7

6

5

4

3

2

11

2

3

4

5

6

M1

M2

25V100nF

C467

2

1

R467

0402

10K

Ohm

21

0402

R468

10K

Ohm

21

0402

R463

DN

I10K

Ohm

21

10K

Ohm

0402

DN

I

R462

21

V_1V8

10K

Ohm

0402

R464

21

0402

10K

Ohm

R465

21

V_5V0 V_1V8

TP6

25V100nF

C466

2

1

2

1

7

3

Maxim MAX13451EAUD+

TSSOP14

U71

15

11

12

10

6

4

9

8

14

13

5

DI

RO

DE

RE

TERM

TERM100

SRL

INV

FAULT

VCC

VL

A

B

GND

T_PAD

MOD

V_1V8

U72

SC70-5

1015-2777

Fairchild NC7SZ86P5X

3

5

42

1

V_1V8

C468

25V100nF

2

1

10K

Ohm

0402

R466

21

3M 961204-6300

4/2x2/2.54ST

J62

4

2

3

11

3

2

4

R471

0402

100Ohm

21

10KOhm0402 R472

21

R469

0402

10K

Ohm

DN

I

21

SER2_RX

SER2_TX

SER2_RTS

TERM_2

RS485_SER2_N

RS485_SER2_P

FAULT_2

TERM100_2

INV_2

SRL_2

RS485_RE2

RS485_RE2

RS485_DE2

RS485_DE2

Jumper

Open

01-02 03-04Jumper

RS485 receiver disabled

Closed

OpenOpen Closed

OpenInvalidClosedClosedRS485 receiver enbled when transmitter disabledRS485 receiver always enabled

State

Page 45: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 45 of 119 Mar 23, 2017 ©SGeT e.V.

4.2 I2C Interfaces

4.2.1 General

The I2C bus is a versatile low bandwidth multi-drop bus originally defined by Philips (now NXP). It is a two wire bus (clock and data) that relies on the use of open-drain drivers and passive pull-ups. The bus can be single master or multi-master. SMARC Modules are always I2C masters. Whether or not they allow other masters is Module implementation dependent. Most SMARC systems use the I2C bus as a way for the SMARC I2C Masters to interface to a variety of I2C Slave peripherals. The standard I2C interface operation speeds are 100 kHz and 400 kHz. Some implementations allow faster speeds.

4.2.2 I2C Level Translation, Isolation and Buffering

FETs may be used to perform I2C level translation, as shown in this figure. This arrangement provides no buffering. It can provide isolation to prevent one side of the bus dragging down the other if one of the rails is collapsed. The rail that is to collapse should be the rail driving the FET gates.

Figure 24 I2C Power Domain Isolation – using FETs

Q31

35

4

DiodesInc BSS138DW-7-F

Q31

62

1

Q32

35

4

DiodesInc BSS138DW-7-F

Q32

62

1

V_3V3

10K

Ohm

0402

R4

73

21

R4

74

0402

10K

Ohm

21

MOD

V_1V8

V_1V8

MOD

I2C_GP_DAT I2C_GP_DAT_3V3

I2C_GP_SCL_3V3I2C_GP_SCL

Page 46: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 46 of 119 Mar 23, 2017 ©SGeT e.V.

The circuit shown just below can provide power domain isolation, voltage level shifting and I2C bus buffering. The Fairchild FXMA2102 power rails VCCA and VCCB can be at the same voltage level or at different levels, over a range of 1.65V to 5.5V. Either rail can come up before the other. If you have many I2C devices, it is a good idea to split them up into segments with up to about 6 devices on each segment, and isolate the segments with a bi-directional I2C buffer such as the FXMA2102. I2C bus performance degrades with too much capacitive loading.

Figure 25 I2C Power Domain Isolation and Buffer – Fairchild FXMA2102

MOD

Fairchild FXMA2102U29

MicroPak-8

8

7

6

45

3

2

1VCCA

A0

A1

OE GND

B1

B0

VCCB

100nFC68

25V2

1 C69

25V100nF

2

1

V_1V8

04020OhmR122 21

V_3V3

10K

Ohm

04

02

R186

21

R187

04

02

10K

Ohm

21

V_3V310K

Ohm

R188

0402

DN

I

2

1

DN

I10K

Ohm

R189

0402

2

1

V_1V8MOD

I 2C_GP_DAT

I 2C_GP_CK

I2C_IO_3V3_CK

I2C_IO_3V3_DAT

Level shifted I2C

Page 47: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 47 of 119 Mar 23, 2017 ©SGeT e.V.

4.2.3 I2C_PM Bus EEPROMs

The SMARC I2C_PM bus is special in that it is used on the Module for power management functions, and it always runs from a 1.8V rail on the Module. The 1.8V voltage rail requirement on the I2C_PM bus allows it to be powered from a simple, low quiescent current linear or buck switching regulator from V_MOD_IN. On the Module, since it is used for power management, it is “on” even when the Carrier power may be off (i.e. the CARRIER_PW_ON signal may be low, and Carrier circuits that are not involved in power management are powered off). If the I2C_PM bus is used on the Carrier for functions that are not power management functions, then it needs to be isolated from the Module by a set of back to back FETs, as shown in the following figure. The V_1V8 in the figure is a Carrier board power rail that may be collapsed; the Module side of the I2C_PM must not be dragged down.

Figure 26 I2C_PM EEPROM: Carrier Power Domain

V_1V8

V_1V8

V_1V8

R309

0402

10K

Ohm

21

R310

0402

10K

Ohm

DN

I

21

R311

10K

Ohm

0402

DN

I

21

10K

Ohm

0402

R312

21

R313

0402

10K

Ohm

21

C267100nF25V 2

1

R314

0402

10KOhm

21

DN

I

R315

10K

Ohm

0402

21

U42

TSSOP8

Atmel AT24C32D

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

MOD

MOD

Q17

35

4

Q18

35

4

10K

Ohm

0402

R316

21

10K

Ohm

0402

R317

21

Q18

DiodesInc BSS138DW-7-F

62

1

Q17

DiodesInc BSS138DW-7-F

62

1

V_1V8

V_1V8

I2C_PM_DAT

I2C_PM_CK

PWR_BOARD_ID_A2

PWR_BOARD_ID_A1

PWR_BOARD_ID_A0

WP_PWR

I2C_PM_CAR_SDA

I2C_PM_CAR_SCL

I2C_PM EEPROM

(7-bit format)

I2C Address : 0x57

Page 48: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 48 of 119 Mar 23, 2017 ©SGeT e.V.

The SMARC I2C_PM bus may be used on the Carrier for power management functions, such as interfacing to a battery charger or battery fuel gauge. In this case, the power circuits and the I2C_PM interface to the SMARC Module need to be powered whenever power is on.

A local low quiescent current low drop out linear regulator is needed to provide 1.8V for the Carrier board “Module domain” devices.

Figure 27 I2C_PM EEPROM: Module Power Domain

The SMARC Module specification recommends - but does not require - that Carriers have a parameter EEPROM on the I2C_PM bus, preferably configured as shown here, in the “Module Power Domain”. This, in principle, allows the Module to query the Carrier I2C_PM EEPROM before asserting the CARRIER_PWR_ON signal that enables the main Carrier board power feed.

V_MOD_IN Maxim MAX1818

SOT23

U39

4

1

2

5

6

3SHDN#

OUT

SET

POK

IN

GND

1uF25V

2

1

C274

04020Ohm

R295

2 1 22.6KOhm0402 R319

21

R3180402

100KOhm

2 14.7uF10V

C272

2

1

51.1KOhm0402

R320

21

MOD

MOD

Atmel AT24C32D

U41

TSSOP8

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

DN

I

R302

10K

Ohm

0402

21

R303

0402

10KOhm

21

C266100nF25V 2

1

R304

0402

10K

Ohm

21

10K

Ohm

0402

R305

21

R306

10K

Ohm

0402

DN

I

21

R307

0402

10K

Ohm

DN

I

21

R308

0402

10K

Ohm

21

I2C_PM_DAT

I2C_PM_CK

1V8_LDO_SET

PWR_BOARD_ID_A2

PWR_BOARD_ID_A1

PWR_BOARD_ID_A0

WP_PWR

V_1V8_LDO

(7-bit format)

I2C Address : 0x57

I2C_PM EEPROM

Page 49: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 49 of 119 Mar 23, 2017 ©SGeT e.V.

4.2.4 General I2C Bus EEPROMs

The other SMARC I2C buses (I2C_LCD, I2C_GP, I2C_CAM) operate at 1.8V. The power domain isolations described in the previous section do not apply. A simple sample EEPROM circuit is shown for reference.

Figure 28 I2C_GP EEPROM

R220

10K

Ohm

DN

I

0402

21

0402

R2

21

10

KO

hm

DN

I

21

10

KO

hm

R222

0402

21

10

KO

hm

0402

R223

21

V_1V8

0402

10K

Ohm

R224

21

C101

25V100nF

2

1

0402

10KOhmR225

21

V_1V8

R226

10K

Ohm

0402

DN

I

21

MOD

MOD

Atmel AT24H C02U10

SOIC8

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCCI2C_GP_DAT

I2C_GP_CK

GEN_BOAR D_ID_A2

GEN_BOAR D_ID_A1

GEN_BOAR D_ID_A0

WP_GENERIC

(7-bit form at)

I2C Address : 0x56

Page 50: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 50 of 119 Mar 23, 2017 ©SGeT e.V.

4.2.5 I2C Based I/O Expanders

I2C based “I/O Expanders” are available from Texas Instruments, NXP and others. Multiple expanders may be put onto the same I2C bus by configuring the I/O expander I2C address straps. These devices are an easy and cost effective way to realize additional I/O on SMARC systems. On the device shown in the figure, the I/O ports on the right are all in a high impedance “tri-state” mode when the device powers up. This allows the designer to tie the I/O lines through resistor pull-ups or pull-downs to define a power up state for these lines, before the I2C interface and before software are active. Wider (x16) devices are also available.

Figure 29 I2C Device: I/O Expander

V_1V8

0402

21

R205

10K

Ohm

10K

Ohm

0402

R206

21

10K

Ohm

R207

0402

21

10K

Ohm

DN

I

R208

0402

21

R209

DN

I

0402

10K

Ohm

21

10K

Ohm

0402

R210

DN

I

21

V_1V8

C75100nF25V 2

1

MOD

TI TCA9554

U34

TSSOP16

13

12

11

10

8

14

15

3

2

1

16VCC

A0

A1

A2

SDA

SCL

GND

P0

P1

P2

P3

P4

P5

P6

P7

INT#

MODI2C_GP_DAT

I2C_GP_CK

IO_EXP_6

GP_EXP1_ID_A2

GP_EXP1_ID_A1

GP_EXP1_ID_A0

IO_EXP_0

IO_EXP_1

IO_EXP_2

IO_EXP_3

IO_EXP_4

IO_EXP_5

IO_EXP_7

(7-bit format)I2C Address : 0x20

4

9

7

6

5

Page 51: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 51 of 119 Mar 23, 2017 ©SGeT e.V.

4.2.6 Other I2C Devices

There is a very wide variety of I2C peripherals available on the market. Since SMARC Modules offer up to four I2C buses (not counting the HDMI private I2C bus), it is easy to incorporate I2C devices into a SMARC system. A few schematic examples are given here, and further suggestions are listed in the table at the end of this section.

Figure 30 I2C Device: Accelerometer

Figure 31 I2C Device: Accelerometer and Magnetometer

DN

I

0402

10K

Ohm

R194

21

V_1V8

MOD

MOD

DN

I

0402

10K

Ohm

R195

21

V_1V8R

196

10K

Ohm

0402

21

V_1V8V_1V8

0402

10K

Ohm

R197

21

MOD

MOD

DN

I

R198

10K

Ohm

0402

21

16V10uF

C221

2

1

R140 04020Ohm21

0Ohm0402R141 DNI21

R142 04020Ohm DNI21

MOD

MOD

0Ohm0402R143 21

V_3V3

25V100nF

C72

2

1

V_1V8

25V100nFC73

2

1

V_3V3

DNIR144

0Ohm21

R145

0Ohm21

DNI

STMicro LIS302DL

U32

LGA14

15

11

3

10

12

7

14

13

9

8

5

4

2

6

1 VDD_IO

VDD

GND_2

GND_4

GND_5

INT1

INT2

SDA/SDI/SDO

SCL/SPC

CS

SDO

GND_10

RSRVD_3

RSRVD_11

THRM_PAD

I2C_GP_DAT

I2C_GP_CK

I2C_LCD_DAT

I2C_LCD_CK

GPIO11

GPIO10LIS302DL_INT1

LIS302DL_INT2

ACCL_I2C_SEL

ACCL_I2C_ADD

ACCL_I2C_SDA

ACCL_I2C_SCL

(7-bit format)

I2C Address : 0x1C

MOD

MOD

MOD

MOD

STMicro LSM303DLHC

U30

LGA14

13

12

9

5

4

3

2

7

11

10

8

6

1

14VDD

VDD_IO

C1

RSVD_8

RSVD_10

RSVD_11

GND

SCL

SDA

INT2

INT1

DRDY

SETP

SETC

R131 04020Ohm21

R132 04020Ohm21

04020OhmR133 DNI21

DNIR134 0Ohm0402

21

220nF16V

C251

2

1

10V

C2004.7uF

2

1C70

25V100nF

2

1

V_3V3

10uFC220

16V2

1

100nFC71

25V2

1V_1V8

DNI R1370Ohm0402

2 1

R1380OhmDNI0402

2 1

DNI R13904020Ohm 2 1

GND

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

GPIO11

GPIO10

INT2

INT1

DRDY

I2C_ACC_CK

I2C_ACC_DAT

(7-bit format)

I2C Address : 0X19 (Accel)

I2C Address : 0X1E (Magnet)

Page 52: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 52 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 32 I2C Device: Gyroscope

The table below gives a small sampling of other 1.8V I/O I2C devices that are available. The list is meant to just give the reader an idea of what types of devices are available.

Table 3 I2C Device Examples - 1.8V I/O

Function Device Description Vendor Vendor P/N

ADC 8-channel, 12-bit SAR ADC with temperature sensor

Analog Devices AD7291

DAC Quad, 16-bit DAC Analog Devices AD5696R

LED driver 7-bit LED driver with intensity control

Texas Instruments TCA6507

Proximity / Button sensor

Four Channels, Capacitive Proximity/Button Solution

Semtech SX9500

Temperature Sensor

Temperature Monitor, ±1° C On Semiconductor NCT72

UART 128 Word FIFOs Maxim Integrated MAX3108

MOD

MOD

MOD

MODSTMicro L3G4200D

U31

LGA16

14

7

6

5

4

3

2

13

12

11

10

9

8

15

16

1VDD_IO

VDD

RSVD_15

RSVD_8

RSVD_9

RSVD_10

RSVD_11

RSVD_12

GND

SCL/SPC

SDA/SDI/SDO

SDO/SA0

CS

DRDY/INT2

INT1

PLLFILT

C21910uF16V

2

1

04020OhmR127 DNI21

DNIR128 0Ohm0402

21

0Ohm0402

R129 21

0Ohm0402R130 21

V_3V3V_1V8

R19

0 04

02

10K

Ohm

2

1

10K

Ohm

04

02R191

DN

I

2

1

16V10nFC212

2

1

C250

25V470nF

2

1

0402R192

10K

Ohm

2

1

04

02

R19

3

10K

Ohm

2

1

0Ohm

0402R135

DNI

21

0Ohm

0402R136

DNI

21

100nF16V

C209

2

1 C210100nF16V

2

1

V_1V8

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

GPIO11

GPIO10

I2C_GYRO_CK

I2C_GYRO_DAT

SDO/SAO

DATA_READY

INT1_GYRO

I2C Address : 0X69

(7-bit format)

Page 53: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 53 of 119 Mar 23, 2017 ©SGeT e.V.

4.3 Touch Screen Controller Interfaces

4.3.1 General

The two most popular touch technologies used with SMARC systems are summarized in the following table.

Table 4 Popular Touch Technologies

Technology Notes

Resistive

Low cost; rugged. Display clarity and contrast may be compromised by the resistive touch overlay. Usually used with a stylus but may be used with bare fingers. Multi-touch is possible but not common. More straightforward to implement than capacitive touch.

Projected Capacitive

Higher cost, higher barrier to entry and better quality and user experience than resistive touch. Multi-touch capable. Excellent optics.

There are many other touch technologies, some better suited to certain situations such as user’s wearing gloves and so on. An overview may be found on the EloTouch website: www.elotouch.com under “Touchscreens”.

4.3.2 Interface Types / Driver Considerations

Various host interface types are used by touch screen controllers. A given controller may implement one or more of the following interfaces: USB client, I2C, asynchronous serial port, I2S, SPI, or other interface. USB interfaces for touch screen controllers are attractive as there is the potential that the software effort is minimal: the touch screen controller may act as a USB HID (Human Interface Device) class device, and the operating system at hand may be able to understand the generic touch HID implementation directly. However, for more advanced touch implementations, such as multi-touch (the ability to track and decipher multiple, simultaneous touch hits on a screen), a more specialized driver is usually necessary. The driver is often touch controller vendor specific. Additionally, a touch controller vendor may offer multiple hardware interfaces, but the driver may be optimized for one particular hardware interface. The conclusion is: check out the software driver situation before going down a particular hardware path.

4.3.3 Touch Controller Modules / ICs / Screens

Table 5 Touch Controller Module / IC / Screen Vendors

Vendor Notes Web Link

Atmel Key vendor of touch screen controller ICs for projected capacitive screens. Atmel is a silicon vendor, and generally will not help directly with touch screen integration issues, unless your company is a Tier 1 company. Atmel has a network of partners that they will steer you to for help with integration issues. Some of the partners from Atmel’s list are included in this list.

www.atmel.com

Data Modul Selection of touch screen panels, overlays and www.data-modul.com

Page 54: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 54 of 119 Mar 23, 2017 ©SGeT e.V.

controller modules for projective capacitive technology and for resistive touch screens. Company is based in Germany and has a presence in the USA. Products are marketed under the “Easy Touch” trade mark.

EloTouch Elo offers a variety of finished touch panels. They also offer a popular controller chip for resistive touch panels, under the marketing name “AccuTouch COACh V Controller Chip”.

www.elotouch.com

Pixcir Vendor of controller ICs for projected capacitive screens. Based in China and in Switzerland.

www.pixcir.com

Precision Design Associates

Touch modules and touch overlay screens. Based in Marietta, Georgia, USA.

www.pdaatl.com

Touch International

Touch overlays, modules and integration services. One of the larger and better known companies in this field. Based in the state Texas, USA. The Touch International website has an overview of various touch technologies.

www.touchinternational.com

MSC Technologies

Vendor of its own product group of Touch Screen Panels, Overlays and Controller Cards for PCAP (Projected Capacitive) Touch Technology; also offers other touch technologies, TFT panels and display systems. MSC has its own sales presence in Central Europe and is marketed by Avnet / Avnet Embedded in all other countries of the world.

www.msc-technologies.eu

Also check with your SMARC Module vendor or your SMARC Carrier design partner – some of them have in-house solutions for particular display panels. Also remember to consider the availability of software drivers for the choices that you are making.

Page 55: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 55 of 119 Mar 23, 2017 ©SGeT e.V.

4.3.4 I2C Interface to Touch Controller

Atmel is a popular choice for projected capacitance touch controllers. Atmel supplies USB and I2C drivers for the mXT1664S touch screen controller. Multi-touch is supported in the I2C driver but not, as of this writing apparently, in the USB driver. The circuit shown below provides buffering and level translation for a SMARC interface to an I2C interfaced touch controller board. The Atmel mXT1664S can be configured for 1.8V I2C operation, and hence this voltage translation may not be necessary in a custom design. However, off-the-shelf touch controller modules may not be configured for 1.8V I/O (and the particular touch module behind this example was not). In any case, some buffering when cabling to an external board is not a bad thing to have, for robustness.

Figure 33 Touch Screen Connector – I2C Interface

MOD

DNI0Ohm0402

21 R475

R47604020Ohm 21

V_3V3

10K

Ohm

0402

R486

21

V_1V8

C470100nF25V

2

1

100nF25V

C473

2

1

MOD

MOD

C472100nF25V

2

1 C475100nF

25V2

1

100nF25V

C476

2

1

2

1 C477100nF25V

C471100nF25V

2

1

100nF25V

C474

2

1

V_1V8

MOD

MOD

10K

Ohm

0402

R488

21

R489

0402

10K

Ohm

21

V_3V3

0Ohm0402R485 21

R47904020Ohm

21

R48004020Ohm

21

R48204020OhmDNI

21

R48104020OhmDNI

21

TI SN74AVC1T45U73

SOT553

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND

0402

R483

10K

Ohm

21

Fairchild FXMA2102U75

MicroPak-8

8

7

6

45

3

2

1VCCA

A0

A1

OE GND

B1

B0

VCCB

V_1V8

R484

0402

10K

Ohm

21

R487

0402

10K

Ohm

21

V_3V3

TI SN74AVC1T45U74

SOT553

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND0402 R4780Ohm 21

R477DNI0Ohm0402

21

MOD

V_5V0V_3V3

Molex 53261-1071

J63

SMT10/1/1x10/1.25

12

11

10

9

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

9

10

SH1

SH2

MOD

MODI2C_CAM_DAT

I2C_CAM_CK

I2C_LCD_DAT

I2C_LCD_CK

GPIO10

RESET_OUT#

GPIO1/CAM1_PWR#

GPIO6/TACHIN RESET_1V8

TS_GPIO_1V8

TS_RST

I2C_TS_DAT

I2C_TS_CK

TS_GPIO

Page 56: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 56 of 119 Mar 23, 2017 ©SGeT e.V.

4.4 I2S Interfaces

4.4.1 General Information

The I2S (Inter IC Sound) bus specification was initially released in 1986 by Philips (NXP) and later revised in 1996. I2S is a synchronous serial bus used for interfacing digital audio devices such as Audio CODECs and DSP chips. Generally PCM audio data is transmitted over the I2S interface. The I2S bus may have a single bidirectional data line or two separate data lines. The signals constituting the I2S bus are a serial clock/ bit clock (output from the master), a left right clock (output from the master) that indicates the channel being transmitted and a single bidirectional data line or two data lines - one input and one output. A SMARC Module can generally be configured as I2S master or slave. SMARC Modules may support up to three independent I2S interfaces each having separate input and output data lines.

4.4.2 Cirrus Logic I2S Audio Example

An example of an I2S based audio circuit using the Cirrus Logic WM8904 CODEC is given below. The circuit uses a SMARC I2S interface for the audio PCM data, and a SMARC I2C interface to allow a path for software setup of registers within the CODEC.

Figure 34 I2S Audio Codec Cirrus Logic WM8904

GND_AUDIO GND_AUDIO

LIN

E_O

UT

_R

IGH

T_R

C

LIN

E_O

UT

T_LE

FT

_R

C

LINE_OUT_RIGHT_I2S

LINE_OUT_LEFT_I2S

GND_AUDIO

V_1V8_S0_I2S_CODEC

I2S0_CK

GND

V_1V8_S0_I2S_CODEC

MAX 5.86 mA

GND_AUDIO

MAX 4,41 mA

MAX 1,05 mA

V_1V8_S0_I2S_CODEC

GND

MAX 0.76 mA

GND

Y1

3

4

2

1EN

GND

V_VCC

OUT

OSC

12MHz 50ppm

DNI

ZNL9

Place Charge pump caps as close as posibe to Codec

CPVOUTP_I2S

ZOBEL NETWORKs

(reduce high frequency switching noise from charge pump)

I2C_WM8904_DAT

I2C_WM8904_CK

I2C Address: 0x1A

(7-bit format)

I2C_GP_CK

I2C_GP_DAT

GND_AUDIO

V_MICBIAS_I2S

V_3V3_MIC

V_3V3_S0

CODEK_OPTION_SW_I2S_HDA#

V_3V3_MIC

ZNL16

Place Both Microphone decoupling caps as close as posible to codec WM8904VMIDC_I2S

V_3V3_MIC

V_1V8_S0

V_1V8_S0_I2S_CODEC

V_1V8_S0_I2S_CODEC

MIC_LEFT_I2S

MIC_RIGHT_I2S

LINE_IN_LEFT_I2S

LINE_IN_RIGHT_I2S

GND_AUDIO GND_AUDIO

HE

AD

PH

ON

E_O

UT

_R

IGH

T_R

C

HE

AD

PH

ON

E_O

UT

T_LE

FT

_R

C

HEADPHONE_OUT_RIGHT_I2S

HEADPHONE_OUT_LEFT_I2S

ZOBEL NETWORKs

(reduce high frequency switching noise from charge pump)

ZNL17

Place ZOBEL Network as close as possible to codec

U60

33

22

10

8

17

14

15

13

3

19

21

12

11

20

4

6

9

5

16

31

32

30

29

28

2

25

1

27

23

7

18

26

24IN2R

IN2L

LINEOUTR

CPVDD

AVDD

IN1L/DMIC_DAT1

IRQ/GPIO1

IN1R/DMIC_DAT2

SCLK

MCLK

BCLK/GPIO4

LRCLK

DACDAT

ADCDAT

LINEOUTL

DGND

CPGND

V_DCVDD

V_DBVDD

MICBIAS

CPVOUTP

CPVOUTN

VMIDC

V_MICVDD

SDA

HPOUTL

HPOUTR

HPOUTFB

LINEOUTFB

CPCA

CPCB

AGND

GND_PAD

WM8904

V_3V3_MIC_FB

ZNL18

Place Microphone decoupling cap and FB as close as posible to codec WM8904

MAX 0.01 mA

HEADPHONE_GND_AUDIO_FB

CPCA_I2S

CPCB_I2S

CPVOUTN_I2S

LINE_OUT_GND_AUDIO_FB

I2S0_LRCK

V_1V8_S0_I2S_CODEC

NCNC_GPIO1_I2S

GND GND

GND

V_1V8_S0_I2S_CODEC

GND_AUDIO

V_1V8_S0_I2S_CPVDD

V_1V8_S0_I2S_AVDD

GND

GND GND

GND_AUDIO

AUDIO_MCK

AUDIO_MCK_RAUDIO_MCK_OSC

AUDIO_MCK_R

ZNL38

Place R295 and R315 with shared pad with minimum stub

V_VOUT_8

V_VOUT_7

CT

GND

V_VIN_1

V_VIN_2

V_VBIAS

ON

THMPAD_9

GND GND

GND

8

7

6

5

1

2

4

3

9

TPS22965

U58

V_VOUT_8

V_VOUT_7

CT

GND

V_VIN_1

V_VIN_2

V_VBIAS

ON

THMPAD_9

U57

TPS22965

9

3

4

2

1

5

6

7

8

GND GND

GND

GND

GND

GND

GND

V_3V3_S0

FB906032A

120

FB1106032A

120

FB2706032A

120

GND

C345

1u

16V

0402

0402

50V

C15

100n

0402

50V

C16

100n

040216V2u2 C200

0402

50V

C18

100n

0402

50V

C19

100n

0402

50V

C62

100n

DN

I

100n

C197

50V

0402

040210V4u7 C296

100k

0402

DN

I

R192

1%

DN

I

R195

1%

100k

0402

0402

1%

20R

R174

100n

C235

50V

0402

R175

1%

20R

0402

100n

C63

50V

0402

0402

50V

C241

100n

0402

50V

C64

100n

100n

C246

50V

0402

C1894u710V 0402

DNI0R1% 0402

R295

R31504021%

0R

0402

16V

1u

C183

C2944u710V 0402

040210V4u7 C295

0402

50V

1n

C272

040

250V

C264

100n

C281

1n

50V

0402

100n

C267

50V

0402

C185

1u

16V

0402

0402

16V

1u

C192

DNI04021%

0R R39

DNI04021%

0R R40

0402

20R

1%

R135

0402

1%

20R

R129

0402

C239

10u

6V

30402

6V

3

C240

10u

04021%0R R49

R540R 1% 0402

22

MOD

MOD

MODI2S0_SDOUT

I2S0_SDINMOD

MOD

MOD

MOD

Page 57: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 57 of 119 Mar 23, 2017 ©SGeT e.V.

4.4.3 Texas Instruments TLV320AIC3105 I2S Audio Example

An alternative I2S audio CODEC example from TI is shown below. As in the WM8904 example, the I2S carries the PCM audio from and to the SMARC Module, and the I2C is used for chip setup parameters.

Figure 35 I2S Audio CODEC: Texas Instruments

Figure 36 Audio Amplifier: Texas Instruments

MOD

MOD

04020Ohm R6521

J7

CUI SJ-43516

RASMT6/1/3.5mm

6

5

4

3

2

1 1

2

3

4

5

6

QFN4

Abracon ASEMB-12.000MHZ

Y2

34

21STBY GND

VDD OUT

QFN32

TI TLV320AIC3105

J8

33

26

17

21

6

30

29

28

27

23

22

19

20

32

7

24

18

25

15

16

14

13

12

11

10

31

8

9

1

3

2

4

5DOUT

DIN

BCLK

WCLK

MCLK

SDA

SCL

RESET#

MIC1L/LINE1L

MIC1R/LINE1R

MIC2L/LINE2L

MIC2R/LINE2R

MIC3L/LINE3L/MICDET

MIC3R/LINE3R

MICBIAS

AVDD

DRVDD_18

DRVDD_24

IOVDD

DVDD

HPLCOM

HPLOUT

HPRCOM

HPROUT

LEFT_LOP

LEFT_LOM

RIGHT_LOP

RIGHT_LOM

DVSS

DRVSS

AVSS1

AVSS2

T_PAD

C208 100nF21

0402 R660Ohm 2 1

0Ohm0402

DNI

R672 1

V_1V8

DNI

10nF16V

C213

2

1

V_3V3_AUD

GND_AUDIO_1

470nFC17821

470nFC17921

2KOhmR265

04

02

21

V_1V8

GND_AUDIO_1

Semtech RCLAMP0504P

D5

6

4

3

1

7

2

5 V

NC

TAB

D1

D2

D3

D4

R68 04020Ohm DNI21

0OhmR69 040221

470nFC18021

C181 470nF21

C4100nF

25V2

1

1uF16V

C143

2

1

V_1V8

V_1V8

16V

C1441uF

2

1

GND_AUDIO_1

0Ohm R70040221

C5100nF

25V2

1

100nFC6

25V2

1

16V1uF

C145

2

1 C1461uF16V

2

1C7

25V100nF

2

1

V_3V3

1uF16V

C147

2

1

100nFC8

25V2

1

0OhmR71 040221

FB2

1.2A

120Ohm90mOhm

2 1

GND_AUDIO_1

10uFC218

16V2

1

GND_AUDIO_1

DNI0402

0OhmR7221

JST SM03B-SRSS-TB

J9

SMT3/1/1x3/1.0

5 4

3

2

11

2

3

M1

M2

GND_AUDIO_1

R7304020Ohm 21

0Ohm R74040221

04020Ohm R75DNI 21

DNI0402 R760Ohm 21

MOD

MOD

MOD

JST SM03B-SRSS-TB

SMT3/1/1x3/1.0

J10

5 4

3

2

11

2

3

M1

M2

GND_AUDIO_1

MOD

MOD

MOD

DNI R7704020Ohm 2 1

0402 R780OhmDNI 2 1

0402DNI 0Ohm R792 1

0Ohm R80DNI0402

2 1

0402 R810Ohm 2 1

R8204020Ohm 2 1

0402 R830Ohm 2 1

04020Ohm R842 1

DNI R8504020Ohm 2 1

0Ohm R86DNI0402

2 1

0402 R87DNI 0Ohm 2 1

0402 R88DNI 0Ohm 2 1

MOD

MOD

MOD

MOD

MOD

MOD0Ohm

0402DNI R8921

GND_AUDIO_1

C214

16V10uF

2

1

MOD

MOD

MOD

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

I2S2_CK

I2S2_SDIN

I2S2_SDOUT

I2S2_LRCK

I2S1_CK

I2S0_CK

I2S0_LRCK

I2S0_SDOUT

I2S1_SDIN

I2S0_SDIN

I2S1_SDOUT

I2S1_LRCK

AUDIO_MCLK

HP_RIGHT

HP_RIGHT

I2C_CODEC_CK

I2C_CODEC_CK

I2C_CODEC_DAT

I2C_CODEC_DAT

HP_MIC

HP_MIC

HP_LEFT

HP_LEFT

LEFT_LOP

RIGHT_LOP

HP_COM

HP_COM

CAR_RESET_OUT#

CODEC_RESET#

HP_MIC_C

JACK1_R

AUDIO_MCLK_R

AUDIO_MCLK_ROSC_OUT

MICBIAS_CODEC

MIC1L

MIC1R

MIC2L

MIC2R

LINE_2_IN_RIGHT

LINE_2_IN_RIGHT

LINE_2_IN_LEFT

LINE_2_IN_LEFT

LINE_1_IN_RIGHT

LINE_1_IN_RIGHT

LINE_1_IN_LEFT

LINE_1_IN_LEFT

LEFT_LOM

RIGHT_LOM

JACK4_R

I2S_SDOUT

I2S_SDOUT

I2S_LRCK

I2S_LRCK

I2S_CK

I2S_CK

I2S_SDIN

I2S_SDIN

AUDIO_RESET#

I2C Addr :0x58

(7 bit Address)

MOD

MOD

C2281nF

2

1

1nFC229

2

1

GND_AUDIO_1

16V

C215

10uF

2

1

GND_AUDIO_1

21

1.2A90mOhm

FB3

GND_AUDIO_1

R90 04020Ohm21

V_5V0

C148

1uF

16V2

1 C9

100nF25V

2

1

100nF

C10

25V2

1

GND_AUDIO_1

C149

1uF

16V2

1C11

25V100nF

2

1

GND_AUDIO_1

1uF

C150

16V2

1

1uFC151 21

GND_AUDIO_1

1KOhm

0402

DNI

R46

21

1uFC152 21

GND_AUDIO_1

50mOhm1.7A

L121

50mOhm1.7A

L221

1.7A

L3

50mOhm

21

1.7A

L4

50mOhm

21

0OhmR91 DNI0402

21

DNI0Ohm0402R92 21

0Ohm0402R93 21

JST SM02B-SRSS-TB

1x2-1.0SMT

J15

4 3

2

11

2

M1

M2

SMT1x2-1.0

JST SM02B-SRSS-TB

J16

4 3

2

11

2

M1

M2

GND_AUDIO_1

GND_AUDIO_1

0Ohm0402R94 21

1nFC230

2

1C2311nF

2

1

R471KOhm

DNI 0402

21

1uFC153 21

C154 1uF21

TI TPA2016D2

QFN20

U21

21

8

3

20

16

7

6

9

10

12

11

19

17

18

14

15

2

1

5

4

13AVDD

PVDDL_4

PVDDL_5

INL+

INL-

INR+

INR-

SDZ

SCL

SDA

PVDDR_11

PVDDR_12

OUTR+

OUTR-

OUTL+

OUTL-

NC_16

NC_20

AGND

PGND

TH_GND

MOD

MOD

I2C_GP_DAT

I2C_GP_CK

I2C_CAM_DAT

I2C_CAM_CK

LEFT_LOP

RIGHT_LOP

LEFT_LOM

RIGHT_LOM

I2C_AMP_CK

INR+

INL+

INR-

INL-

I2C_AMP_DAT

OUTR_P

OUTR_N

OUTL_P

OUTL_N

OUTR_N_F

OUTR_P_F

OUTL_P_F

OUTL_N_F

Page 58: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 58 of 119 Mar 23, 2017 ©SGeT e.V.

4.4.4 lntel High Definition Audio over I2S2

The HDA interface uses the same pins as I2S2 in SMARC 2.0 specification. At the time of writing HDA is still the preferred Audio Interface for x86 based Modules, even though I2S is getting integrated in the latest x86 SoC generations. There's a minor conflict with regards to voltage levels of the shared HDA and I2S audio interfaces. SMARC defines the I/O levels of HDA to be 1.5V to comply with the HDA specification. Nevertheless, there's a trend to run the HDA interface at 1.8V in order to save cost for additional voltage regulators. Most of chip vendors as well as codec vendors allow either voltage to be used. Please check with your Module vendor if 1.5V or 1.8V are supported and use an audio codec that is capable to support the regarding I/O voltage. The example schematic shows a simple resistor option (R126 and R127) to support both I/O levels within one design. HDA_SDI signal should have a damping resistor close to the audio codec. It's a good practice to also reserve space for series damping resistors at the other HDA interface lines. Depending on Carrier board implementation it might be useful to also apply series resistors there to improve EMI and signal integrity.

Figure 37 HD Audio

DNI

10V

10V

Line Out

Headphone Out

16V16V

(amplified)

DNI

10V 10V

Line In

10V

10V

DNI

10V

Microphone

10V

10V

10V

16V

16V 16V

10V

10V

10V 10V

10V

16V 16V

16V

10V

DNI

HDA_HP_R

HDA_HP_L

HDA_VBIAS

HDA_FLY_C

HDA_FLY+

HDA_FLY-

HDA_VHP+HDA_VHP-

HDA_SENSEA

HDA_LINE_L

HDA_LINE_R

HP_JD MIC_JD

LINE_OUT1_JD

LINE_OUT1_JD

HP_JD

HDA_SYNC

HDA_SDOHDA_SDI_R

HDA_RST#

HDA_CLK

HDA_SDI

HDA_VCOM

HDA_VREF+

HDA_MIC_L

HDA_MIC_R

HDA_MICBIAS

HDA_LINEIN_C

LINE_IN_JD

HDA_LINEIN_L

HDA_LINEIN_R

MIC_JD

LINE_IN_JD

HDA_CLK_RHDA_SYNC_R

HDA_SDO_RHDA_RST#_R

V_HDA

V_3V3

AGND_HDA

V_3V3_FILT

AGND_HDA

V_HDAV_1V8

V_1V5

AGND_HDA AGND_HDAAGND_HDA

AGND_HDA

AGND_HDAAGND_HDA AGND_HDA

AGND_HDA

AGND_HDA

AGND_HDA

AGND_HDAAGND_HDA

AGND_HDA

AGND_HDA

AGND_HDA

V_3V3

AGND_HDA

V_3V3_FILT

MOD

MOD

MOD

MOD

MOD 0402R128 33Ohm

0402R132 560Ohm

FB1

1.2A 90mOhm

0402R153 0Ohm

C1441.0uF

0402R150 100Ohm

0402

R134

20kOhm

0402R155 0Ohm

C1432.7nF

0402

R1450Ohm

C13518pF

C137100nF

C153100nF

C1482.7nF

X3

XAUDJACK_2503AP_6P_BC

3

54

16

2

0402

R148100kOhm

C154100nF

0402

R130

47kOhm

C150100nF

0402

R137

33Ohm

C1342.7nF

C11710uF

C1472.7nF

C1421.0uF

C151100nF

0402 R140

15kOhm

0402R143 100Ohm

C1451.0uF

C149100nF

0402R139

15kOhmC139100p

C138100p

X2

XAUDJACK_2503AP_6P_LC

3

54

16

2

0402R146 100Ohm

0603

R126R5%0R0S03

0402

R151

10kOhm

0402R154 0Ohm

C155100nF

0402

R138

33Ohm

0402

R142100kOhm

C1192.2uF

0402R152 0Ohm

X4

XAUDJACK_2503AP_6P_PC

3

54

16

2

0402R149 100Ohm

0402

R133

5.1kOhm

0402

R136

2.67kOhmC1251.0uF

C13010uF

U20

CS4207-CNZ

VL_IF1

GPIO0/DMIC-SDA12

VL_HD3

DMIC_SCL4

SDO5

BITCLK6

DG

ND

7

SDI8

VD9

SYNC10

RESET#11

GPIO1/DMIC_SDA212

VA_REF24

LINEIN_R+23

LINEIN_C-22

LINEIN_L+21

MICIN_R-20MICIN_R+19

MICIN_L+18MICIN_L-17

MIC_BIAS16

GPIO315 GPIO214

SENSE_A13

LINEOUT_R1+36

LINEOUT_L1+35

LINEOUT_L1-34

LINEOUT_R2-33LINEOUT_R2+32

LINEOUT_L2+31

LINEOUT_L2-30

VBIAS29

VCOM28

VREF+27

AGND26

VA25

LINEOUT_R1-37

HPOUT_L38

HPREF39

HPOUT_R40

VHP_FILT-41

FLYN42

FLYC43

VHP_FILT+44

FLYP45

VA_HP46

SPDIF_IN47

SPDIF_OUT148

EP

49

C11410uF

C1324.7uF

X1

XAUDJACK_2503AP_6P_LC

3

54

16

2

C11810uF

C1222.2uF

C1332.7nF

C1314.7uF

C136100nF

M1MDSP_02

0402

R147100kOhmC129

1.0uF

C1401.0uF

C1412.7nF

C15210uF

0402R131 560Ohm

C1461.0uF

0603

R127R5%0R0S03

0402

R129

47kOhm

0402

R13539.2kOhm

0402

R141100kOhm

0402R144 100Ohm

Page 59: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 59 of 119 Mar 23, 2017 ©SGeT e.V.

4.4.6 Audio Switch

The following schematic shows an audio switch. This can be used on baseboards which have both codecs I2S and HD Audio to switch between the two of them.

Figure 38 Audio switch

4.5 SPI Interfaces

4.5.1 General

The SPI (Serial Peripheral Interface) is a full duplex synchronous bus supporting a single master and multiple slave devices. The SPI bus consists of a serial clock line (generated by the master); data output line from the master; a data input line to the master and one or more active low chip select signals (output from the master). Clock frequencies from 1-100MHz may be generated by the master depending on the maximum frequency supported by the components in the system. SMARC Modules running a 1.8V I/O interface are generally limited to about a 50 MHz clock rate on this interface. The SMARC Module will always be the SPI master. SMARC Modules may support a Carrier SPI Boot option.

4

5

3

2

1

V_V+

NC1

NC2

NC3

NC4

NO1

NO2

NO3

NO4

COM1

COM2

COM3

COM4

IN1-2

IN3-4

GND

P1

P2

4

5

3

2

1

J24

1054-2371

1

2

3

5

4

GND_AUDIO

LINE_IN_RIGHT_C

LINE_IN_LEFT_C

LINE_IN_JD

6

14

8

TS3A44159

U51

2

10

4

16

12

7

13

5

1

9

15

11

3

Adio Codec Multipexor HDA (default) / I2S Codec

Line In Jack 3.5 mm

Line Out Jack 3.5 mm

MAX 1.2 uA

GND_AUDIO

LINE_IN_LEFT_MUX

LINE_IN_RIGHT_MUX

LINE_IN_LEFT_HDA

LINE_IN_RIGHT_HDA

1

2

1044-8634

J31

CODEK_OPTION_SW_I2S_HDA#

LINE_IN_LEFT_I2S

LINE_IN_RIGHT_I2S

J43

1

2

3

5

4

GND_AUDIO

LINE_OUT_RIGHT_C

LINE_OUT_LEFT_C

LINE_OUT_LEFT_MUX

LINE_OUT_RIGHT_MUX

LINE_OUT_LEFT_HDA

LINE_OUT_RIGHT_HDA

LINE_OUT_LEFT_I2S

LINE_OUT_RIGHT_I2S

FB16600420mA 0402

0402420mA600 FB21

GND_AUDIO GND_AUDIO

LINE_IN_RIGHT

LINE_IN_LEFT

0402420mA600 FB22

FB24600420mA 0402

LINE_OUT_LEFT

LINE_OUT_RIGHT

GND_AUDIOGND_AUDIO

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

1 2

43

5

7

6

8

109

J10

Front panel Analog Header

MIC_LEFT

MIC_RIGHT

V_V+

NC1

NC2

NC3

NC4

NO1

NO2

NO3

NO4

COM1

COM2

COM3

COM4

IN1-2

IN3-4

GND

3

11

15

9

1

5

13

7

12

16

4

10

2

U52

TS3A44159

8

14

6

GND_AUDIOGND_AUDIO

MIC_RIGHT_HDA

MIC_LEFT_HDA

MIC_RIGHT_I2S

MIC_LEFT_I2S

U20

2

3 4

51V_IN V_OUT

NR/FBEN

GND

TPS73101

GND_AUDIO GND_AUDIO GND_AUDIO GND_AUDIOGND_AUDIO

RA

RB

GND_AUDIO

Vout = 1,204 * (RA+RB)/RB = 4.28 V

V_4V3_AUDIO

V_5V0_S0

V_5V0_S0_AUDIO

FB_V_4V3_AUDIO

V_4V3_AUDIO

V_4V3_AUDIO

V_4V3_AUDIO

MAX 1.2 uA

J31 CODEC

OPEN HDA

SHORTED I2S

V_MICBIASV_MICBIAS_HDA

V_MICBIAS_I2S

MAX 43 uA

MAX 43 uA

V_1V8_S0

0402420mA600 FB14

MIC_LEFT_MUX

FB15600420mA 0402

MIC_RIGHT_MUX

D44Y

2

1

3

Q8

BSS138W

SOT323

CODEK_OPTION_SW_I2S_HDA#

YD45

HDA CODECI2S CODEC

GND

LED_I2S_CODEC#

V_3V3_S5_LED

JUMPER

H3

V_V+

NC1

NC2

NC3

NC4

NO1

NO2

NO3

NO4

COM1

COM2

COM3

COM4

IN1-2

IN3-4

GND

3

11

15

9

1

5

13

7

12

16

4

10

2

U19

TS3A44159

8

14

6

GND_AUDIOGND_AUDIO

V_4V3_AUDIO

MAX 1.2 uA

GND_AUDIO

GND_AUDIO

HDA / I2S Audio codec LEDs indicationLINE_OUT_JD

GND_AUDIO

FPAH_PRESENCE#

V_1V8_S0

HEADPHONE_OUT_RIGHT_I2S

HEADPHONE_OUT_LEFT_I2S

HEADPHONE_OUT_LEFT_HDA

HEADPHONE_OUT_RIGHT_HDA

GND_AUDIO

Port D of HDA codec

Port C of HDA codec

Port B of HDA codec

MIC_JD

HEADPHONES_JD

JACK DETECT SIGNALS FOR I2S CODEC (Connected to 4x GPI of I2C Expander)

SignalJACK Function

LINE IN LINE_IN_JDPlug

Voltage Log

Unplug 0 0

5V 1

LINE OUT LINE_OUT_JDPlug

Unplug 0 0

5V 1

MIC (*) MIC_JDPlug

Unplug 0 0

5V 1

HEADPHONES (*) HEADPHONES_JDPlug

Unplug

0 0

5V 1

(*) These two JACKs are available via Front Panal Audio Header and plugged Intel HD Audio Front panel dongle

AUDIO_JACK_SENSE#

AUDIO_JACK_SENSE#

HEADPHONE_GND_AUDIO_FB

audio signals, to reduce noise

Route HEADPHONE_GND_AUDIO_FB close to HEADPHONE

ZNL19

MIC_RIGHT_HDA_C

MIC_RIGHT_I2S_C

MIC_LEFT_HDA_C

MIC_LEFT_I2S_C

GND_AUDIO

GND_AUDIO

AUDIO_JACK_SENSE#

To HDA kodek

FB47600420mA 0402

0402420mA600 FB48

HEADPHONE_OUT_RIGHT

HEADPHONE_OUT_LEFTHEADPHONE_OUT_RIGHT_MUX

HEADPHONE_OUT_LEFT_MUX

Port A of HDA codec

LINE_OUT_GND_AUDIO_FB

audio signals, to reduce noise

Route LINE_OUT_GND_AUDIO_FB close to LINE OUT

ZNL22

SENSE_A_HDA

V_5V0_S0

To I2S kodek

U13

4

5

6

1

3

2V_V+

GND

IN

NO

COM

NC

TS5A4624

GND_AUDIO

V_5V0_S0

GND_AUDIO

CODEK_OPTION_SW_I2S_HDA#

GND_AUDIO

V_5V0_S0

CODEK_OPTION_SW_I2S#_HDA_5V0

AUDIO_JACK_SENSE_I2SSOT323

BSS138W

Q6

2

1

3

GND

GND

LED_HDA_CODEC#

CO

DE

K_O

PT

ION

_S

W_I2

S#_H

DA

_3V

3

4

5

3

SOT363

BSS138DW

Q2

1

2

6

SOT363

BSS138DW

Q2

R204

2k2

1%

0402

C358 100u10VB

1%

100R

0402

R317

R193

1%

100k

0402

50V

0402

C139

100n

B 10V100uC359

04021%0R R114

0402

50V

C23

100n

100n

C148

0402

50V

R173

68k1

1%

0402

R179

26k7

1%

0402

04021%0R R55

C56 100u10VB

B 10V100uC57

040216V1u C307

040216V1u C308

C3091u 16V 0402

R169

1%

100k

04

02

R131

10k

1%

0402

R205

2k2

1%

0402

0402

50V

C135

100n

0402

50V

C137

100n

0402

50V

C181

100n 1

00k

1%

R170

04021u

C225

16V

0402

R215

39k2

1%

0402

R216

5k11 1%

0402040216V1u C223

C2161u16V 0402

1u C217040216V

0402

100k

1%

R128

C231

100p

50V

0402

C234

100p

50V

0402

GND_AUDIO GND_AUDIO

C282

100p

50V

0402

C284

100p

50V

0402

NC

GND_AUDIO

GND_AUDIO

GND_AUDIO

0402

50V

10n

C268

0402

6V

3

10u

C270

0402

6V

3

10u

C269

0402

6V

3

10u

C271

0402

16V

1u

C297

0402

16V

1u

C298

FB2806032A

120

04

02

1%

750R

R212

04

02

1%

750R

R213

R214

20k

1%

0402

21

Page 60: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 60 of 119 Mar 23, 2017 ©SGeT e.V.

4.5.2 SMARC Implementation

Each SPI device requires a chip select, a clock, a data in line and a data out line. The device I/O level must of course be compatible with the SMARC Module I/O level. The Winbond W25Q64FW is an example of a 1.8V I/O compatible SPI Flash device. The figure below illustrates a socket implementation for a SPI Flash memory.

Figure 39 SPI Flash Socket

8-1.27

Lotes_ACA-SPI-004-T01

SMT

J33

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

100nF25V

C64

2

1

MOD

MOD

04

02

10KOhm

R179

DNI

21

R180

0402

10KOhm

21

V_1V8

0402

10KOhm

R181

21

MOD

MOD

DNI

R182

04

02

10KOhm

21

SPI0_DO

SPI0_DIN SPI0_CK

SPI0_WP# SPI0_HOLD

SPI0_CS0#

Page 61: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 61 of 119 Mar 23, 2017 ©SGeT e.V.

4.5.3 SPI Device Examples – 1.8V I/O

The table below shows a small sample of the devices available on the market with a 1.8V SPI interface. It is only a sample and is meant to give an idea of the type of devices available. Remember to check the software driver situation before settling on a particular device.

Table 6 SPI Device Examples - 1.8V I/O

Function Device Description Vendor Vendor P/N

ADC 8-channel, 12-bit SAR ADC with temperature sensor

Analog Devices AD7298

DAC Quad, 16-bit nano DAC Analog Devices AD5686R

Flash Memory 64 Mbit SPI Flash memory Winbond W25Q64FW

IO Expander 8-bit GPIO expander with integrated level shifters

Exar XRA1404

Temperature Sensor

Digital thermometer ±2 °C resolution Range - 55°C to +120 °C

Maxim Integrated DS1722

Touch Screen Controller

4 wire resistive touch screen controller

Texas Instruments TSC2008-Q1

UART bridge UART with 128 Word FIFOs and support for 9-bit multi-drop mode data filtering

Maxim Integrated MAX3108

Page 62: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 62 of 119 Mar 23, 2017 ©SGeT e.V.

4.6 CAN Bus

4.6.1 General

The CAN (“Controller Area Network”) bus is a differential half duplex data bus used in automotive and industrial settings. A CAN bus uses shielded or unshielded twisted differential pair wiring, terminated in the pair differential impedance of 120 ohms at the endpoints of the bus. Nodes on the bus are arranged in daisy-chain fashion, although stubs of up to 0.3 meters are allowed at each node. The standard allows data rates of up to 1 Mbps, with a maximum bus length of 40 meters at that rate. Various slower rates are defined, along with longer and longer bus lengths allowed as the data rates go down. A bus rate of 250 kbps is in common use in automotive situations. With CAN FD also faster baud rates are possible. The two lines in a CAN twisted pair are referred to as CAN_H and CAN_L (for CAN High and CAN Low). There are two bus states on the CAN physical layer: the Dominant state and the Recessive state. In the Dominant state, CAN_L is pulled to GND through an open drain driver and CAN_H is pulled to the CAN Vcc through an open drain driver. In the Recessive state, CAN_L and CAN_H are not actively driven and they are pulled to a voltage of (Vcc / 2) by passive components. Hence the CAN bus is essentially a differential open-drain bus. On the system logic side of a CAN transceiver, the CAN Dominant state is a logic low and the Recessive state a logic high. The CAN protocol has features important to a real time environment:

Nodes are prioritized: CAN nodes are assigned an 11 bit identifier o The lower the ID number, the higher priority

Latency time is guaranteed

Data packets are limited to 8 bytes maximum o Higher level protocols take care of handling large data sets

The bus has Multi-master capability

There are error detection and signaling features

The CAN bus base standard is defined by ISO 11898-1:2003, available for a fee from the ISO (www.iso.org). There are some very helpful CAN application notes from Texas Instruments (a vendor of CAN MAC and transceiver devices) available for free. These include “Introduction to the Controller Area Network (CAN)”, TI document number SLOA101A, and “Controller Area Network Physical Layer Requirements”, document number SLLA270. The original CAN bus protocol definition by Bosch is also freely available on the web (CAN Specification, Version 2.0 © 1991 Robert Bosch GmbH). Various connectors are used in CAN bus implementations. The use of DB-9 connectors is fairly common. The TI application note (SLLA270) referenced above has pin-out information for a couple of common CAN connector implementations.

Page 63: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 63 of 119 Mar 23, 2017 ©SGeT e.V.

4.6.2 SMARC Implementation

The SMARC specification allows for up to two logic level CAN ports. The ports run at the Module I/O voltage (typically 1.8V) and consist of an asynchronous CAN TX line and an RX line from and to the SMARC Module CAN protocol controller. A Carrier based CAN transceiver is required to create a SMARC system CAN implementation. CAN PHYs are available from Texas Instruments, On Semiconductor, NXP, Freescale, Microchip and numerous other vendors. The logic interface for CAN PHYs is typically suited for 3.3V logic I/O, so level translation is required if the SMARC Module is running 1.8V I/O. Precautions must be taken to prevent a CAN system from sending out frames or blocking a CAN-Bus unintentionally, for example during reset and power down. During power down, CAN Transceivers are designed to be HIGH-Z. During power up or reset, they must be put into a “listen only mode”. It is the responsibility of the application software to activate the CAN-transceiver after all initialization is done. A SMARC Carrier board CAN transceiver implementation is shown below. This example shows two 60 ohm terminations (or 120 ohms across the CAN pair). This is appropriate only if the node is an end-point, and intermediate nodes should not be terminated. The example transceiver TJA1051 has a “silent input pin”. If left open, the transceiver enters “listen only mode”. Using a GPIO allows the application software to set the can transceiver into “normal mode = able to send” by pulling “silent” low. A pull down resistor on the gate of T1 is necessary to disable the transceiver in case of a CPU reset or power fail. It is recommended to use GPIO8 as CAN0_EN and GPIO9 as CAN1_EN.

Figure 40 CAN Bus Implementation

4.6.3 Isolation

Some CAN transceiver application notes show optical isolation between the CAN protocol controller and the CAN transceiver. See, for example, NXP (Philips) application note AN96116 for the PCA82C250 CAN transceiver. They suggest using the 6N137 optical transceivers. Be careful to take into account the I/O levels and current sink / source requirements of the various devices in the chain.

CAN_HCAN_L

ConnectorCAN Ports

D1

PESD1CAN bi dual 50nA

32

1CAN_LCAN_H

R160.4R

X1A

CON DSUB-M/F 9pol UNC clip 90

A5A9A4A8A3A7A2A6A1

A10

A11

Level Shift

U2

74LV1T125

OE#1

+5

A2

-3

Y4

U3

74LV1T125

OE#1

+5

A2

-3

Y4

V_3V3

CAN_RX_3V3

V_1V8

C3

100nF 16V

12

V_3V3

CAN_TX_3V3C4

100nF 16V

12

V_1V8

U1

IC TJA1051/T3 SMT SO8_150 4.5-5.5

TXD1

GND2

VCC3

RXD4

VIO5

CANL6

CANH7

S8

R260.4R

C54n7

12

CAN_RX_3V3CAN_TX_3V3

C1100nF12

V_5V0C210uF12

V_3V3

C6

100nF 16V

12

R32.2k

12

T1BSS138

32

1

R44.7k

12

CANx_TX_M

CANx_RX_M

GPIO_x MOD

MOD

MOD

Page 64: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 64 of 119 Mar 23, 2017 ©SGeT e.V.

5 HIGH SPEED SERIAL I/O INTERFACES

5.1 USB

5.1.1 General

The USB (Universal Serial Bus) is a hot-pluggable general purpose high speed I/O standard for computer peripherals. The standard defines connector types, cabling, and communication protocols for interconnecting a wide variety of electronic devices. The USB 2.0 Specification defines data transfer rates as high as 480 Mbps (also known as High Speed USB). A USB host bus connector uses four pins: a power supply pin (5V), a differential pair (D+ and D- pins) and a ground pin. Additionally a fifth pin, USB ID (mostly used in devices supporting USB-OTG), may also be used which indicates whether the device operates in Host mode or a Client/Device mode. SMARC Modules support up to six independent USB 2.0 busses, designated USB0 to USB5. Of these, SMARC USB0 and USB3 can be configured as a host, client or OTG port. OTG operation is optional. SMARC USB1, USB2, USB4 and USB5 are always hosts. A USB host is usually the smarter device – a host computer for example. A USB client is usually a peripheral device, such as a camera, printer or mass storage device. USB clients are often based on microcontrollers that include USB client interface hardware. USB3.0 Super Speed is supported on USB2 and USB3 and defines data rates up to 5 Gbps. Therefore these ports have two additional differential signal pairs SSRX and SSTX. USB3 may also support a USB3.0 OTG port.

5.1.2 USB0 Client / Host Direct From Module

The figure below shows a USB-OTG implementation on the USB0 port terminated on a micro USB Type A/B connector The ESD diodes should be placed close to the connector, and the USB traces routed as differential pairs in “no stub” fashion – the traces should go through the pads of the ESD protection devices, without introducing a stub. If the client device is bus powered, the Carrier can supply 5V, 500mA power to the client device. The Module USB0_EN_OC# signal controls the power switch and current limiter, the Texas Instruments TPS2052, which in turn supplies power to a bus-powered client device. Per the USB specification, bus powered USB 2.0 devices are limited to a maximum of 500 mA. The TPS2052 limits the current and can stand an indefinite short circuit to GND. The current limiting is somewhat imprecise, and kicks in between 500 mA and 1A.

Page 65: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 65 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 41 USB0 Client / Host Direct From Module

040221

0Ohm

R291

MOD

MOD

UMT3 ROHM RJU003N03T106

Q7

3

1

2

Q8

UMT3 ROHM RJU003N03T106

3

1

2

USB_VBUS_OTG

V_3V3

0402

4.7KOhmR1

DNI

21

SO8

TI TPS2052B

U18

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#

Vishay SI2305CDS-T1-GE3

Q15

SOT233

2

1

10KOhm0402

R174

2 1

Vishay SI2305CDS-T1-GE3

Q16

SOT23

3 2

1

1MEGOhm

R262

0402

21

C1

25V100nF

2

1

4.7uFC191

10V2

1

MOD

FB1

1.2A90mOhm120Ohm

21

MOD

5/1/1x5/0.65RA

J6Molex 0475900001

S4

S3

S2

S1

5

4

3

2

15V

D-

D+

ID

GND

S1

S3

S2

S4

100nFC2

25V2

1

C3100nF25V2

1

V_5V0

VBUS_OTG_PWR

TI TPD2E009

SOT23

D1

3

12

190mOhm

TDK ACM2012-900-2P-T002FB7

2x1.2x1.2

1 4

32

MOD

MOD

USB0_VBUS_DET

USB0_DN

USB0_DP

CARRIER_PWR_ON

USB0_EN_OC#

VBUS_OTG_EN#

VUSB_OTG

OTG_PORT_N

OTG_PORT_P

USB0_OTG_ID

USB0_OC#

Type AB Micro USB, R/A, SMT

Page 66: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 66 of 119 Mar 23, 2017 ©SGeT e.V.

5.1.3 USB1 and USB2 Host Ports direct from Module

Carrier board implementation of USB host ports from SMARC USB1 and USB4 is straightforward. An implementation of a dual USB Type A Host port header is shown in the figure below. The ESD diodes should be placed close to the connector, and the USB traces routed as differential pairs in “no stub” fashion – the traces should go through the pads of the ESD protection devices, without introducing a stub. If the target USB devices are “down” on the Carrier, then much or all of this circuit may be omitted. The SMARC USB pairs are routed directly to the target device. The ferrite choke in the USB lines, the ESD diodes, and the TPS2052 power switch and associated passives may be eliminated. However, in some cases, it is desirable to have the capability to “power cycle” a USB peripheral under software control. If this is the case, it might be desirable to retain the TPS2052 power switch, or a similar device for 3.3V power switching, with the power control function performed by the USB1_EN_OC or USB4_EN_OC, as appropriate.

Figure 42 USB1 and USB4 Host Ports Direct From Module

MOD

21 0402R326

0Ohm

U44

SO8

TI TPS2052B

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#25V

C289100nF

2

1

50mOhm

1050-8120

L14

1.7A

21

V_5V0

16V47uFC292

2

1

C290

25V100nF

2

1

R323

0402

4.7KOhmDNI

21

V_3V3

0402R325

0Ohm

21

MOD

V_3V3

R324

0402

4.7KOhmDNI

21

C29347uF16V

2

11050-8120

50mOhm

21

1.7A

L15

100nFC291

25V2

1

THT

TE 5787617-1J48

2PORT

S4

S3

S2

S1

B4

B3

B2

B1

A4

A3

A2

A1VCCA

USBA_N

USBA_P

GNDA

VCCB

USBB_N

USBB_P

GNDB

S1

S2

S3

S4

FB11TDK ACM2012-900-2P-T002

190mOhm

1 4

32

190mOhm

TDK ACM2012-900-2P-T002FB12

1 4

32MOD

MOD

SOT23

D26

TI TPD2E009

3

12

TI TPD2E009

D27

SOT23 3

12

MOD

MOD

USB4_DN

USB4_DP

USB1_DN

USB1_DP

USB_VBUS_A4

USB_VBUS_A4

USB_VBUS_A4_FB

USB4_DP_CONN

USB4_DN_CONN

USB1_DN_CONN

USB1_DP_CONN

USB1_EN_OC

USB_VBUS_A1

USB_VBUS_A1

USB_VBUS_A1_FB

USB1_OC

USB2_OC

USB4_EN_OC

Dual Stacked, Type A USB, R/A, TH

Page 67: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 67 of 119 Mar 23, 2017 ©SGeT e.V.

5.1.4 USB 3.0

A USB 3.0 port consists of a USB 2.0 port and a set of unidirectional SuperSpeed signals. The following example shows an implementation of a stacked dual USB 3.0 connector that is utilizing USB2 and USB3 without using the optional OTG capabilities of USB3. Place the ESD diodes as close as possible to the connector. For SuperSpeed Signals, ESD diodes with optimized package and low I/O capacitance should be used to create only minimal impact on signal integrity. Also the common mode chokes should be selected carefully. Ensure that their differential mode cutoff frequency is well above the maximum frequency of 2.5 GHz of a USB3.0 signal. Each USB 3.0 port should be able to supply up to 900mA and should be decoupled with at least 120µF of low ESR capacitance.

Figure 43 USB 3.0 host dual

5.1.5 USB 3.0 OTG

USB3 may support OTG functionality, depending on Module’s capabilities. Check with your Module’s vendor manual whether USB3 supports OTG. Please note that dual role devices should have a VBUS capacitance that is in a range of 1.0µF to 6.5µF. The ESD diodes should be placed as close as possible to the connector. Take care that VBUS and ID pins are also protected against ESD events as they are directly connected to the SMARC 2.0 Module. The Module will control the power switch by driving USB3_EN_OC#. It will be driven low in order to cut-off power to VBUS as it is required for client mode.

IEC 61000-4-2, level 4 compliant

ESD protected by D3

16V

16V

16V

2.5A

2.5A

190mOhm2x1.2x1.2

190mOhm2x1.2x1.2

USB3_SSRX-_CONUSB3_SSRX+_CON

USB3_SSTX-_CONUSB3_SSTX+_CON

USB23_ILIM

USB3_SSRX-_CONUSB3_SSRX+_CON

USB3_SSTX-_CONUSB3_SSTX+_CON

USB2_SSTX-

USB2_SSTX+

USB2_SSRX-

USB2_SSRX+

USB2+

USB2-

USB3-

USB3+ VCC_USB3

VCC_USB3

USB3_OC#

V5_USB3_SW VCC_USB3

USB3_EN_OC#

USB2_EN_OC#V5_USB2_SW

USB2_OC#

USB3_SSTX-

USB3_SSTX+

USB3_SSRX-

USB3_SSRX+

USB2-_CON

USB2_SSRX-_CONUSB2_SSRX+_CON

USB2_SSTX-_CONUSB2_SSTX+_CONUSB2_SSTX+_CON

USB2_SSTX-_CON

USB2_SSRX+_CONUSB2_SSRX-_CON

USB2+_CON

USB3-_CONUSB3+_CON

VCC_USB2

VCC_USB2

V_5V0

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

D3

OnSemi NUP4114

1

2

3 4

5

6

FB9Murata DLP11TB800UL2L

1

4 3

2

X5

Molex 0484060003

P1_VCC1

P1_USB2.0_D-2

P1_USB2.0_D+3

P1_GND4

P2_VCC10

P2_USB2.0_D-11

P2_USB2.0_D+12

P2_GND13

H1H1

H2H2

H3H3

H4H4

P1_USB3_SSTX-8

P1_USB3_SSTX+9

P1_USB3_SSRX-5

P1_USB3_SSRX+6

P1_GND_DRAIN7

P2_USB3_SSRX-14

P2_USB3_SSRX+15

P2_GND_DRAIN16

P2_USB3_SSTX-17

P2_USB3_SSTX+18

FB4

40mOhm

FB8Murata DLP11TB800UL2L

1

4 3

2

C84.7uF

+ C9Panasonic 16SVP180MX

0402R153 0Ohm

FB6TDK ACM2012-900-2P-T002

1

4 3

2

C12100nF

0402

R15451kOhm FB5

40mOhm

FB3TDK ACM2012-900-2P-T002

1

4 3

2

D5

TI TPD4E02B04

12345 6

78910

0402R152 0Ohm

+ C11Panasonic 16SVP180MX

C10100nF

D6DCDS2C05GTA

D4

TI TPD4E02B04

12345 6

78910

FB10Murata DLP11TB800UL2L

1

4 3

2

U2

TI TPS2561DRC

GND1

IN2

IN3

EN14

EN25

FAULT2#6

ILIM7

OUT28

OUT19

FAULT1#10

PAD11

FB7Murata DLP11TB800UL2L

1

4 3

2

Page 68: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 68 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 44 USB 3.0 OTG

16V

2.5A

16V 16V

16V

USB3_EN_OC#

USB3_ILIM

V5_USB3_SW

USB3_OC#

USB3_VBUS

USB3_VBUS

CARRIER_PWR_ON

USB3_VBUS_DET

USB3-

USB3+

USB3_VBUS

USB3-_CONUSB3+_CONUSB3_OTGID

USB3_OTGID

USB3_SSTX-

USB3_SSTX+

USB3_SSRX-

USB3_SSRX+USB3_SSRX+_CONUSB3_SSRX-_CON

USB3_SSTX-_CON

USB3_SSRX-_CONUSB3_SSRX+_CON

USB3_SSTX-_CON

USB3_SSTX+_CONUSB3_SSTX+_CON

V_5V0

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

0402R157 0Ohm

FB11

40mOhmC1574.7uF

FB12FBD90R0A33S05D

1

4 3

2

0402

R1561MegOhm

FB13

FBD80R0A10S041

4 3

2

FB14

FBD80R0A10S041

4 3

2

X6

USB3_MICROAB

VBUS1

D-2

D+3

ID4

GND5

SSTX-6

SSTX+7

GND_D8

SSRX-9

SSRX+10 SHLD

11

SHLD12

T2Diodes DMN63D8LW 1

23

0402

R15551kOhm

D7

OnSemi NUP4114

1

2

3 4

5

6

U21

TI TPS2561DRC

GND1

IN2

IN3

EN14

EN25

FAULT2#6

ILIM7

OUT28

OUT19

FAULT1#10

PAD11

T1Alpha & Omega AO3413

1

2 3

D8

TI TPD4E02B04

12345 6

78910

C1564.7uF

C15910nF

C158100nF

Page 69: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 69 of 119 Mar 23, 2017 ©SGeT e.V.

5.1.6 USB Hub On Carrier

Additional USB ports may be implemented on a SMARC Carrier board using a USB hub to interface with one of the SMARC USB ports (usually USB1 or USB2, saving the SMARC USB0 for possible client or OTG use). The USB 2.0 compliant (and 480 Mbps capable) family of hubs from Microchip / SMSC (www.microchip.com or www.smsc.com) is recommended. Parts with two, three, four or seven downstream ports are available. A Carrier hub implementation example using the seven port SMSC USB2517i is shown in the two figures below. There are three configuration straps on this particular SMSC hub, designated CFG_SEL[2] through CFG_SEL[0]. The options need to be considered carefully. The example schematic has the 2:0 configuration straps set to binary 110, which, per the SMSC data sheet, sets the hub to the following:

SMSC hub defaults in effect

Other strap options disabled

Hub LED pins configured to indicate USB speed

Individual port power switching

Individual port over-current sensing

External EEPROM not used

External I2C interface not used Although the sample schematic shows the external EEPROM and I2C interfaces, they are not used. Note that the “DNI” designation on the schematic stands for “Do Not Install” – i.e. the part is not loaded, in this example. If implementing such a hub (or any piece of configurable silicon), it is wise to keep your options open and have all strap options accessible for re-configuration by option resistors or other means. It may keep you out of trouble and save a board spin. Since the hub operates at 3.3V, the signals from the SMARC Modules that are at 1.8V (RESET_OUT# and the I2C_GP_ signals, if used) levels need to be level shifted to 3.3V to interface to the hub. In this example, there are 7 down-stream ports. Two of them are used for off-Carrier cabled connections. These nets are designated with USB_HUB2_ and USB_HUB3_ prefixes. Since they are used for cabled connections, these are protected by a USB power switch (U19, in the second figure below). Four of the other hub ports are assumed to go to on-Carrier destinations (such as mini-PCIe cards, or a touch controller, or other on-Carrier USB peripheral). One of the 7 down-stream ports is not used. The behavior of a USB port, at least initially, may differ slightly depending on whether that port is direct from the SMARC Module or whether the port is through a hub. With software adjustments, or “tweaking”, the direct and through – the –hub ports may appear virtually identical to a client device.

Page 70: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 70 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 45 USB Hub (1 of 2)

C176

2

1

1uF16V

C177

16V1uF

2

1

V_3V3

04

02

1MEGOhmR263

21

C189

50V18pF

2

1

V_3V3

0402R27

4.7KOhm

21

0402

1KOhmR60

21

R28

04

02

DNI4.7KOhm

21

V_3V3

R264

0402

12KOhm

2 1

V_3V3

0402

4.7KOhm

R292 1

R300402

4.7KOhm

2 1

V_3V3

V_3V3

MOD

0402

0Ohm

R170

2 1

25V

C127100nF

2

1

V_3V3

4.7KOhm

R310402

2 1

V_3V3

R32

0402

4.7KOhm

2 1

V_3V3

V_3V3

R33

4.7KOhm

04022 1

0402

4.7KOhm

R342 1

0402R61DNI

1KOhm

21

R35

0402

4.7KOhm

21

V_3V3

4.7KOhm

0402

R362 1

V_3V3

Y1

24M

EG

Hz

18pFC190

50V2

1

SMSC USB2517I-JZXU16

QFN64

65

19

64

57

52

56

55

54

53

37

14

15

36

38

35

16

17

39

18

31

32

33

34

47

48

49

50

51

30

12

11

20

23

22

26

21

27

28

9

8

7

6

4

3

2

1

46

24

13

10

5

63

62

61

60

59

58

45

44

43

42

41

40

25

29PRTPWR_1

CRFILT

SDA/SMBDATA/NON_REM1

SCL/SMBCLK/CFG_SEL0

HS_IND/CFG_SEL1

RESET_N#

VBUS_DET

SUSP_IND/LOCAL_PWR/NON_REM0

USBDM_UP

USBDP_UP

XTALOUT

XTALIN/CLKIN

PLLFLT

RBIAS

VDD33_5

VDD33_10

CFG_SEL2

VDD33_24

VDD33_46

USBDM_DN1/PRT_DIS_M1

USBDP_DN1/PRT_DIS_P1

USBDM_DN2/PRT_DIS_M2

USBDP_DN2/PRT_DIS_P2

USBDM_DN3/PRT_DIS_M3

USBDP_DN3/PRT_DIS_P3

USBDM_DN4/PRT_DIS_M4

USBDP_DN4/PRT_DIS_P4

OCS_N1#

OCS_N2#

OCS_N4#

PRTPWR_2

OCS_N3#

PRTPWR_3

PRTPWR_4

USBDM_DN5/PRT_DIS_M5

USBDP_DN5/PRT_DIS_P5

PRTPWR_5

LED_A_N1#/PRTSWP1

LED_B_N1#/BOOST0

LED_A_N2#/PRTSWP2

LED_B_N2#/BOOST1

LED_A_N3#/PRTSWP3

LED_B_N3#/GANG_EN

LED_A_N4#/PRTSWP4

LED_B_N4#

LED_A_N5#/PRTSWP5

LED_B_N5#

PRTPWR_6

LED_A_N6#/PRTSWP6

LED_B_N6#

OCS_N5#

OCS_N6#

PRTPWR_7

LED_A_N7#/PRTSWP7

LED_B_N7#

OCS_N7#

USBDM_DN6/PRT_DIS_M6

USBDP_DN6/PRT_DIS_P6

USBDM_DN7/PRT_DIS_M7

USBDP_DN7/PRT_DIS_P7

VDD33_52

VDD33_57

VDD33_64

TEST

GND_PAD

Power

Upstream

Downstream1

Downstream2

Downstream3

Downstream4

EEPROM/Config

Downstream5

Downstream6

Downstream7

Misc

V_1V8

0402

DNI

R374.7KOhm

21

TI SN74LVC1T45

SC70-6

U17

2

4

6

5

3

1VCCA

A

DIR

VCCB

B

GND

100nFC187

16V 2

1

V_3V3

4.7KOhm

R380402

2 1

R1710Ohm

0402

DNI

21

DNI

0402R172

0Ohm

21

4.7KOhm

0402R392 1

V_3V3

10KOhm

0402

DNI

R250

21

04

02

10KOhmR251

DNI

21

04

02

10KOhmR252

DNI

21

0402R253

10KOhmDNI

21

0402R254

10KOhmDNI

21

10KOhmR255

0402

DNI

21

100nFC124

25V 2

1

16V

C188100nF

2

1

V_3V3

100nFC125

25V 2

1

10V4.7uFC201

2

1C128

25V100nF

2

1C129

100nF25V 2

1

100nF25V

C130

2

1C131

25V100nF

2

1

100nF25V

C132

2

1

10V

4.7uFC202

2

1

MOD

MOD

4.7KOhmDNI0

402

R40

21

R62

0402

1KOhm

21

V_3V3 V_3V3

R41

04

02

4.7KOhm

21

R63

DNI0402

1KOhm

21

V_3V3

0402

1KOhmR64

21

R424.7KOhm

DNI04

02

21

V_3V3

Atmel AT24HC02

SOIC8

U14

DNI

8

7

6

5

43

2

1A0

A1

A2 GND

SDA

SCL

WP

VCC

C126

25V100nF

DNI2

1

DNI10KOhm0

402 R256

21

V_3V3

USBHUB5_DN_MPCIe1_P

USBHUB5_DN_MPCIe1_N

HUB_RESET#

HUB_RESET#

USB1_DP_HUB

USB1_DN_HUB

OCS_1

USBHUB6_DN_IO2_P

USBHUB1_DN_IO1_N

USBHUB1_DN_IO1_P

USBHUB6_PRTPWR_IO2

USBHUB1_PRTPWR_IO1

USBHUB6_DN_IO2_N

USBHUB5_PRTPWR_MPCIe1

USBHUB4_DN_MPCIe0_N

USB_RBIAS

USBHUB4_PRTPWR_MPCIe0

OCS_5

OCS_7

OCS_6

CFG_SEL2

OCS_4

XTALIN

RESET_OUT#

NON_REM0

USBHUB_ID_A2

USBHUB_ID_A1

USBHUB_ID_A0

VBUS_DET_HUB

USBHUB4_DN_MPCIe0_P

XTALIN2

PLLFILT

CRFILT

SCL_CFG_SEL0

SDA_NON_REM

EEP_WP

I2C_GP_CK_3V3

I2C_GP_DAT_3V3

OCS_2

OCS_3

USBHUB3_DN_TYPEA1_N

USBHUB3_DN_TYPEA1_P

USBHUB2_DN_TYPEA0_P

USBHUB2_DN_TYPEA0_N

USBHUB2_PRTPWR_TYPEA0

USBHUB3_PRTPWR_TYPEA1

CFG_SEL1

Page 71: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 71 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 46 USB Hub (2 of 2)

THT

TE 5787617-1J4

2PORT

S4

S3

S2

S1

B4

B3

B2

B1

A4

A3

A2

A1VCCA

USBA_N

USBA_P

GNDA

VCCB

USBB_N

USBB_P

GNDB

S1

S2

S3

S4

FB8TDK ACM2012-900-2P-T002

190mOhm

1 4

32

190mOhm

TDK ACM2012-900-2P-T002FB9

1 4

32

SOT23

D3

TI TPD2E009

3

12

TI TPD2E009

D2

SOT23 3

12

V_3V3

R44

0402

4.7KOhm

21

R43

0402

4.7KOhm

21

100nF25V

C135

2

1

100nFC134

25V 2

1

25V100nF

C133

2

1

47uF16V

C206

2

1

16V47uFC205

2

1

SO8

U19TI TPS2052B

5

6

7

8

4

3

2

1GND

IN

EN1

EN2

OC1#

OUT1

OUT2

OC2#

V_5V0

1.7A

1050-8120

50mOhm

L12

21

50mOhm1.7A

1050-8120

L1121

USBHUB2_DN_TYPEA0_CONN_N

USBHUB2_DN_TYPEA0_CONN_P

USBHUB3_DN_TYPEA1_CONN_P

USBHUB3_DN_TYPEA1_CONN_N

USBHUB3_VBUS_A1

USBHUB3_VBUS_A1

USBHUB2_VBUS_A0

USBHUB2_VBUS_A0

OCS_2

USBHUB2_VBUS_A0_FB

OCS_3

USBHUB3_VBUS_A1_FB

USBHUB3_DN_TYPEA1_N

USBHUB3_DN_TYPEA1_P

USBHUB2_DN_TYPEA0_P

USBHUB2_DN_TYPEA0_N

USBHUB2_PRTPWR_TYPEA0

USBHUB3_PRTPWR_TYPEA1

Dual Stacked, Type A USB, R/A, TH

Page 72: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 72 of 119 Mar 23, 2017 ©SGeT e.V.

5.2 GBE

5.2.1 GBE Carrier Connector Implementation Example

SMARC Modules include GBE MAC / PHYs but do not include the isolation magnetics. If the SMARC GBE is used, then the Carrier must include GBE compatible magnetics with 1:1 turn ratios. Usually RJ45 jacks with integrated magnetics are used. An example is given in the following figure.

Figure 47 GBE without POE

There are two kinds of 1000Base-T Line Driver implementations. The current mode line drivers pull current from one side of the magnetic. To generate the IEEE-specified five level pulse amplitude modulated (PAM) signals two 50 Ohm termination resistors to center tap voltage are required. They are placed in parallel to the output impedance at line driver side. The magnetic center taps are connected to each other and to the center tap reference voltage. This voltage can be provided by the GBE PHY to the magnetic with the GBE_CTREF pins at the SMARC Module. Voltage mode line driver use series resistors to generate the PAM signal at the magnetic. They are more power efficient, but even more complex. The line driver enables the internal series resistors at the transmit signal pairs.

Page 73: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 73 of 119 Mar 23, 2017 ©SGeT e.V.

For most voltage mode PHYs the center taps at the magnetic can be connected to each other and clamped by separate or combined capacitors. They are not connected to any center tap voltage provided by the PHY. There are some voltage mode PHYs available, that do not allow to combine the center taps, due to different voltage levels at RX and TX pairs. This PHYs do not provide the usage of RJ45 connectors with integrated magnetics. See SMARC Module documentation for selected GBE PHY and line driver version.

Figure 48 GBE separate magnetic for current and voltage mode line driver

Page 74: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 74 of 119 Mar 23, 2017 ©SGeT e.V.

5.2.2 GBE Mag-Jack Connector Recommendations

SMARC GBE Mag-Jack (magnetics integrated into an RJ45 jack housing) should meet the following general characteristics:

The turn ratios should be 1:1

An integrated common mode choke should be included

Termination resistors on the primary side (i.e. the Ethernet cable side) should be included

The secondary side transformer center-taps may be tied together or may be brought out separately. If they are brought out separately, they are tied together on the Carrier PCB.

The secondary side center-taps need to be tied to the SMARC GBE_CTREF voltage, with bypass capacitors connected to GND.

Mag-Jacks (and RJ45 jacks in general) are available in tab-up and tab-down configurations. The pin order on the Mag-Jack reverses between the tab-up and tab-down configurations. One of them may work better for your layout than the other (although since only four pairs are involved, this may not be a major concern). Tab-up is generally more common; tab-down parts do exist; most tab-down parts target low-profile needs in which part of the Mag-Jack connector height is hidden by a Carrier PCB cutout.

Table 7 Recommended Gigabit Ethernet Connectors with Magnetics

Manufacturer

Manufacturer P/N

Description

Bel Fuse L829-1J1T-43 Tab Up, 1:1 turns ratio, 3 LEDs, 0.950” depth

Pulse JK0-0136NL Tab Up, 1:1 turns ratio, 3 LEDs, 1.30” depth

Tyco 1840437-1 Tab Down, 1:1 turns ratio, 3 LEDs, special low profile feature

Wurth 7499111447 Tab Up, 1:1 turns ratio, 4 LED

Note that POE (Power Over Ethernet) capable jacks are slightly different – they have extra pins to bring the POE power into the system. A GBE POE jack may be used in a non-POE system, but not the other way around. A GBE POE example is given later in this Design Guide.

Page 75: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 75 of 119 Mar 23, 2017 ©SGeT e.V.

5.2.3 GBE LEDs

Mag-Jack LED implementations vary widely. There does not seem to be any common standard, so be aware. The SMARC GBE status LED outputs are open drain outputs that are capable of sinking a minimum of 24 mA. They may be connected directly to the cathode of GBE status LEDs as shown in the following figure. Make sure the resistors can handle the expected power dissipation.

Figure 49 GBE LED Current Sink

68 OHM

68 OHM

V_3V3

MAG JACK

Bel Fuse L829-1J1T-43 or similar

GBE_LINK_100#

GBE_LINK_1000#

Direct from

SMARC Module

GRNORG

68 OHM

V_3V3

GBE_ACT#Direct from

SMARC Module

YEL

Page 76: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 76 of 119 Mar 23, 2017 ©SGeT e.V.

Some integrated GBE Mag Jacks have a pair of opposing (cathode to anode) diodes, as shown in the figure below. In this case, Carrier board buffers are recommended, as the SMARC Module status LED lines can sink current but cannot source it.

Figure 50 GBE LED Current Sink / Source

MAG JACK

Bel Fuse 0826-1X1T-GH-F or similar

GBE_LINK_100#

GBE_LINK_1000#

Direct from

SMARC Module

ORGGRN

68 OHM

V_3V3

GBE_ACT#

YEL

V_3V3

V_3V3

V_3V3

Fairchild

NC7SZ125

Fairchild

NC7SZ125

68 OHM

10

K

10

K

Page 77: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 77 of 119 Mar 23, 2017 ©SGeT e.V.

5.2.4 GBE software-defined Pins

The Precision Time Protocol (PTP) (according to IEEE 1588) is used to synchronize clocks throughout a computer network. If it is implemented in the hardware of the Ethernet controller clock accuracy in the sub-microsecond range can be achieved. The Ethernet controller usually has several GPIO pins whereof one can be connected to the GBE_SDP pin. This pin can be used as output and distribute synchronized clocks or trigger impulses. When used as input it can synchronize the internal clock of the controller to external clocks for example from GPS receivers. Such a system could serve as a master clock. These functions depend highly on the used Ethernet controller and wiring – check with your Module vendor.

5.3 PCIe

5.3.1 General

PCI Express (or PCIe) is a scalable, point-to-point serial bus interface commonly used for high speed data exchange between a PCIe host, or root, and a target device. It is scalable in the sense that there may be link widths, per the PCIe specification, that are x1, x2, x4, x8, x16 or x32. SMARC currently calls out x1, x2 and x4 operation. Up to four PCIe x1 links may be implemented on a SMARC Module. There are three generations of PCIe defined, with each successive generation offering a speed increase, per the table below. The PCIe generation that may be supported on a particular SMARC Module is design and SOC dependent.

Table 8 PCIe Data Transfer Rates

PCIe Generation

Link Speed (x1 link)

Encoding / Overhead

Net Data Transfer Rate

1 2.5 GT/s 8b/10b 20% 250 MB/s

2 5.0 GT/s 8b/10b 20% 500 MB/s

3 8.0 GT/s 128b / 130b 1.54% 985 MB/s

PCI Express is defined in a series of documents maintained by the PCI Special Interest Group (www.pci-sig.org). The three most important documents to obtain are the Base Specification, the Card Electromechanical (CEM) Specification (which describes slot cards) and the Mini Card Electromechanical Specification (which describes the small format cards commonly referred to as Mini-PCIe cards). The four possible PCIe links on a SMARC Module are designated with net name prefixes PCIE_A_, PCIE_B_, PCIE_C_ and PCIE_D_. Each of the four has the following signal set (x in the table below designates A, B, C or D).

Table 9 SMARC PCIe Signal Summary

Signal Description Signal Type Notes

PCIE_x_TX+ PCIE_x_TX-

Data out of Module Differential pair Capacitively coupled – on Module

PCIE_x_RX+ PCIE_x_RX-

Data into Module Differential pair Capacitively coupled – off Module

PCIE_x_REFCK+ PCIE_x_REFCK-

Reference clock out of Module

Differential pair No caps needed

PCIE_x_RST# Active low output to reset the PCIE_x device

Single ended

Page 78: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 78 of 119 Mar 23, 2017 ©SGeT e.V.

5.3.2 PCIe x1 Device Down on Carrier

An example of a PCIe x1 “device down” on the Carrier is shown below. Coupling caps on the SMARC PCIe TX and PCIe reference clock pairs are not needed on the Carrier. Coupling caps on the SMARC PCIe RX pair (TX pair from the Carrier PCIe device) are needed. They should be placed close to the Carrier device PCIe TX pins. Use 0402 package 0.2 uF X7R or X5R dielectric discrete ceramic capacitors. Do not use a capacitor array. Place the parts in a way to preserve the symmetry of the differential pair. Usually they are placed close to the Carrier device TX pins to avoid a via transition.

Figure 51 Interfacing a PCIe x1 Carrier Board Device

SM

AR

C M

OD

UL

E

PCIE_RX+

PCIE_RX-

PCIE_REFCK+

PCIE_REFCK-

PCIE_RST#

PC

Ie d

evic

e

PCIE_RX+

PCIE_RX-

PCIE_TX+

PCIE_TX-

PCIE_REFCK+

PCIE_REFCK-

PCIE_RST#

PCIE_TX+

PCIE_TX-

Page 79: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 79 of 119 Mar 23, 2017 ©SGeT e.V.

5.3.3 Mini-PCIe

A SMARC Mini-PCIe implementation example is shown below. Mini-PCIe cards are defined to have pins for PCIe x1 and also a USB interface. A given card generally uses only one or the other. If you know exactly what Mini-PCIe card you plan to use, it is possible to omit either USB or PCIe. Generally, Mini-PCIe 802.11 WiFi cards use the PCIe interface and cellular modem cards use the USB interface.

Figure 52 Mini-PCIe Slot

4

3

2

1

J19

ST

Molex 47023-0001

6/2x3/2.54

6

5VCC

RESET

CLK

GND

VPP

IO

100nFC12

25V2

1

25V

C13100nF

2

1

MOD

C14

25V100nF

2

1

C15100nF25V

2

1

25V100nFC16

2

1

25V

C17100nF

2

1

V_3V3

DNI4.7KOhm

0402R2

2 1

25V100nFC18

2

1 C19100nF25V

2

1

V_3V3

DNIR95

0402

0Ohm2 1

MOD

MOD

MOD

MOD

Molex 67910-0002

52/1/2x26/0.80

J20

RA

S2S1

52

50

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

51

49

47

45

43

41

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1WAKE#

COEX1

COEX2

CLKREQ#

GND9

REFCLK-

REFCLK+

GND15

RSVD17

RSVD19

GND21

PERN0

PERP0

GND27

GND29

PETN0

PETP0

GND35

GND37

3.3V_AUX_39

3.3V_AUX_41

GND43

RSVD45

RSVD47

RSVD49

RSVD51

3.3V_AUX_2

GND4

1.5V_6

UIM_PWR

UIM_DATA

UIM_CLK

UIM_RST

UIM_VPP

GND18

W_DISABLE#

PERST#

3.3V_AUX_24

GND26

1.5V_28

SMB_CLK

SMB_DATA

GND34

USB_D-

USB_D+

GND40

LED_WWAN#

LED_WLAN#

LED_WPAN#

1.5V_48

GND50

3.3V_AUX_52

S1 S2

6.3V22uFC232

2

1

6.3V

C23322uF

2

1

6.3V

C23422uF

2

1

6.3V

C23522uF

2

1

V_1V5

MOD

MOD

J22

ST

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latchJ23

ST

DNI

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latch

22uFC236

6.3V2

1

V_3V3

MOD

10uF

2

1

25V

C237C20100nF

25V 2

125V100nFC21

2

1

25V

C23810uF

2

1

PCIE_A_RX_P

PCIE_A_RX_N

PCIE_A_TX_P

PCIE_A_TX_N

PCIE_A_REFCK_N

PCIE_A_REFCK_P

USBHUB5_DN_MPCIe1_P

USBHUB5_DN_MPCIe1_N

PCIE_A_RST#

PCIE_A_CKREQ#

I 2C_PM_CK_3V3

I2C_PM_DAT_3V3

V_SIM_PWR

V_SIM_PWR

PCIE_WAKE#

V_SIM_VPP

V_SIM_VPPSIM_RST

SIM_RST

SIM_DATA

SIM_DATA

SIM_CLK

SIM_CLK

Full Mini card Latch Half Mini card Latch

From USB Hub

Level translated I2C_PM bus

Mini-PCIe, R/A, SMT

SIM Card Holder, ST, SMT

Page 80: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 80 of 119 Mar 23, 2017 ©SGeT e.V.

5.3.4 PCIe Reference Clock buffer

The SMARC 2.0 Specification calls for three copies of the PCIe reference clock pairs to be brought out of the Module. This clock is a 100MHz differential pair and is sometimes known as a "hint" clock. The clock allows the PLL in the target PCIe device to lock faster onto the embedded clock in the PCIe bit stream. If the Carrier Board implements only three PCIe devices or slots, then the PCIe reference clock pairs from the Module may be routed directly to that devices or slots. However, if there are four PCIe devices or slots on the Carrier Board, then one of the Module's PCIe reference clock should be buffered. A device which meets the jitter requirements for the intended PCI Express generation must be used. The IDT9DB233, IDT9DB433, IDT9DB844 have two, four and eight differential output replicas of the input clock, respectively. Each target device (PCIe "device down" chip, slot, Express Card slot, Mini-PCIe device, M.2 device, PEG slot) should get an individual copy of the reference clock. Similar parts may be available from other vendors. The PCIe Clock buffers have both PLL and bypass modes. In some situations it is preferable to operate the clock buffer in bypass mode. The reference clock pairs should be routed as directly as possible from source to destination. The following notes apply to Figure 53 PCIe Clock buffer. Each clock pair is routed point to point to each connector or end device using differential signal routing rules. Each clock output pair in the example shown is terminated close to the IDT9DB433 buffer pins with a series resistor (shown as 33 ohms) and a termination to GND (shown as 49.9 ohms), per the vendor's recommendations. Other vendors may have different recommendations, particularly in regard to the source termination to GND. SMBUS software can enable or disable clock-buffer outputs. So the SMBUS pins of the clock buffer should be connected to the I2C_PM pins of the SMARC Module. Configuration resistors or alternatively the SMBUS also allow software to put the clock buffer into "Bypass Mode", which experience has shown is needed in some Carrier situations. Disable unused outputs to reduce emissions. The CLKREQ0# and CLKREQ1# should be pulled low to enable the corresponding clock buffer outputs. For applications in which power management is not a concern, these inputs may be tied low to permanently enable the outputs. SMBCLK and SMBDAT need to be connected to a 3.3V I2C bus as described in chapter 4.2.2.

Figure 53 PCIe Clock buffer

OPEN

SMBus Addres selection

Assembled part Address

R6

R5 + R6

R5

DA/DB

DC/DDD8/D9

OPEN

PLL Operating mode selection

R7 + R8

R8

ModeAssembled part

PLL 100M Lo BW

PLL 100M Hi BW

Bypass

R7

V_3V3

V_3V3

V_3V3

V_3V3

V_3V3 V_3V3

V_3V3 V_3V3

PCIE_CLK_REQ1#

PCIE_CLK_6+PCIE_CLK_6-

PCIE_CLK_1+PCIE_CLK_1-

PCIE_CLK_REQ6#

MODPCIE_A_REFCK_P

MODPCIE_A_REFCK_N

I2C_PM_SCL_3V3

I2C_PM_DAT_3V3

C310uF

C610n

C2100n

R147K

R7

10K

R6

10K

FB1

120-Ohms@100MHz

R1749.9

FB3

120-Ohms@100MHz

R13475

R5

10K

FB2

120-Ohms@100MHz

R347K

R1649.9

R12 33R11 33

R1549.9

R1449.9

R10 33R9 33

DIFFERENTIAL

CLOCK BUFFER

IDT9DB433U1

VDD5

VDD11

VDD16

VDD18

VDDA28

SRC_IN2

SRC_IN#3

SMBCLK13

SMBDAT14

IREF26

GNDA27

GND15GND4

DIF_623

DIF_16

DIF_1#7

BYP#_HIBW_LOBW12

OE1#8

PD#25

VDD24

VDDR1

DIF_29

DIF_2#10

DIF_520

DIF_5#19

DIF_6#22

OE6#21

SMB_ADR_TRI17

C510n

R247K

C4100n

C110uF

R8

10K

C710uF

Page 81: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 81 of 119 Mar 23, 2017 ©SGeT e.V.

5.4 SATA

5.4.1 General

Serial ATA (or SATA) is a high speed point to point serial interface that connects a host system to a mass storage device such as rotating hard drive, solid state drive or an optical drive. Data and clock are serialized onto a single outbound differential pair and a single inbound pair. Data link rates of 1.5, 3.0 and 6.0 Gbps are defined by the SATA specification. A SATA link is AC coupled, but the coupling capacitors are defined in the SMARC specification to be on the Module, for both SATA transmit and receive pairs.

Table 10 SATA SSD Form Factors

Format Notes

IC (chip level) Smallest form factor. Densities to 64GB.

mSATA MO-300

Small form factor SATA module, defined in the SATA specification (search for “mSATA” in the specification). SLC and MLC versions are generally available. The mSATA form factor is roughly 30mm x 51mm x 3.5mm (see the specification for exact dimensions).

Slim SATA MO-297

Small form factor solid-state SATA modules that use a standard SATA connector (7 pin data / GND section and 15 pin power section). The connector is compatible with the connector used on larger format (2.5”) hard drives used in PC systems. Available in SLC and MLC versions. Form factor is defined by JEDEC MO-297.

CFast Removable card format with SSD interface; similar to popular Compact Flash (parallel interface) cards. Form factor is roughly 36mmx 43mm x 3.6mm.

SSD 1.8” Solid State Disk in traditional 1.8” format that was originally used for rotating drives

SSD 2.5” Solid State Disk in traditional 2.5” format that was originally used for rotating drives

Table 11 SATA SSD Vendors

Vendor Link SATA Products

Greenliant www.greenliant.com Chip-level SLC and MLC NAND flash with SATA interface.

Innodisk www.innodisk.com mSATA / MO-300 Slim SATA / MO-297 CFast SSD 2.5”

Intel www.intel.com mSATA / MO-300 SSD 1.8” SSD 2.5”

SMART Modular www.smartm.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Swissbit www.swissbit.com mSATA / MO-300 Slim SATA / MO-297 CFast SSD 1.8” SSD 2.5”

Transcend www.transcend-info.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Virtium www.virtium.com mSATA / MO-300 Slim SATA / MO-297 SSD 1.8” SSD 2.5”

Page 82: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 82 of 119 Mar 23, 2017 ©SGeT e.V.

5.4.2 mSATA / MO-300

A popular SATA form factor for SMARC systems is the mSATA / JEDEC MO-300. This is physically the same as a mini-PCIe card, and uses the same Carrier socket, but the mini-PCIe pinout is re-purposed for SATA use. A schematic example is shown below. The pin names within the J21 connector box outline below are the mini-PCIe pin names. The net connections outside the box show the appropriate connections for mSATA / MO-300 SATA use. Coupling capacitors are not needed on the Carrier SATA TX and RX pairs. mSATA / MO-300 SATA is described in the Serial ATA Revision 3.1 specification document – search for “mSATA”.

Figure 54 mSATA / MO-300

According to the mSATA specification SATA_RX_P (positive signal) has to be connected to Pin 23 of the Mini-PCIe socket although this is used as a negative signal with PCIe. The same applies to SATA_RX_N and Pin 25 vice versa. Nevertheless SATA_TX_N and SATA_TX_P use the right polarity of the socket (Pin 31 and 33).

5.5 M.2

The M.2 form factor is a specification for mobile expansion cards and is supposed to replace the Mini PCIe cards and mSATA cards. The M.2 is a smaller form factor in both size and volume. It is a family of form factors that will enable expansion, contraction, and higher integration of functions onto a single form factor module solution. PCIe, SATA, USB 3.0 and SDIO are provided through the M.2 connector. It is up to the manufacturer of the M.2 host or device to select which interfaces are to be supported. The M.2 connector has different

MOD

R266

0402

100O

hm

21

D9

LTST-C190KGKT

12

MOD

V_3V3

100nFC22

25V2

1

25V100nFC23

2

1C24

25V100nF

2

1

100nFC25

25V2

1

100nF25V

C26

2

1

TP_SMD_35

TP1

52/1/2x26/0.80

Molex 67910-0002

J21

RA

S2S1

52

50

48

46

44

42

40

38

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

51

49

47

45

43

41

39

37

35

33

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1WAKE#

COEX1

COEX2

CLKREQ#

GND9

REFCLK-

REFCLK+

GND15

RSVD17

RSVD19

GND21

PERN0

PERP0

GND27

GND29

PETN0

PETP0

GND35

GND37

3.3V_AUX_39

3.3V_AUX_41

GND43

RSVD45

RSVD47

RSVD49

RSVD51

3.3V_AUX_2

GND4

1.5V_6

UIM_PWR

UIM_DATA

UIM_CLK

UIM_RST

UIM_VPP

GND18

W_DISABLE#

PERST#

3.3V_AUX_24

GND26

1.5V_28

SMB_CLK

SMB_DATA

GND34

USB_D-

USB_D+

GND40

LED_WWAN#

LED_WLAN#

LED_WPAN#

1.5V_48

GND50

3.3V_AUX_52

S1 S2

V_1V5

V_3V3

25V

C27100nF

2

1

25V

C28100nF

2

1

100nFC29

25V2

1

MOD

MOD

ST2/2x1/24.2

J24

S4S3

S2S1

S1 S2

S3 S4

Mini_PCIE_latch

MOD

SATA_TX_P

SATA_RX_P

SATA_RX_N

SATA_TX_N

SATA_ACT#

SATA_PRSNT_DET

Mini-PCIe, R/A, SMT

Page 83: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 83 of 119 Mar 23, 2017 ©SGeT e.V.

keying notches that denote various purposes and capabilities of M.2 hosts and modules, preventing plugging of M.2 modules into feature-incompatible host connectors. M.2 cards are available in various physical sizes, starting from 2230 wireless cards, up to 22110 SSDs. Carrier Board designers must provide a stand-off for each physical card size they would like to support. The module stand-off should be directly connected to Carrier board’s GND, as it is part of the M.2 Electrical and Thermal Ground Path.

5.5.1 B keying

M.2 Key B sockets support a wide range of add on cards, like SSDs, GPS and WiFi devices. Some high-speed interfaces like SATA and PCIe share the same pins at the M.2 Key B connector. The desired interface configuration can be decoded by CONFIG_[0-3] which are either tied to GND or left floating by the M.2 card. At the time of writing, a majority of medium-speed (SATA) SSDs implement dual-keying which allows to plug them into Key B and Key M sockets. High-End SSDs often come in a Key-M only format, as they rely on a PCIe x4 link.

Figure 55 M.2 Key B

M.2 Socket 2: Key B

10V10V16V16V

M3x0.5 Tapped2.45mm Shoulder HeightSMT

connector height: 4.2mm

16V16V

DNI

DNI

DNI

DNI

DNI

16V16V16V16V16V 16V

16V

16V

USB4-

USB4+USB4+_M2USB4-_M2

PCIE_A_REFCK+PCIE_A_REFCK-

PCIE_A_RST#

PCIE_WAKE#

I2C_GP_CKI2C_GP_DAT

I2C_ALERT#_M2GPIO8

M2_CONFIG0M2_CONFIG1M2_CONFIG2M2_CONFIG3

PCIE_A_TX+PCIE_A_TX-

SATA_TX+SATA_TX-

PCIE_A_RX+PCIE_A_RX-

SATA_RX-SATA_RX+

M2_PWROFF#

PCIE_A_RX+/SATA_RX-PCIE_A_RX-/SATA_RX+

PCIE_A_TX-/SATA_TX-PCIE_A_TX+/SATA_TX+

PCIE_A_RX+/SATA_RX-PCIE_A_RX-/SATA_RX+

PCIE_A_TX-/SATA_TX-PCIE_A_TX+/SATA_TX+

PCIE_B_TX+PCIE_B_TX-

USB2_SSTX+USB2_SSTX-

PCIE_B_RX+PCIE_B_RX-

USB2_SSRX+USB2_SSRX-

PCIE_B_RX+/USB2_SSRX+PCIE_B_RX-/USB2_SSRX-

PCIE_B_TX-/USB2_SSTX-PCIE_B_TX+/USB2_SSTX+

PCIE_B_RX+/USB2_SSRX+PCIE_B_RX-/USB2_SSRX-

PCIE_B_TX-/USB2_SSTX-PCIE_B_TX+/USB2_SSTX+

M2_CONFIG0 M2_CONFIG1 M2_CONFIG2 M2_CONFIG3

SATA_SEL

SATA_SEL

M2_CONFIG0

M2_CONFIG3

M2_CONFIG3#M2_SSIC

M2_SSIC

M2_CONFIG3

M2_CONFIG0

M2_CONFIG0#M2_USB3

M2_USB3

RESET_OUT#

M2_DEVSLP

M2_UIM_PWRM2_UIM_DATM2_UIM_CLKM2_UIM_RST

M2_UIM_PWR

UIM_VPP

M2_UIM_RST

M2_UIM_CLK

M2_UIM_DAT

I2C_CLK_M2I2C_DAT_M2

I2S2_CK M2_I2S_CKM2_I2S_SDII2S2_SDI

I2S2_SDO M2_I2S_SDOI2S2_LRCK M2_I2S_LRCK

V_3V3

V_3V3

V_3V3V_3V3

V_3V3 V_3V3 V_3V3 V_3V3

V_3V3

V_3V3 V_3V3

V_3V3 V_3V3

V_1V8

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

T1BDiodes BSS138DW-7-F

5

43

M2

STANDOFF

1

U4

Fairchild NC7SZ08

12

43

5

0402R184 0Ohm

C168100nF

C171100nF

0402R169 10kOhm

C162100nF

C163100nF

C16510nF

U1

NXP CBTL02043A

A0_P3

A0_N4

A1_P7

A1_N8

B0_P19

B0_N18

B1_P17

B1_N16

C0_P15

C0_N14

C1_P13

C1_N12

SEL9

XSD2

VD

D6

VD

D10

VD

D1

GN

D5

GN

D11

GN

D20

HP

AD

21

0402R187 0Ohm

C173100nF

C169100nF

0402R162 0Ohm

U2

NXP CBTL02043A

A0_P3

A0_N4

A1_P7

A1_N8

B0_P19

B0_N18

B1_P17

B1_N16

C0_P15

C0_N14

C1_P13

C1_N12

SEL9

XSD2

VD

D6

VD

D10

VD

D1

GN

D5

GN

D11

GN

D20

HP

AD

21

T1ADiodes BSS138DW-7-F

2

16

0402

R179

10kOhm

0402R188 0Ohm

C174100nF

C172100nF

0402

R178

10kOhm

0402R186 0Ohm

0402R191 0Ohm

C16010uF

T2BDiodes BSS138DW-7-F

5

43

FB15TDK ACM2012-900-2P-T002

1

4 3

2

0402R192 10kOhm

T3ADiodes BSS138DW-7-F

2

16

C167100nF

C166100nF

0402

R175

10kOhm

T2ADiodes BSS138DW-7-F

2

16

C170100nF

0402

R183

10kOhm

0402

R180

10kOhm

M.2 Slot B

Platform Pinout

X1

TE Connectivity 2199230-5

CONFIG_31

VCC_3p32

GND3

VCC_3p34

GND5

FULL_CARD_PWROFF#_1p8/3p36

USB_D+7

W_DISABLE_1#_3p38

USB_D-9

GPIO9_(LED1#/DAS_DSS#)_3p310

GND11

GPIO5_(AUDIO0/RFU)_1p820

CONFIG_021

GPIO6_(AUDIO1/RFU)_1p822

GPIO11_(WoWWAN#)_1p823

GPIO7_(AUDIO2/RFU)_1p824

DPR_1p825

GPIO10_(W_DISABLE_2#)_1p826

GND27

GPIO8_(AUDIO3/RFU)_1p828

PERn1/USB30_RX-/SSIC_RX-29

UIM_RESET30

PERp1/USB30_RX+/SSIC_RX+31

UIM_CLK32

GND33

UIM_DATA34

PETn1/USB30_TX-/SSIC_TX-35

UIM_PWR36

PETp1/USB30_TX+/SSIC_TX+37

DEVSLP_3p338 GND

39

GPIO0_(GNSS_SCL/SIM_DET2)_1p840

PERn0/SATA_B+41

GPIO1_(GNSS_SDA/UIM_DAT2)_1p842

PERp0/SATA_B-43

GPIO2_(GNSS_IRQ/UIM_CLK2)_1p844

GND45

GPIO3_(SYSCLK/GNSS_0/UIM_RST2)_1p846

PETn0/SATA_A-47

GPIO4_(TX_BLK/GNSS_1/UIM_PWR2)_1p848

PETp0/SATA_A+49

PERST#_3p350

GND51

CLKREQ#_3p352

REFCLKn53

PEWAKE#_3p354

REFCLKp55

MFG_DAT56

GND57

MFG_CLK58

ANTCTL0_1p859

COEX3_1p860

ANTCTL1_1p861

COEX2_1p862

ANTCTL2_1p863

COEX1_1p864

ANTCTL3_1p865

SIM_DETECT_1p866

RESET#_1p867

SUSCLK_3p368

CONFIG_169

VCC_3p370

GND71

VCC_3p372

GND73

VCC_3p374

CONFIG_275

H176

H277

0402

R181

10kOhm

0402

R1850Ohm

0402

R182

10kOhm

0402R189 22Ohm

T3BDiodes BSS138DW-7-F

5

43

0402R190 0Ohm

U3

Fairchild NC7SZ08

12

43

5

X2

Molex 788000001

VCCC1

RESETC2

I/OC7

GNDC5

VPPC6

CLKC3

SH3SH3SH2SH2SH1SH1

SH4SH4

C16410nF

C16110uF

Page 84: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 84 of 119 Mar 23, 2017 ©SGeT e.V.

5.5.2 M keying

M.2 Key M is intended for use with SSD Cards. The connection can either be done by PCIe x4 or a single SATA lane. In this example schematic both PCIe and SATA is connected to the M.2 socket according to the M.2 specification. The M.2 SSD decides with configuration pins, which interface should be used for this regarding SSD. It is recommended to check with your SMARC Module vendor if PCIe x4 is supported by the used SMARC Module, if PCIe x4 SSD will be connected. Other PCIe devices could only be used if a PCIe bridge is implemented on the Carrier board. Both used interfaces by the M.2 SSD and the SMARC Module must match.

Figure 56 M.2 Key M

5.5.3 E keying

M.2 Key E is intended for use with Wireless Connectivity cards, which are WiFi / Bluetooth cards in most of the cases. WiFi is utilizing either PCIe or SDIO connection to the host system. It is recommended to check with your SMARC Module vendor if SDIO could be used for WiFi devices as well. USB or UART+I2S are used to connect the Bluetooth Interface IC to the Host system. NFC capable add-in cards may also require an I2C connection. Please be aware that the I/O voltage of I2C was changed from 3.3V to 1.8V per ECN after the official M.2 specification release.

Q63

QBSS138W

2

1

3

A0-

GND_4

A1-

VDD_8

SEL

VDD_5

A1+

A0+

VDD_13

GND_14

GND_17

VDD_18

GND_19

A3+

A3-

A2-

C3+

C2-

B3+

B2-

B2+

C2+

B3-

C3-

C0-

C0+

B0-

B0+

GND_39

B1-

B1+

C1+

GND_1

A2+

GND_21

C1-

VDD_40

VDD_30

VDD_20

GND_10

GND_41

VDD_42

TH_PAD43

42

41

10

1

27

20

30

40

31

21

11

U27

28

29

25

5

6

2

26

13

14

UPI3PCIE3412

17

18

19

15

9

16

4

8

7

3

32

22

33

34

37

12

23

38

39

35

36

24

V_1V5

NC_36

DEVSLP

3V3_2

3V3_4

NC_6

NC_8

DAS/DSS#/LED1#

3V3_12

3V3_14

3V3_16

3V3_18

NC_20

NC_22

NC_24

NC_26

NC_28

NC_30

UART_RXD

NC_34

NC_40

NC_42

NC_44

NC_46

NC_48

PERST#

CLKREQ#

GND_1

GND_3

PER3_N

PER3_P

GND_9

PET3_N

PET3_P

GND_15

PER2_N

PER2_P

GND_21

PET2_N

PET2_P

GND_27

PER1_N

PER1_P

GND_33

PET1_N

PET1_P

GND_39

PER0_N/SATA_B+

PER0_P/SATA_B-

GND_45

PET0_N/SATA_A-

PET0_P/SATA_A+

GND_51

CONNECTOR_KEY_64

CONNECTOR_KEY_60

3V3_72

SUSCLK

NC_58

PEWAKE#

3V3_74

3V3_70

CONNECTOR_KEY_66

CONNECTOR_KEY_62

NC_56

GND_71

PEDET

CONNECTOR_KEY_63

CONNECTOR_KEY_59

REFCLK_N

GND_7575

GND_73

CONNECTOR_KEY_65

CONNECTOR_KEY_61

GND_57

REFCLK_P

NC_67

30

32

34

74

35

40

42

6

70

37

66

39

7

62

9

56

41

8

10

12

14

44

16

46

43

18

20

48

22

24

11

26

45

28

61

71

69

63

47

59

13

15

17

19

50

31

2

4

38

21

72

68

57

36

52

1

55

33

67

49

51

58

J34

64

53

73

65

JM2MINI_M-KEY

23

5

25

54

3

27

60

29

C10U

S0

5V

16_X

7R

10u

C385

R1%0R0S02R456

R453

R1%

10K

0S

02

R454

DN

I

R1%

10K

0S

02

R1%

10K

0S

02

R484

R1%

10K

0S

02

R460

R1%

10K

0S

02

R482

R1%

10K

0S

02

R483

R455R1%0R0S02

C411

10u

C10U

S05V

16_X

7R

C412

C10U

S05V

16_X

7R

10u

V_3V3

V_3V3_M2

V_3V3_M2

V_3V3_M2

V_3V3_M2

10u

C10U

S05V

16_

X7R

C380

R179R1%0R0S02

0R

R181R1%0R0S02

0R

R180R1%0R0S02

0R

R182R1%0R0S02

0R

RESET_OUT#

PCIE_A_REFCK_P

PCIE_A_REFCK_N

PCIE_A_RX_P

PCIE_A_RX_N

PCIE_B_RX_P

PCIE_B_RX_N

PCIE_C_RX_P

PCIE_D_RX_P

PCIE_D_RX_N

PCIE_A_TX_P

PCIE_A_TX_N

PCIE_B_TX_P

PCIE_B_TX_N

PCIE_C_TX_P

PCIE_C_TX_N

PCIE_D_TX_P

PCIE_D_TX_N-

SATA_TX_P

SATA_TX_N

SATA_RX_P

SATA_RX_N

PCIE_C_RX_N

SSD_DEEP_SLEEP

M2_CONFIG_1

M2_CONFIG_1

M2_CONFIG_2

M2_CONFIG_2

M2_CONFIG_3

M2_CONFIG_3

EN_M2_SATA_PCIE#

EN_M2_SATA_PCIE#

SATA_SW_PCIE_RX_P

SATA_SW_PCIE_RX_P

SATA_SW_PCIE_RX_N

SATA_SW_PCIE_RX_N

SATA_SW_PCIE_TX_P

SATA_SW_PCIE_TX_P

SATA_SW_PCIE_TX_N

SATA_SW_PCIE_TX_N

SATA_RX_C_N

SATA_RX_C_P

SATA_TX_C_N

SATA_TX_C_P

PCIE_A_TX_C_P

PCIE_A_TX_C_N

CLKREQ_M2#

Mounting holes for M.2

HIGH : SATA

LOW : PCIE

1 A

7

7

7

7

7

7

R4980RR1%0R0S02

C370 10n C10NS02

C368 10n C10NS02C367 10n

C10NS02

C369 10n C10NS02

DR8 DR9

DR10 DR11

C374

100n

C100N

S02V

50_X

7R

C366 100n C100NS02V50_X7R C365 100n

C100NS02V50_X7R

C406

100n

C100N

S02V

50_X

7R

C405

100n

C100N

S02V

50_X

7R

C394 10n C10NS02

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

Page 85: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 85 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 57 M.2 Key E

M.2 Socket 1: Key E

10V10V16V16V

M3x0.5 Tapped2.45mm Shoulder HeightSMT

connector height: 4.2mm

16V16V

DNI

16V16V 16V16V

DNI

USB4-

USB4+USB4+_M2USB4-_M2

PCIE_B_RX+PCIE_B_RX-

PCIE_B_TX+PCIE_B_TX-

PCIE_B_REFCK+PCIE_B_REFCK-

PCIE_B_RST#

PCIE_WAKE#

M2_LED1_WIFIM2_LED2_BT

SER2_TX

SER2_RTS#SER2_RX

SER2_CTS#PCIE_WAKE# UART_WAKE#

I2S2_CK

I2S2_SDO

I2S2_LRCKI2S2_SDI I2S2_SDI_M2

I2C_GP_CKI2C_GP_DAT

I2C_ALERT#_M2 GPIO8

SDIO_D0SDIO_D1SDIO_D2SDIO_D3

SDIO_D0_1V8SDIO_D1_1V8SDIO_D2_1V8SDIO_D3_1V8

SDIO_D0_1V8SDIO_D1_1V8SDIO_D2_1V8SDIO_D3_1V8

SDIO_CMDSDIO_CK

SDIO_PWR_EN

SDIO_CMD_1V8SDIO_CK_1V8

SDIO_PWR_EN_1V8 SDIO_RST#_1V8

RESET_OUT#

SDIO_RST#_1V8

SDIO_CK_1V8SDIO_CMD_1V8

SDIO_WAKE#_1V8

SDIO_WAKE#_1V8SDIO_WAKE#PCIE_WAKE#

V_3V3

V_3V3

V_3V3 V_1V8 V_3V3 V_1V8

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

M2

STANDOFF

1

C16510nF

C163100nF

M.2 Slot 1 - SDIO Pinout

K ey E

PC

Ie0

SD

IO

I2C

I2S

UA

RT

CO

MM

PC

Ie1

UIM

X11

TE Connectivity 2199230-6

GND1

VCC_3P32

USB_D+3

VCC_3P34

USB_D-5

LED1#_3P3_OD6

GND7

PCM_CLK/I2S_SCK_1P88

SDIO_CLK_1P89

PCM_SYNC/I2S_WS_1P810

SDIO_CMD_1P811

PCM_OUT/I2S_SDO_1P814

SDIO_DAT0_1P813

PCM_IN/I2S_SDI_1P812

SDIO_DAT1_1P815

LED2#_3P3_OD16

SDIO_DAT2_1P817

GND18

SDIO_DAT3_1P819

UART_WAKE#_3P3_OD20

SDIO_WAKE#_1P8_OD21

UART_TXD_1P832

SDIO_RESET#_1P823

UART_RXD_1P822

GND33UART_RTS_1P8

36

PCIE_TX0+35

UART_CTS_1P834

PCIE_TX0-37

VENDOR_DEF138

GND39

VENDOR_DEF240

PCIE_RX0+41

VENDOR_DEF342

PCIE_RX0-43

COEX3_1P844

GND45

COEX2_1P846

PCIE_REFCLK+47

COEX1_1P848

PCIE_REFCLK-49

SUSCLK_3P350

GND51

PERST0#_3P352 CLKREQ0#_3P3_OD53

W_DISABLE2#_3P354

PEWAKE0#_3P3_OD55

W_DISABLE1#_3P356

GND57

I2C_DAT_1P8_OD58

RSVD/PCIE_RX1+65

I2C_CLK_1P8_OD60

RSVD/PCIE_RX1-67

ALERT#_1P8_OD62

GND63RSVD

64

RSVD/PCIE_TX1+59

UIM_SWP/PERST1#66

RSVD/PCIE_TX1-61

UIM_PWR_SNK/CLKREQ1#68

GND69

UIM_PWR_SRC/GPIO1/PEWAKE1#70

RSVD/PCIE_REFCLK1+71

VCC_3P372

RSVD/PCIE_REFCLK1-73

VCC_3P374

GND75

C162100nF

D9DLED0603RED

0402R160 0Ohm

0402R162 0Ohm

0402R158 220Ohm

D11

DBAT54

0402

R164

0Ohm

C169100nF

C16010uF

U1

NXP NTS0104GU12

VCCA1

A12

A23

A34

A45

VCCB11

B110

B29

B38

B47

OE12

GN

D6

FB15TDK ACM2012-900-2P-T002

1

4 3

2

0402R161 22Ohm

C167100nF

C166100nF

U2

NXP NTS0104GU12

VCCA1

A12

A23

A34

A45

VCCB11

B110

B29

B38

B47

OE12

GN

D6

0402R163 0Ohm

D10

DLED0603RED

C16410nF

0402R159 220Ohm

C16110uF

C168100nF

Page 86: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 86 of 119 Mar 23, 2017 ©SGeT e.V.

6 MEMORY CARD INTERFACES

6.1 SD Card

The SD (Secure Digital) Card is a non-volatile memory card format used as mass storage memory in portable devices. The SD standard is maintained by the SD Card Association. SMARC Modules support SD cards over the SMARC SDIO interface. The interface may be used in a 4 bit or 1 bit mode. If used in 1 bit mode, the least significant bit (SDIO0) should be used. Most SMARC Modules offer a SDIO BCT boot and an SDIO OS boot. Since SD cards can (usually) be inserted and removed by the user, it is important to implement ESD protection on all the SD lines.

Figure 58 Micro SD Card Implementation

GND

SDIO_PWR_EN

V_3V3_SDCARD

GND

GND

GND

GND

V_3V3_SDCARD

SDIO_WP

GND

C117

10u

6V

30402

GND

V_3V3

SDIO_D[0]

SDIO_D[2]

SDIO_D[3]

SDIO_CD#

SDIO_CMD

SDIO_CLK

SDIO_D[1]

J9

2

1P1

P2

J11

S1

S2

S4

S3

10

9

1

8

7

6

5 4

3

2CD/DAT3

CMD

V_VDDCLK

VSS

DAT0

DAT1

DAT2

DETECT_SWITCH

DETECT_LEVER

S3

S4

S2

S1

GNDR130

0R

1%

0402

GND

V_3V3

V_3V3

V_3V3

100n

C116

50V

0402

0402

1%

10k

R82

R136

4k7

1%

0402

DN

I

R137

4k7

1%

0402

DN

I

0402

16V

1u

C127

0402

50V

C108

100n

GND

0402

6V

3

10u

C361

GND

V_VCC IO1

IO2

IO3

IO42

5 1

3

4

6

SRV05-4SOT23-6

U70

GND

V_VCCIO1

IO2

IO3

IO42

51

3

4

6

SRV05-4SOT23-6

U71

GND GND

0402

50V

C121

100n

GND

IN

EN1

EN2

GND

OUT1

OUT2

OC2#

OC1#

GND_PAD

2

3

4

1

7

6

5

8

9

TPS2066

U4

GND

R440

10k

1%

0402

NC

NC

SDCARD_OC#

SDCARD_OC#R44110k1% 0402

V_3V3MTP23

R4401% 0402 R450

1% 0402R4601% 0402 R470

1% 0402R4801% 0402 R490

1% 0402

R4801% 0402

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

MOD

Page 87: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 87 of 119 Mar 23, 2017 ©SGeT e.V.

7 CAMERA INTERFACES

7.1 General

The SMARC specification allows for up to two serial (MIPI CSI) cameras to be interfaced to the SMARC Module. The defined CSI0 interface supports up to two differential data lanes (CSI0_D[0:1]+/- signals). CSI1 may be implemented with up to four differential data lanes (CSI1_D[0:3]+/- signals) to support higher resolution cameras. The Module camera interface is at CSI voltage levels.

7.2 Camera Data Interface Formats

There are a wide variety of data formats that are used to convey camera data to a host system. A complete description of these formats is very much beyond the scope of this design guide. Briefly stated, camera data formats may be divided into two groups: “raw” and “processed”. The raw camera data formats need to be adjusted for camera and sensor specific characteristics (non-linearities, sensor pixel quirks, color corrections and so on). Using the raw format requires an additional level of software complexity that is beyond many users. Unless you have a specific need for a particular camera that outputs “raw” sensor data, it is best to stick with cameras that include a processor on the camera module that convert the camera sensor data to a standard format such as RGB or YUV, JPEG or others. The “Bayer” format is one of the numerous raw formats that you may wish to avoid. A variation on the above is that some cameras offer “raw” RGB, meaning that the pixel data is sorted into RGB elements but sensor nonlinearities are not processed in the camera IC.

7.3 Camera Sensors and Camera Module Vendors

Table 12 Camera Sensors

Vendor Link

Aptina www.aptina.com

OmniVision www.ovt.com

Exmor

Table 13 Camera Module Vendors

Vendor Link

Leopard Imaging www.leopardimaging.com

KaiLap kailaptech.com

Chicony www.chicony.com.tw

Truly Opto www.trulyopto.com

Sunny Optical Technology www.sunnyoptical.com/en/

Sharp www.sharp-world.com

e-con Systems www.e-consystems.com/

7.4 Serial Camera Interface Example

The figure below illustrates a CSI implementation on a SMARC Carrier. The OV3640 is a 3.1 Mega-pixel CMOS sensor from OmniVision which supports both serial and parallel camera interfaces. Here, the

Page 88: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 88 of 119 Mar 23, 2017 ©SGeT e.V.

output of the sensor is connected to CSI0 interface of the SMARC Module. I2C_CAM is the control interface used for configuring the sensor. CAM_MCK is the master clock output from the SMARC Module.

Figure 59 Serial Camera Implementation

CSI0_D0_P

CSI0_D0_N

CSI0_D1_P

CSI0_D1_N

CSI0_CK_P

CSI0_CK_N

MIPI CSI

XVCLK

SDA

SCLI2C_CAM_CK

CAM_MCK

I2C_CAM_DAT

GPIO0/CAM0_PWR PWDN

MIPI (2 Lanes)

SM

AR

C M

OD

UL

E

OV

36

40

GPIO2/CAM0_RST RESET_B

1.5V

2.8V

1.8V

7.5 Other Camera Options

SMARC systems have the option of using the dedicated SMARC camera interface pin set. For a dedicated system produced in high volume, this is likely to be the most cost effective option. However, other options exist. USB cameras are becoming very popular. They enjoy good software support and are becoming more and more cost effective as time passes. However, the bandwidth of a HS USB interface (480 Mbps) is less than what is possible with the SMARC CSI camera interfaces.

Page 89: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 89 of 119 Mar 23, 2017 ©SGeT e.V.

8 GPIO

8.1 SMARC Module Native GPIO

SMARC Modules support twelve general purpose I/O pins: GPIO0 to GPIO11. Each of these can be configured as an input or output pin. The SMARC specification recommends the use of GPIO0 to GPIO5 as outputs and the use of GPIO6 to GPIO11, as inputs. SMARC Modules support five dedicated GPIOs (GPIO7 to GPIO11). The other seven GPIOs are multiplexed pins supporting functions like Camera Power Enable, Camera Reset, Tachometer input, PWM output etc. SMARC Modules generally allow the GPIO to be configured to generate an interrupt. SMARC Modules use a GPIO voltage level of 1.8V.

8.2 GPIO Expansion

For a low cost, easy way to implement additional GPIO ports, see Section 4.2.5 I2C Based I/O Expanders.

Page 90: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 90 of 119 Mar 23, 2017 ©SGeT e.V.

9 CARRIER POWER CIRCUITS

9.1 Power Budgeting

One of the early steps in a SMARC Carrier design is to develop a power budget and a strategy for meeting that budget. All the power rails need to be identified and worst-case current consumptions listed. A spread-sheet is usually developed. The power circuits should be designed to meet the worst case numbers, but the actual system power consumption will usually turn out to be quite a bit less than the total indicated by the total worst case numbers for each individual rail. Once there is an understanding of the amount of power required, a plan can be developed for meeting the requirements. A sample power budget sheet is shown in the table below. This example is hypothetical and serves to illustrate the process. This example assumes that the SMARC Module is to be supplied by a fixed 5V DC source. A variable battery power source would result in a different sheet.

Table 14 Hypothetical Power Budget Example – Part 1

12V Current

5V Current

3.3V Current

1.8V Current

1.5V Current

Power Notes

Display Backlight 0.6A 7.2W

USB 2.0A 10.0W 4 devices

USB 3.0 1.8A 9.0W 1 device

SMARC Module 1.2A 6.0W

Mini PCIe Module 1.0A 1.0A 4.8W

Audio Circuits 0.5A 0.1A 2.7W

Misc. Carrier Circuits 0.5A 0.2A 2.0W

Current Subtotals 0.6A 5.5A 1.5A 0.3A 1.0A

Power Totals 7.2W 27.5W 5.0W 0.5W 1.5W 41.7W

The total shown is a worst case value, and power circuits should be designed to handle the worst case. However, experience shows that typical average system power consumptions are significantly less, on the order of 50% of worst case. The total above does not account for power conversion losses. These are added in a later section, when this hypothetical example is continued. Many SMARC Module vendors offer evaluation platforms, and it is worth the time and effort to roughly prototype the target system with available hardware and software. This can validate power estimates and have other benefits, such as allowing performance benchmarks to be carried out before committing to the full system design.

Page 91: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 91 of 119 Mar 23, 2017 ©SGeT e.V.

9.2 Input Power Sources

Table 15 Input Power Source Possibilities

Power Source Voltage Notes

3.3V Fixed 3.3V +/- 5% Possible, but not a common choice, as often there are significant power requirements for USB (5V at up to 500 mA for each external USB 2.0 port) and the display backlight supply (12V at up to 600 mA is common), requiring up (boost) conversion. Some SMARC Modules may not support 3.3V power input.

5V Fixed 5.0V +/- 5% Common choice – allows some of the higher power consuming devices (USB, SMARC Module) to be fed directly without conversion. Other, lower current devices require power conversion.

12V Fixed 12V +/- 5% Allows display backlight to be powered directly, without conversion (if the display backlight accepts 12V). Requires buck conversion of 12V to 5V for Module and for Carrier USB and other functions.

Power “Brick” Various ranges available 6V, 9V, 12V, 14V

Various output levels are available. The voltage regulation from a power brick is often not good, and it is best not to rely on the brick output to feed any circuit that needs to be supplied with a voltage regulated over a relatively tight range. Usually the brick output voltage is down converted and regulated on a Carrier board design.

Battery - Single Level Lithium Ion Cell

3.6V nominal 4.2V fully charged; 3.0V discharged. Most SMARC Modules operate directly from this range (check with your vendor).

Battery – Two Level Lithium Ion Cells

7.2V nominal 8.4V fully charged; 6.0V discharged

Battery – Three Level Lithium Ion Cells

10.8V nominal 12.6V fully charged; 9.0V discharged

Wide Range DC 10V – 30V (Typical)

Wide range input power supply is possible. Note that to handle higher voltages, parts rated for use at the higher voltages must be used.

Power Over Ethernet

48V IEEE802.3af POE standard allows 12.5W load power IEEE802.3at POE standard allows 25.5W load power The POE supply output is transformer isolated from the GBE lines, with 1500V DC isolation. POE supply output voltages are design specific – 24V, 12V and 5V outputs are common.

Automotive 12V nominal

When the engine is off, the supply battery voltage is 12V nominal. During engine cranking, the supply can dip to 6V. When the engine is running, the DC level can be up to about 16V, with a 14.4V level being typical. Transients in excess of +/- 100V are common. A user may disconnect the battery and reconnect it with the polarity reversed. All in all, it’s a harsh environment that needs careful attention. A basic strategy is to have an input network with good transient and reverse polarity protection, and then use a rugged switching supply that can handle an input range from 6V to 24V, and deliver a 5V output to the SMARC Carrier.

Page 92: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 92 of 119 Mar 23, 2017 ©SGeT e.V.

9.3 Power Budgeting, Continued – Fixed 5V Power Source

Once a power budget is in hand, a power architecture can be developed. Let’s assume that the input power source is to be 5V fixed, and the power budget per voltage rail is as per the hypothetical example given in Table 14 Hypothetical Power Budget Example above. Next, one has to decide how to realize the various power rails. Here we assume that switch mode power converters are used to create all rails from the 5V source. The efficiency (or inefficiency) of the power converters must be accounted for, as shown in the following table.

Table 16 Hypothetical Power Budget Example – Part 2

Voltage Rail

Current

Power Derived From

Efficiency Assumption

Power From 5V Input

Current From 5V input rail

12V 0.6A 7.2W 5V (Boost) 90% 8W

5V 5.5A 27.5W 100% 27.5W

3.3V 1.5A 5.0W 5V (Buck) 90% 5.6W

1.8V 0.3A 0.5W 5V (Buck) 90% 0.6W

1.5V 1A 1.5W 5V (Buck) 90% 1.7W

Total 43.4W 8.7A

Other factors can make the process a bit more complex than this example. If some power rails are to be created with linear supplies from a higher voltage rail, for example, then the entire current used by the lower rail needs to be added to the current budget of the higher voltage source rail. If the primary source rail varies (such as from a battery) the extremes of the source rail must be taken into account.

Page 93: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 93 of 119 Mar 23, 2017 ©SGeT e.V.

9.4 Fixed 5V DC Power Input Circuit Example

The power entry connector for this fixed 5V power source example is shown in the figure immediately below. There are two paths, given net names V_MOD_IN and V_CARRIER_IN. Both carry 5V in from a single bench supply. The nets are separated to allow separate current (and power) measurements of the SMARC Module and the Carrier board. If this separate measurement capability is not needed, then the separate entries could be combined into a single net.

Figure 60 5V Input Connector

The following figure illustrates a power switch used to hold off most Carrier board circuits from being powered until the Module asserts the “CARRIER_PWR_ON” signal. Some Carrier circuits, such as those involved in power management and those that are in the “Module Power Domain” as defined by the SMARC specification, may be powered whenever the Module has power, before (and after) the assertions of CARRIER_PWR_ON.

Figure 61 5V Carrier Power Switch

25V

C301100nF

2

1C34722uF25V

2

1

4/1/1x4/4.2THT

J52Molex 39303045

4

3

2

11

2

3

4

V_CARRIER_IN

10V

C357

100uF

2

1

25V

C34822uF

2

1

25V

C302100nF

2

1

V_MOD_IN

100uFC358

10V2

1

4 Pin, 0.4mm Pitch, TH

16V1uF

C363

2

1 C3641uF16V

2

1

V_5V0

100nF25V

C361

2

1C362

25V100nF

2

1

50V220pF

C365

21

TI TPS22965

U54

SON8

9

5

8

7

6

3

2

1

4VBIAS

VIN_1

VIN_2

ON

CT

VOUT_7

VOUT_8

GND

T_PAD

V_CARRIER_IN

MODCARRIER_PWR_ON

Note:Rise Time = 475 us

Page 94: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 94 of 119 Mar 23, 2017 ©SGeT e.V.

The following three figures illustrate buck (or step-down) switching converters that create 3.3V, 1.8V and 1.5V from the V_CARRIER_IN 5V power source. Since the power needs on these rails are modest, integrated switchers with internal power FETs are well suited to the job. They are physically small and robust. The parts shown are from Texas Instruments, although similar parts exist from other vendors. The figures show three separate enables for the three supplies, with net name designations V_3V3_EN, V_1V8_EN and V_1V5_EN. Sources for these nets are not shown. These enable pins should be driven to the “enabled” state when signal CARRIER_PWR_ON is high. They could be driven by CARRIER_PWR_ON, or by V_5V0, or by other Carrier circuitry. If the situation demands aggressive power management, it may be desirable to have Carrier I/O circuits that allow the various enables to be brought low if the power rail is not needed. If this is done, the designer should arrange that the enables do not go high before CARRIER_PWR_ON is high. The LEDs and signal FETs on the right side of the three figures are optional. The LED lights up as a status indicator when the power rail (V_3V3, V_1V8 or V_1V5) is up. The FET prevents leakage from the main power rails (V_MOD_IN and V_CARRIER_IN) when the switchers are powered down. Rail V_MOD_IN_LED ties to V_MOD_IN through a removable jumper. Removing the jumper prevents the LEDs from burning power in standby states (and in all states).

Figure 62 3.3V 2A Buck Converter

Figure 63 1.8V Buck Converter

V_MOD_IN_LED

ROHM RJU003N03T106

UMT3

Q22

3

1

2

V_CARRIER_IN

16V10uFC320

2

1

16V10uFC321

2

1

16V10uFC322

2

1

100Ohm 0402R352

21

LT

ST-C

190K

GK

T

D30

12

16V10uFC323

2

1

16V10uFC324

2

1

TI TPS63020U48

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

1.5uH4.4A

L18 21

25V100nF

C299

2

1

562KOhm

0603 R362

21

100KOhm0402 R349

21

NXP 1N4148

D35

C A

25V100nFC300

2

1

V_3V3

0402

10KOhmR344

21

LED_3V3

PG_3V3

BUCKBOOST_3V3_SYS_L1 BUCKBOOST_3V3_SYS_L2

VINA_3V3SYS_BUCK

DIO_3V3_SYS

DIO_3V3_SYS_RC

V_3V3_EN

Vih >= 1.2VVil <= 0.4V

V_MOD_IN_LED

C32510uF16V 2

1

C32622uF6.3V

2

1

50V

C35233pF

2

1

50V100pFC337

2

1

21

0402 R363

604KOhm

232KOhm0402 R364

21

L19

3A10uH

21

V_1V8

SON10

U49

TI TPS62020

11

9

10

5

7

8

4

6

1

3

2VIN_2

VIN_3

EN

MODE

GND

SW_8

SW_7

FB

PGND_10

PGND_9

TH_PAD

LT

ST-C

190K

GK

T

D31

12

100Ohm 0402R353

21

ROHM RJU003N03T106UMT3

Q28

3

1

2

V_CARRIER_IN

GND

LED_1V8

V_1V8_EN

V_1V8_SW

FB_TPS62020

Page 95: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 95 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 64 1.5V Buck Converter

Many LCD backlights require a 12V power source. If the system power source is a fixed 5V supply, or a battery supply well under 12V, then a boost converter circuit is needed. An example is shown here:

Figure 65 12V Boost Converter for Backlight Power

V_MOD_IN_LED

100Ohm 0402R350

21

LT

ST-C

190K

GK

T

D28

12

L16

9.6A1uH

21

25V100nFC295

2

1

R356

0402

2.67KOhm

21

V_1V5

100pF

C336

2

1

20Ohm0402R355

2 1

50V2.2nF

C34021

R357

0402

4.02KOhm

21

R359

0402

57.6KOhm

21

0402

4.02KOhm

R358

21

100nF25V

C296

2

1

50V2.2nF

C341

21

16V1uFC312

2

1

22uF25V

C342

2

1

25V22uFC343

2

1

25V22uFC344

2

1

25V22uFC345

2

1

22uF25V

C346

2

1

V_3V3

TI TPS53310

U46

QFN16

9

10

3

4

7

6

5

17

16

15

11

12

8

2

1

14

13VIN_13

VIN_14

EN

SYNC

PS

VDD

AGND

PGND_15

PGND_16

TH_PAD

SW_5

SW_6

SW_7

VBST

PGD

FB

COMP

V_CARRIER_IN

ROHM RJU003N03T106UMT3

Q20

3

1

2

LED_1V5

TPS53310_FB

V_1V5_EN

PS_R

PG_1V5

TPS53310_COMP

V_1V5_SW

V_CARRIER_IN

0402

0Ohm

R335

21

DNI0Ohm

R336

0402

21

C3562.7nF50V2

1

TI TPS61087DRC

U51

VSON10

11

10

1

2

7

6

5

4

9

8

3 EN

IN

FREQ

AGND

PGND

SW_6

SW_7

FB

COMP

SS

THERM_PAD

0402

154KOhmR368

21

L21

6.8uH

21

DNI 0402R337

0Ohm

21

R338

0Ohm0402

21

R369

040233.2KOhm

21

25V

C3321uF

2

1C349

25V22uF

2

1

0402 R370

17.8KOhm

21

V_CARRIER_IN

100nF25V

C306

2

1

C327

25V10uF

2

1C32810uF25V

2

1

10uFC329

25V2

1C33010uF25V

2

1

V_12V0

Vishay SS23-E3/52T

D38

12

V_12V_FREQ

V_12V_EN

V_12V_FB

TPS61087_COMP

TPS61087_SS

V_12V_SW

Page 96: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 96 of 119 Mar 23, 2017 ©SGeT e.V.

9.5 Power Hot Swap Controller

Hot swap controller circuits can be used to control the system power supply rise time. This may be desirable when plugging circuits in live to low impedance sources, such as a battery. The figure below illustrates a high-side protection controller circuit using TI LM5060. The N-Channel MOSFET isolates the input supply (V_BRD_IN) from rest of the board (V_HTSWP_OUT). The circuit limits the in-rush current and provides a power good signal once the output voltage reaches the input voltage. An option is provided to enable LM5060 (HTSWAP_EN) from a CPLD as well as using a switch / jumper.

Figure 66 Hot Swap Controller

V_BRD_IN

E-Switch 400MSP1R1BLKM7QESW4

2

3

1

SC70

TI SN74AHC1G00U52

3

5

4

2

1

TI LM5060

U53

MSOP10

6

7

8

9

10

5

3

4

2

1SENSE

VIN

UVLO

OVP

EN

GATE

OUT

nPGD

TIMER

GND

R371

0402

3.6KOhm

21

Q27

D S

G

10Ohm 0402R372

21

6.8KOhm

0402 R373

21

10nF50VDNI

C359

2

1

C36068nF16V 2

1

V_HTSWP_OUT

R3

39

0O

hm

0402

21

R374

0402

7.5KOhm

21

50V

C335100nF

2

1

V_BRD_IN

R375

0402

49.9KOhm

21

10K

Ohm

0402

21

R348

V_3V3_PWRUP

V_3V3_PWRUP

R354

04021KOhm

2 1

0402R340 0Ohm

21

FCI 77311-118-02LF

J50

2/1x2/2.54ST

2

11

2

0402

DNI0OhmR341

21D40

12

C307100nF25V

2

1

C308100nF

25V 2

1

R37647KOhm 0

603

21

R37747KOhm 0

603

21

100nF25V

C309

2

1

V_3V3_PWRUP

100nFC310

25V2

1

100nF50V

C479

2

1

V_3V3_PWRUP

C478

25V22uF

2

1

TI LM9036

U76

SOIC8

7

6

5

1

3

2

4

8VIN

NC_4

GND_2

GND_3

VOUT

NC_5

GND_6

GND_7

D39

12

HTSWP_PGD#

HTSWP_EN

PWR_SWITCH_STATE

HTSWP_EN_HOLD#

3V3 Power Up Supply

UVLO : @ 9.3VOVP : @ 33.5 V

SUM40N10-30-E3Vishay/Siliconix

Note :

Page 97: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 97 of 119 Mar 23, 2017 ©SGeT e.V.

9.6 High Voltage LED Supply

Some LCD panels have multiple sets of series LED strings that are to be driven by a high voltage LED supply. Vendors such as TI and Analog Devices provide the ICs for these supplies. A schematic example using a TI / National high voltage LED supply is given below. The LED brightness can be controlled either using PWM control (if the IC VDDIO pin is set LOW) or by I2C (if VDDIO is HIGH). A level translator needs to be used for signals VSYNC and PWM.

Figure 67 LP8545 LED Backlight Power

ROHM RJU003N03T106

Q23

3

1

2

0Ohm0402

R329

2 10Ohm

0402R330

2 1

21L20

15uH

31.6KOhm

0402R365

21

04

02

10KOhmR345

21

C303100nF25V

2

1

0402 R346

10KOhm

21

V_1V8

V_CARRIER_IN

25V

C304100nF

2

1

0402

10KOhmR347

DNI

21

MOD

V_3V3

0402

R3310Ohm

21

V_1V8

V_31V9_BKLT

MOD10uFC353

50V2

1

U45

TI SN74AVC2T244DQ

1

2 7

6

54

8

3 A2

VCCB

OE# GND

B2

B1A1

VCCA

V_1V8

Vishay SI2305CDS-T1-GE3

Q26

3

2

1

DNIR3320Ohm 210OhmR333DNI

21

C354

10uF50V

21

1uF25V

C331

2

1

10uF50V

C355

2

1

0402

0Ohm

R33421

V_1V8

DiodesInc DFLS230L

D37

CA

50V

C338100pF

2

1

50V

C339100pF

2

1

0603R366

120KOhm

21

25V100nF

C30521

16V1uF

C31321

1KOhm 0402R327

21

R367

0402

470KOhm

21

V_5V0U50National LP8545

25

1

9

15

7

6

22

18

17

16

14

13

12

4

2

11

10

5

3

20

19

8

23

24

21FB

SW

VIN

VDDIO

VSYNC

FILTER

ISET

FSET

SCLK

SDA

PWM

EN

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

VLDO

GD

FAULT

GND_L

GND_S

GND_SW

TH_PAD

I2C_GP_DAT

I2C_GP_CK

LCD_BKLT_EN

LCD_VS

LCD_BKLT_PWM

LCD_VS_3V3

LCD_BKLT_PWM_3V3

BKLT_I2C_SDA_R

BKLT_REF_SEL

BKLT_REF

BUFFER5_OE#

LCD_CA6

LCD_CA5

LCD_CA4

LCD_CA3

BKLT_SW

FSET

LCD_CA2

LCD_CA1

VSYNC

FILTER

BKLT_I2C_SCL_R

ISET

(7-bit format)I2C Address : 0x2C

1 I2C

0 PWM

Logic State Function

Optional

1.25MHz,100mA@33V

Page 98: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 98 of 119 Mar 23, 2017 ©SGeT e.V.

9.7 3.0V to 5.25V Power Input Example

The circuits shown below illustrate buck-boost switching converters that generate 5V and 3.3V from the V_CARRIER_IN power source (3.0V to 5.25V). Since the power needs on these rails are modest, integrated switchers with internal power FETs are well suited to the job. They are physically small and robust. The parts shown are from Texas Instruments, although similar parts exist from other vendors. The figures show separate enables for the 5V and the 3.3V supplies, with net name designations V_5V0_EN and V_3V3_EN. Sources for these nets are not shown. These enable pins should be driven to the “enabled” state when signal CARRIER_PWR_ON is high. They could be driven by CARRIER_PWR_ON, or by V_CARRIER_IN, or by other Carrier circuitry. If the situation demands aggressive power management, it may be desirable to have Carrier I/O circuits that allow the various enables to be brought low if the power rail is not needed. If this is done, the designer should ensure that the enables do not go high before CARRIER_PWR_ON is high.

Figure 68 5V, 2A Buck-Boost Converter

Figure 69 3.3V 2A Buck-Boost Converter

V_MOD_IN_LED

3

1

2

ROHM RJU003N03T106UMT3

Q21

V_CARRIER_IN

C297

25V100nF

2

1C31410uF16V2

1C31510uF16V2

1C31610uF16V2

1C31710uF16V2

1

L17

8.4A3.3uH

21

R360

0402

1.82MEGOhm

21

R343

0402

10KOhm

21

V_5V0

TI TPS63020U47

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

D36

NXP 1N4148

C A

R361

0402

200KOhm

21

C298

25V100nF

2

1

C31810uF16V2

1

R328

0402

0OhmDNI

21

C31910uF16V2

1

100Ohm 0402R351

21

LT

ST-C

190K

GK

T

D29

12

LED_5V0V_5V0_EN

DIO_5V0_SYS

DIO_5V0_SYS_RC

BUCKBOOST_5V0_SYS_L2

PG_5V0

BUCKBOOST_5V0_SYS_L1

VINA_5V0_SYS_BUCK

V_MOD_IN_LED

ROHM RJU003N03T106

UMT3

Q22

3

1

2

V_CARRIER_IN

16V10uFC320

2

1

16V10uFC321

2

1

16V10uFC322

2

1

100Ohm 0402R352

21

LT

ST-C

190K

GK

T

D30

12

16V10uFC323

2

1

16V10uFC324

2

1

TI TPS63020U48

15

14

3

5

4

7

6

2

13

1

11

10

9

8

12EN

L1_8

L1_9

VIN_10

VIN_11

VINA

PS/SYNC

GND

L2_6

L2_7

VOUT_4

VOUT_5

FB

PG

PGND

1.5uH4.4A

L18 21

25V100nF

C299

2

1

562KOhm

0603 R362

21

100KOhm0402 R349

21

NXP 1N4148

D35

C A

25V100nFC300

2

1

V_3V3

0402

10KOhmR344

21

LED_3V3

PG_3V3

BUCKBOOST_3V3_SYS_L1 BUCKBOOST_3V3_SYS_L2

VINA_3V3SYS_BUCK

DIO_3V3_SYS

DIO_3V3_SYS_RC

V_3V3_EN

Vih >= 1.2VVil <= 0.4V

Page 99: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 99 of 119 Mar 23, 2017 ©SGeT e.V.

9.8 12V Input

There are many choices for switching power supply circuits to step a 12V input down to lower voltages for SMARC use. An integrated switcher possibility from TI is shown in the following figure.

Figure 70 12V Step Down Switcher

100KOhm0402 R570

21

25V

C579100nF

21

50V

C5841nF

2

1

1.5KOhm

R583

040221

6.8uH13.5A

L2421

R582

3.01Ohm

0402

DNI

21

25V100uFC583

2

1

100uF

2

1

25V

C582

25V100uFC581

2

1

25V

C580100uF

2

1

71.5KOhm0402

R581

21

71KOhm0402

R580

21

10KOhm0402 R579

21

R57810KOhm0

402

21

V_12V0

TI TPS53318U81

QFN22

23

11

10

9

8

7

6

3

18

17

16

15

14

13

12

5

1

4

2

22

21

20

19VDD

MODE

TRIP

RF

EN

VBST

VFB

ROVP

VIN_12

VIN_13

VIN_14

VIN_15

VIN_16

VIN_17

VREG

PGOOD

LL_6

LL_7

LL_8

LL_9

LL_10

LL_11

GND

0402

0Ohm

R573

2 1

R577 619KOhm0402

21

0402200KOhmR575 21

R574 DNI0402

200KOhm

21

21 0402DNIR572

0Ohm

C576

16V1uF

2

1

4.7uF25V

C570

2

1

C578

25V100nF

21

470pF

DNI

C577

50V

2

1

0402

1uFC575

16V

2

1

V_12V0

0402 R571

100KOhm

21

C574

25V

22uF

2

1 C573

25V

22uF

2

1

22uF

25V

C572

2

1

22uF

C571

25V2

1

V_12V0

V_5V0

R5760402

210KOhm21

LL_5V_REG

FB_5V_REG

ROVP_5V_REG

PG_SWITCHER

LL_5V_REG_R2

LL_5V_REG_R1

RF_5V_REG

TRIP_5V_REG

MODE_5V_REG

VREG_5V_REG

VBST_5V_REG VBST_5V_REG_C

Page 100: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 100 of 119 Mar 23, 2017 ©SGeT e.V.

9.9 Wide Range Power Input

In some applications it is desirable to allow for a wide range power input. This is the case in certain industrial and automotive settings. Since SMARC systems operate at low voltages (5V and under, apart from LCD backlight considerations), it is straightforward to implement a wide range buck converter. The figure below shows an example implemented with the Linear Technologies LTC3879. Similar parts are available from other vendors. The Texas Instruments TPS40170 is another part to consider for this application. The TPS40170 allowable input range spans 4.5V to 60V. If you are targeting the higher input ranges, be sure that components exposed to the input voltage are adequately rated for that high voltage.

Figure 71 Wide Range Power Input Switcher

If the load on the Carrier 3.3V is high, it may be worth having a second wide input range switcher per the above figure, configured for the 3.3V output.

9.10 Power Monitoring

The SMARC specification document defines a VIN_PWR_BAD# input. Its use is optional. If VIN_PWR_BAD# is held low by a Carrier or power supply circuit, the Module assumes that the source power is not ready and does not boot. VIN_PWR_BAD# is typically generated by a power monitor / reset generator IC, such as those shown in the figure below. This figure shows two of them, although this is not really necessary if the Module and the Carrier circuits are powered by a single source and you don’t want to keep them separate.

V_IN_10-30V

V_IN_10-30V

V_IN_10-30V

C538

4.7uF50V

2

1

10KOhm

R524

0402

2

1

0402 R552

40.2KOhm

2

1

D553

1

C539

50V4.7uF

2

1

50V

C540

4.7uF

2

1

0402

210KOhmR553

2

1

C541

50V4.7uF

2

1

4.7uH

L22

17A

21

LFPAK

Renesas RJK0451DPBQ48

123

5

4

R556

DNI

0402

20KOhm

2

1

20KOhm

R558

04022 1

50V820pFC547

2

1

22uFC549

50V2

1

Renesas RJK0451DPB

Q51

LFPAK

123

5

4

1210

1OhmR560

21

D57

CA

0Ohm0402

R530

21

47pF50V

C556

2

1

10V47uFC557

2

1 C55847uF10V

2

1

47uFC559

10V2

1

1.5KOhm

R562

0402

2

1

25V

C562220nF

2

1

R549

0402

1.82MEGOhm

21

0402R519

100KOhm2 1

C504100nF50V

2

1

V_INTVCC_5V0

V_INTVCC_5V0

10V

C5644.7uF

2

1

C505100nF

50V 2

1

R564

0402

2.2Ohm

21

V_5V0

47uFC560

10V2

1

C522

100nF

21

LT LTC3879

QFN161053-6883

U80

17 13

2

8

16

15

14

12

11

9

6

3

5

4

1

7

10VIN

ION

TRACK/SS

MODE

ITH

VRNG

SGND

RUN

INTVCC

BG

SW

TG

BOOST

VFB

PGOOD

PGNDTH_PAD

47uF

DNI

C561

10V2

1

COG50V

22pFC566

2

1

11KOhm 0402R567

2

1

Note :Route the VFB line away from noise sources,such as the inductor or the SW line.

Note:Place CIN, COUT,MOSFETs,DBand inductor all in one compact area.

Page 101: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 101 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 72 Power Monitor - Incoming Power

60.4KOhm 0603

R456

21

47KOhm 0603

R455

21

U68

SC70-5

2

1

3

5

4VDD

SENSE

RESET

NC

GND

TPS3803-01

SC70-5

U69

2

1

3

5

4VDD

SENSE

RESET

NC

GND

TPS3803-01

DNI4.7KOhm

0402 R453

21

R4514.7KOhmDNI0

402

21

0603

R45060.4KOhm

21

04020Ohm

R454

2 1

0Ohm

R4520402

2 1

C451100nF25V2

1

25V100nFC450

2

1

V_CARRIER_IN

V_MOD_IN

V_MOD_IN

V_MOD_IN

R457

0603

47KOhm

21

VIN_PWR_BAD

V_CARRIER_SNS

V_MOD_SNS

V_3V0-5V25_PG

V_5V0_DCIN_PG

Page 102: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 102 of 119 Mar 23, 2017 ©SGeT e.V.

9.11 Power Over Ethernet

Power may be delivered to a SMARC system over the Gigabit Ethernet cabling, cohabiting with the GBE data traffic. The 48V DC power is extracted from the isolated GBE cabling by a diode bridge and a specialized transformer isolated switching power supply. POE is defined by the IEEE 802.3af and IEEE 802.3at standards. The 802.3af payload power is limited to 12.5W and the 802.3at to 25.5W. Many semiconductor vendors offer POE solutions. Designing a POE power supply is a little trickier than designing your average switching supply, as the POE supply is transformer coupled, there are isolation requirements to meet, and some sort of DC isolated feedback mechanism must be incorporated. If your product volume is high, it may be worth the trouble of implementing your own Carrier-down circuit. See Texas Instruments and Micro-Semi for POE IC solutions. Even if you don’t go for the do-it-yourself approach, there are some very instructive Application Notes available from these vendors In many cases it is more straightforward to make use of a POE module, available from various vendors. One attractive POE module line comes from Silver Telecom (www.silvertel.com). IEEE 802.at compliant modules with output voltage options of 24V, 12V or 5V are available. The sample circuit below uses a Silvertel module with a 12V output. The 12V output cannot be fed directly to a SMARC Module – a step down converter would be needed. However, many SMARC systems incorporate LCD displays that utilize 12V backlights – hence the POE output option of 12V may make sense. If not, then the 5V POE output option could be considered (and the 5V POE module output can be fed directly to the SMARC Module). Note that for POE use, a particular type of GBE jack is required, to get access to the DC power coming in over the isolated GBE lines. The example shown here uses a Pulse Electronics JXK0-0190NL GBE POE Mag-Jack. Similar parts are available from Bel-Fuse, Tyco and others – but beware of differing PCB footprints.

Page 103: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 103 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 73 GbE with PoE

U58

FAIRCHILD NC7SZ125

SOIC8

GND

IN

OE#

VCC

OUT

V_3V3

D13

Comchip CDBHD2100-G

4

3

2

1

+

-

AC

AC

C2411mFAL12.5x13.52

1

Littelfuse SMAJ58CAD15

Comchip CDBHD2100-G

D14

4

3

2

1

+

-

AC

AC

V_12V0

R273

150O

hm

0402

21

MODR97

0402

0Ohm

21

Silvertel AG9330

PS1

8

5

14

13

10

12

11

9

7

6

4

3

2

1AUX1-

AUX1+

VIN+

NC

VIN-

AUX_DC_7-

-VDC_9

ADJ

+VDC_12

-VDC_10

+VDC_13

AUX_DC+

AT-DET

AUX_DC_8-

Sharp PC817X1NIP0F

U23

PDIP4

3

4

2

1

MOD

0402

R271

1KOhm

21

25V

C34

100nF

2

1

C35

100nF

25V2

1

V_3V3

R272

0402

1KOhm

21

MOD 0402R27468Ohm 21

25V

C36

100nF

2

1

V_3V3

25V

C37

100nF

2

1

25V

C38

100nF

2

1

25V

C39

100nF

2

1

25V

100nFC40

2

1

1uFC157

16V 2

1

MOD

68Ohm

R275

040221

V_3V3

MOD

MOD

MOD

MOD

MOD

MOD

MOD

Pulse JXK0-0190NL

J28

RA20/1PORT

22

2115

16

20

19

18

17

9

7

8

2

1

3

5

6

4

10

12

11

14

13GREEN_A

GREEN_K

MD1+

MDCT1

MD1-

MD2+

MDCT2

MD2-

MD3+

MDCT3

MD3-

MD4+

MDCT4

MD4-

VDC1+

VDC1-

VDC2+

VDC2-

DLED_16

DLED_15 SHIELD_21

SHIELD_22

MOD

MOD

SOIC8

U57

FAIRCHILD NC7SZ125

GND

IN

OE#

VCC

OUT

GBE_MDI3_P

GBE_MDI0_P

GBE_MDI0_N

GBE_MDI1_N

GBE_MDI1_P

GBE_MDI2_N

GBE_MDI2_P

GBE_MDI3_N

GPIO11

V_POE2_N

V_POE2_N

V_POE2_P

V_POE2_P

V_POE1_N

V_POE1_N

V_POE1_P

V_POE1_P

T2P_CLASSIFICATION#

V_POE_IN_P

V_POE_IN_N

GBE_CTREF

GBE_LINK1000_BUF_R#

GBE_LINK_ACT#

GBE_LINK100_BUF#

GBE_LINK1000_BUF#

GBE_LINK_ACT_R#

GBE_LINK100#

GBE_LINK1000#

RJ45 with Magnetics/POE, R/A, TH

Page 104: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 104 of 119 Mar 23, 2017 ©SGeT e.V.

9.12 Li-ION Battery Charger

9.12.1 General

Caution: improper battery charging can be a serious safety hazard. This section serves as a brief introduction to what is involved in designing a battery management system, but it is not enough to go on. Other source materials, from IC companies, battery vendors and the technical literature will be necessary for you to implement a safe and effective system. Lithium Ion batteries have a fully charged cell voltage of 4.2V, nominal cell voltage level of 3.7V, and a depleted voltage of 3.0V. They are used in series combinations and parallel combinations. The voltages for various series combinations are shown in the following table.

Table 17 Lithium- Ion Battery Cell Voltages

Series Cells Nominal Voltage Fully Charged Fully Depleted

1 3.7V 4.2V 3.0V

2 7.4V 8.4V 6.0V

3 11.1V 12.6V 9.0V

4 14.8V 16.8V 12.0V

Battery capacities are measured in Ampere-Hours (Ah). A fully charged battery with a 2Ah capacity can deliver 2A for 1 hour, or 1A for 2 hours and so on. The capacity is sometimes designated ‘C’ in battery data sheets. Lithium-ion batteries are typically charged in two phases: a constant current portion (for the deeply depleted battery) and a constant voltage portion (when the charging process nears completion). The constant current charging is typically done at a maximum constant current equal to the battery capacity – for example, a 2Ah battery is charged at a maximum charging current of 2A. The constant voltage portion is done at the cell fully charged voltage – 4.2V for a single series cell, 8.4V for two series cells, and so on. The battery data sheet and vendor’s application notes should of course be consulted for more specific recommendations that apply to the situation at hand. The battery temperature should be monitored during charging and use. The charging is disabled if the battery temperature exceeds a threshold set by the battery charger implementation.

Page 105: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 105 of 119 Mar 23, 2017 ©SGeT e.V.

9.12.2 Battery Charger Circuit Example

A battery charger implementation is shown in the following four figures. This example uses Texas Instruments parts. Similar devices are available from Linear Technology, Maxim integrated, Analog Devices and others. The first of the four figures shows the overall charging system in block diagram format. The actual circuit schematics are shown in the three subsequent figures. Caution: many of the component values shown here need to be adjusted to suit the details of the situation at hand – the number of series cells, the battery capacity, the battery thermistor particulars. With reference to the following four figures:

FETs Q40 and Q46 form an analog switch that the charger IC can use to gate power from the external DC adapter into the system. Charger current is sensed through RS1. The FETs are turned off if the charger voltage is too high, too low or if the current draw is excessive.

FET Q47 is turned on by the charger IC to allow battery power to be delivered to the target system.

FET Q47 is off when Q40 and Q46 are on.

The charger IC includes charge pumps to drive the N channel FET gates to a sufficiently high voltage to turn them on.

The charger IC in this example has an internal switch-mode power supply, with internal high side FET, that are used when charging the battery. The external components of this supply are L1 and D53 in the diagrams.

Battery charging current is measured through RS2.

It is important to monitor the battery temperature. Usually an NTC (negative temperature coefficient) thermistor attached to or internal to the battery is used for this. The charger IC has support for the thermistor.

A fuel gauge IC is used to collect information about battery charge levels. The gauge tracks current into and out of the battery, via sense resistor RS3. This sense resistor is in series with the battery GND terminal. The gauge has an I2C interface to the SMARC Module.

There are three status signals from the charger system to the SMARC Module: CHARGING#, BATLOW# and CHARGER_PRSNT#.

Page 106: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 106 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 74 Li-ION Battery Charger - Block Diagram

Battery Charger

DC Adapter

Fuel Gauge

Power Supply

I2C_PM To

SMARC Connector

1/2/3 Cell Li-Ion

or Li-Polymer

Charging

Supply

Adaptor Current

Sense path

Charging Current

Sense path

Bat-Pack

Negative

System

GND

Main Supply Path

Battery Charging

Path

Supply to the IC

Current Sense

Paths

Q40 Q46

Q47

RS1

RS2

L1

D52A

D52B

D53

RS3

Temp Sense path

Battery Temperature

Sense

Page 107: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 107 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 75 Li-ION Battery Charger - Schematic

QFN24

U77TI BQ24171

2

22

1

3

24

25

23

21

20

19

18

1716

15

14

13

12

11

10

9

8

7

6

5

4AVCC

ACN

ACP

CMSRC

ACDRV

STAT

TS

TTC

VREF

ISET

FB

SRN

SRPACSET

OVPSET

BATDRV#

REGN

BTST

PGND_23

AGND

SW_24

PVCC_3

SW_1

PGND_22

PVCC_2

D50

CA

10mOhm

2512

RS2

E2E1

I2I1

0805

3.9Ohm

R544

21

R543

3.9Ohm

0805

21

TI CSD16406Q3Q40

QFN-8

3

5 21

4

R5424.02KOhm0402

21

04024.02KOhm R541 21

R516

0402

100KOhm

21

22.1KOhmR540

0402

21

0402

100KOhmR515

21

0402

32.4KOhmR539

21

R538

0402

243KOhm

21

R514

0402

100KOhm

21 R513

100KOhm0402

21

2.2uFC535

50V2

1

2.2uF50V

C534

DNI2

1

100nF

C515

25V

21

1uF16V

C531

2

1

25V

C5331uF

2

1

C514100nF25V

2

1

C52710uF25V

2

1

25V

C52610uF

2

1

D53

C A

100nF

C513

25V

21

R537

10Ohm

210402

R536

1KOhm

040221

C532

47nF16V

21

1uF

C530

1 2

R512100KOhm0

402

21

D522

3

1

0402 R500

0Ohm

21

R5352.21KOhm0

402

21

25V470nF

C529

2

1

0Ohm

R526

040221

0402R534

6.81KOhm

21

10mOhmRS1

2512 E2E1

I2I1

GND_CHR

GND_CHR

R533

232KOhm0402

21

50V

C5284.7nF

2

1

R532

0402

499K

Ohm

21

0402R525

0Ohm2 1

UMT3

ROHM RJU003N03T106

Q43

3

1

2

25V10uFC525

2

1

10uF25V

C524

2

1

C512

25V100nF

2

1

25V100nFC511

2

1

25V22uFC502

2

1

ROHM RJU003N03T106UMT3

Q42

3

1

2

10KOhm

R5220402 21

C510

100nF25V

21

100nFC509

25V2

1

V_BAT

L1

3.3uH8.4A

21

V_BAT

MOD

V_BAT

0402 R511

100KOhm

21

100KOhmR510

0402

21

100KOhm

0402 R509

21

25V100nFC5082

1

GND_CHR

GND_CHR

GND_CHR

GND_CHR

GND_CHR

SON8

Q47TI CSD25401Q3

3

5

21

4

GND_CHR

GND_CHRGND_CHR

R502

1MEGOhm

040221

GND_CHR

V_BAT_CHARGE_A

R506

0402

100Ohm

21

25V22uFC501

2

1

GND_CHR

LTST-C190KGKT

D51

12

V_CARRIER_IN

V_CARRIER_IN

GND_CHR

Q46TI CSD16406Q3

QFN-8

3

521

4

R501

1MEGOhm

040221

GND_CHR

F1

21POLYFUSE

C503100nF50V2

1

RA3/1Port

J64

KYCON KLDHCX-0202-B

2

3

1 1

3

2

22uFC500

25V 2

1

Q41

ROHM RJU003N03T106

UMT3

3

1

2

BAT1_TS+

V_CHARGER_IN

CHARGING

VDD_AON

VDD_AON

VDD_AON

BQ24171_STAT

CHRG_LED

SRP

OVPSET

BQ_FB

ACN

ACP

ACDRV

CMSRC

ISET

BQ_TTC

AVCC

BATDRV

BTST

REGN

BQ_TS

CHARGER_LED

BQ24171_ACDRV_R

VDD_ACIN_RC

V_SYS_B2B

VSYS_CHGIN

BQ24171_SW

ACSET

VREF_3V3

VREF_3V3

EN_VDD_BAT

SRN

CHG_BAT

BAT_CHG_IN

5A, DC Adaptor

Route Differentially (Kelvin Routing)

LOW: CHARGINGFLOAT: CHARGE_COMPLETE/SLEEP

CHARGER STAT to CPU

Ichg = 0.4V/(20x10mOhm) = 2A

( Charging Current )

HIGH: CHARGE_COMPLETE/SLEEPLOW: CHARGING

No: of Cells Value of ResB

1 (4.2V)

2 (8.4V)

3 (12.6V) 499K

299K

100K

Charging Voltage

5V

12

16 1M

727K

243K

Value of ResA

Feedback Resistor Divider Config.Over Volt. Protection Configuration

Route Differentially(Kelvin Routing)

ResA ResB

Page 108: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 108 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 76 Battery Fuel Gauge

A comparator circuit such as the one shown below may be used to provide an indication to the SMARC Module that the battery charger power source is present. This circuit may be incorporated into some battery charger ICs.

Figure 77 Charger Present Detection

R5270Ohm

210OhmR528

21

V_1V8_LDO

UMT3

Q45

ROHM RJU003N03T106

3

1

2

10K

Ohm

0402

R523

21

C536

25V33nF

2

1

R545100Ohm

1206

21

R546

DNI100Ohm

1206

21

D54

OnS

em

iB

ZX

84C

5V

1LT

1G

31

V_BAT_3V_BAT_2

R547

1206

100OhmDNI

21

GND_BAT

MOD

V_BAT

MOD

R5481.82MEGOhm0

402

21

U79

TI BQ27510-G2

SON12

13

9

12

11

10

5

8

7

6

1

4

32

BI/TOUT

REG25 REGIN

BATVCC

VSS

SRP

SRN

TS

SDA

SCL

BAT_LOW/BAT_GD

TH_PAD

1

47Ohm

0402

R5502

10402

100Ohm

R5072

1

100Ohm0402

R5082

1

6.3V470nFC537

2

1

100nFC517

25V2

25V

C518100nF

2

1

C519

25V100nF

2

1

C520

25V100nF

2

1C521100nF25V

2

1

R551

0402

18.7KOhm

21

2512

RS

310m

Ohm

E2

E1

I2I1

MOD

I2C_PM_DAT

I2C_PM_CK

BAT1_TS+

I2C_PM_CK_FG1

I2C_PM_DAT_FG1

BATLOW

BQ27510_REGIN

BQ27510_VCC

BQ27510_SRN_RS

BQ27510_SRP_RSBQ27510_SRP

BQ27510_TSBQ27510_BI

BQ27510_SRN

BATLOW

(7-bit format)

I2C Address : 0x55

BAT_PACK Negative

100KOhm0402

R518

21

R517100KOhm0

402

21

Q44

3

1

2

OnSemi NCS2200SQ2T2

SC70-5

U78

2

1

5

4

3IN+

IN-

VCC

OUT

VEE

MOD

100KOhm

0402R521

2 1

25V100nF

C516

21R504

0402

1MEGOhm

21

R503

0402

1MEGOhm

21

V_BAT V_CHARGER_IN

V_1V8_LDO

BATTERY_IN

CHARGER_IN

CHARGER_PRSNT

CHARGER_PRSNT

Page 109: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 109 of 119 Mar 23, 2017 ©SGeT e.V.

10 THERMAL MANAGEMENT

10.1 General

SMARC Modules generally have modest power dissipations. In a production environment, heat-sinking is usually necessary to keep the Module electronics die temperatures within limits, at the higher operating temperatures.

10.2 Heat Spreaders

Heat spreaders are available from SMARC Module vendors. Their purpose is to present a uniform thermal interface that is the same across various Module designs. A heat spreader is not a full heat sink – the heat spreader top surface is meant to be in contact with a system specific heat sink, such as the wall of an enclosure or other heat sink. The figure below diagrams a typical heat spreader suitable for an 82mm x 50mm SMARC Module. The diagram plan view shows the heat spreader surface that the Module interfaces to. “TIM” is an abbreviation for “Thermal Interface Material” - a thermally conductive, compliant material to bridge the small gap between the heat-spreader surface and the surface of the system SOC. The Module is 82mm x 50mm, but the heat spreader is sized at 82mm x 42mm to allow the Module edge fingers to mate to the Carrier board MXM3-style socket. The heat spreader top, or “far side” surface, is 6mm above the Module PCB surface.

Page 110: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 110 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 78 Heat Spreader Example – 82mm x 50mm Module

Table 18 Heat Spreader Hole Types

Figure Notation Hole / Standoff Type Notes

Holes marked ‘A’ Clearance holes for M2.5 screws; 3mm tall clearance standoffs

These holes coincide with the SMARC mounting holes for 82mm x 50mm Modules

Holes marked ‘B’ Module design specific holes and standoffs X-Y locations of these holes are also Module design specific. The TIM location is design specific.

Holes marked ‘C’ M3 thread in heat spreader These holes allow either a heat sink to be attached to the heat spreader, or they can allow the heat spreader (and the SMARC Module / Carrier assembly) to be secured to an enclosure wall or other heat-sinking structure.

Page 111: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 111 of 119 Mar 23, 2017 ©SGeT e.V.

10.3 Heat Sinks

The figure below shows a heat sink that can be added to the heat spreader described in the figure above. This add-on heat sink attaches to the heat spreader through the ‘C’ holes marked on the heat spreader drawing above. A thermal interface material – thermally conductive paste, grease, or a gap pad – is needed between the heat spreader and the add-on heat sink, on the heat spreader “far” side.

Figure 79 Heat Sink Add-On to Heat Spreader

The best thermal transfer characteristics are usually obtained by a stand-alone heat sink. An example is shown in the following figure. The heat sink is secured to the SMARC Module through two design – specific interior holes (and design specific standoffs) that are straddling the TIM (the TIM in the figure is the square piece of foam that contacts the SMARC SOC). The four corner holes and standoffs coincide with the four SMARC Module holes (for 82mm x 50mm Modules). M2.5 screws pass through the heat-sink corner holes and standoffs, and pass through the SMARC Module, and catch the threads in the corresponding Carrier board hardware. Check with your SMARC Module vendor for the heat sinks that they offer.

Figure 80 Stand-Alone Heat Sink

Page 112: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 112 of 119 Mar 23, 2017 ©SGeT e.V.

10.4 Thermal Resistance Calculations

It is easy to estimate the thermal performance of a SMARC system if you have thermal resistance data from the vendors. The vendor sources can include silicon vendors, SMARC Module and Carrier board vendors and heat sink vendors. Thermal resistance is a simple concept, analogous to Ohm’s law and electrical resistance. Thermal resistance is expressed in degrees Celsius per Watt (0C/W). If a particular thermal interface has a thermal resistance of 8 0C/W and the source device dissipates 4W, then there will be a temperature rise of 8 * 4 = 32 0C across that interface. Some hypothetical thermal parameters are given in the table below, followed by some sample calculations for various situations. The calculations are just estimates, which can be useful for design guidance. The estimates should be followed up by measurements on physical samples. It may be useful to use thermal CAD simulations as well – after the “back of the envelope” calculations and before building hardware.

Table 19 Hypothetical Thermal Parameters

Parameter Symbol Value (Hypothetical)

Max SOC junction Temperature(Tj) TJ-MAX 90 0C

Thermal Resistance, CPU Junction to ambient (θJA) θJA 12 0C/W

Thermal Resistance, CPU Junction to case (θJC) θJC 0.4 0C/W

TIM interface (CPU to heat spreader or sink) θTM1 0.5 0C/W

Heat Spreader θHS 0.1 0C/W

TIM interface (heat spreader to add-on heat sink) θTM2 0.4 0C/W

Add-on Heat Sink - still air (natural convection) θHS1 4 0C/W

Stand-alone Heat Sink – still air (natural convection) θHS2 3 0C/W

SOC maximum power dissipation WSOC-MAX 5W

Maximum Environmental Temperature TOP-MAX To be calculated

Sample Calculations Using Hypothetical Thermal Parameters

No heat sink at all

TOP-MAX = TJ-MAX – θJA * WSOC-MAX = 90 – 12 * 5 = 30 0C

Heat Spreader + Add-On Heat Sink

TOP-MAX = TJ-MAX – (θJC + θTM1+ θHS + θTM2+ θHS1) * WSOC-MAX = 90 – (0.4 + 0.5 + 0.1 + 0.4 + 4 ) * 5 = 63 0C

Heat Spreader + Stand-alone Heat Sink

TOP-MAX = TJ-MAX – (θJC + θTM1+ θHS2) * WSOC-MAX = 90 – (0.4 + 0.5 + 3 ) * 5 = 70.5 0C

Page 113: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 113 of 119 Mar 23, 2017 ©SGeT e.V.

11 CARRIER PCB DESIGN RULE SUMMARY

11.1 General – PCB Construction Terms

The Table and Figure below serve to define and illustrate some terms used in describing PCB construction and in trace impedances

Table 20 PCB Terms and Symbols

Term / Symbol Definition

Stripline

Outer layer traces routed a fixed distance above an internal plane layer

Asymmetric Microstrip

Inner layer signal traces, mounted a fixed distance to a Primary Reference Plane (H1 or H3 in the figure below) and mounted a larger distance to a Secondary Reference Plane (H2 or H4 in the figure)

H Distance (or “height”) of a trace to the reference plane(s) – H0, H1, H2 etc. in the figure

W The width of the trace. Outer layer traces generally need to be a bit wider than inner layer traces to meet the same impedance. It is best to arrange that all inner layer traces for a given impedance class have the same width.

T The thickness of the trace. Inner layer traces are generally thinner than outer layer traces.

G The gap (or space) between two traces that are part of an edge-coupled differential pair.

P The pitch (or center-to-center distance) between two traces that are part of an edge-coupled differential pair. P = G + W for a given differential pair. A fairly common mistake in PCB design and fabrication is to get the pitch and the gap confused.

Clearance (Not shown in the figure) The distance to “other” traces and features (vias, holes, pours) on the same layer

The dielectric constants of the materials used in the PCB construction

Zo Trace impedance

SE Single Ended – trace that is single ended, not part of a differential pair

DE Differential Ended – trace pair that are used for differential signaling

Page 114: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 114 of 119 Mar 23, 2017 ©SGeT e.V.

Figure 81 PCB Cross Section – Striplines and Asymmetric Microstrips

PLANE

PLANE

Trace Trace

Trace

H1

H2

G

P

W

T

H3

H4

Trace Trace

Trace Trace

H0

Stripline Traces

Asymmetric Microstrip Traces

Trace

L1 - copper

L2 - copper

L3 - copper

L4 - copper

L5 - copper

L6 - copper

Prepreg - Dielectric

Prepreg - Dielectric

Prepreg - Dielectric

Core - Dielectric

Core - Dielectric

11.2 Differential Pair Cautions

Modern high speed interfaces (CSI, GBE, HDMI, LCD LVDS, PCIe, SATA and USB) must be routed as differential pairs over a ground plane. They should be routed as a pair on the same layer (edge-coupled pairs) and not as pairs on different layers (known as broad-side coupled pairs) that follow the same X-Y path. There should be a minimum of layer transitions – ideally, just two (SMARC connector to internal layer, and internal layer to the destination connector or IC). For edge coupled differential pairs, there are several parameters of interest:

Differential impedance: the impedance of the trace pair as seen by a differential driving source.

Single impedance: the impedance of one of the traces in the pair, if it were removed from the pair and driven by a single ended source.

Gap: the inside edge to inside edge spacing between the traces in a differential pair. Labeled ‘G’ in the figure above.

Pitch: the center-to-center distance between the pairs in a differential pair. Labeled ‘P’ in the figure above.

It is fairly common for people to mix up the Gap and the Pitch. Make sure you don’t make this mistake.

Page 115: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 115 of 119 Mar 23, 2017 ©SGeT e.V.

11.3 General Routing Rules and Cautions

High speed differential signals must be routed as differential pairs. o Keep the pairs symmetrical o Stubs are not allowed o Avoid tight (right angle) bends o Match the pair lengths, on each layer used

Routing with reference to a GND plane is preferred: o If GND plane referencing is not possible, then routing against a well bypassed power

plane will have to suffice.

Do not route over plane splits.

Layer transitions should be minimized. Ideally, there are a maximum of two vias per net: a transition at the SMARC connector to get to an inner layer, and a transition at the destination device, to get to the device pins.

If a layer change is made and the layer change results in a reference plane change, then the two reference planes should be tied together in the same vicinity as the trace layer via. If the two reference planes are at different potentials, then they should be tied together through a “stitching capacitor”. The stitching cap isolates the DC potential between the planes but allows the high speed return currents associated with the trace. If the two reference planes are at the same potential, then they should be tied together with a “stitching via” – a seemingly useless via, except that it allows the high frequency trace return currents to flow between the reference planes. Following this advice results in lower EMI (as “loop area” is reduced) and better signal integrity.

Controlled impedance design must be used: o All traces have a single ended (SE) impedance. o Differential pair traces have a SE impedance, and the pair has a differential (DE)

impedance. o Recommended SE and DE impedances are given in the following sections of this Design

Guide.

Differential pairs have pair matching requirements (the two traces that make up a pair need to be matched to a certain tolerance). There are also group matching requirements: if more than one pair is needed for the function, then there are group matching requirements as well (for example LVDS[0]+/- needs to match LVDS[1]+/1 and LVDS[2]+/- and so on).

The propagation speed of inner layer traces and outer layer traces is different.

Differential pairs that are part of a common group (for example, the four LVDS data pairs in a 24 bit LVDS implementation) should be routed such that each pair in the group has the same per-layer routing length as the others.

Routing on inner layers may reduce EMI. It is said that good EMI characteristics may be obtained by careful outer layer routing as well.

Routing high speed traces across plane splits should be avoided. If it cannot be avoided, then stitching caps to bridge the split should be used.

Cross-talk effects result from traces running in parallel, too close and for too long, either side by side on the same layer, or directly above / beneath each other on adjacent inner layers. For the same layer case, the mitigation is to increase the spacing to other traces. For the adjacent layer case, the traces on the adjacent layers should not run in parallel. Ideally, they are routed orthogonal to each other. If orthogonal routing is not possible, they should be at least 30 degrees off from each other.

IC power pins need to be properly bypassed, as close as possible to the power pin.

Page 116: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 116 of 119 Mar 23, 2017 ©SGeT e.V.

11.4 Trace Parameters for High-Speed Differential Interfaces

Routing rules for high speed differential traces are summarized in the table below. Some notes on the table:

The “Max Symbol Rate” in the chart below is not the data transfer rate. It is the maximum transition rate on a single differential pair of the link, including the link encoding overhead.

o For example: 24 bit LCD LVDS is packed into four lanes. Including the control bits, there are actually 28 bits packed into the four LVDS lanes. There is no encoding overhead in LCD LVDS – it is just raw data – because there is a separate LVDS clock. So the “symbol rate” on an LVDS differential data pair, for a 40 MHz LVD clock, is (28 bits x 40 MHz / 4 lanes) = 280 Mbps.

The “Sym Width” is the width of the pair Symbol, in ps. It is the inverse of the Max Symbol Rate. o Recall that the propagation speed of a micro-strip (outer layer) trace signal is about 150

ps / inch, and for a stripline (inner layer) trace signal, about 180 ps / inch. o The differential pair length mis-match, when expressed in units of time, needs to be small

compared to the Symbol Width.

Lengths are shown in mils (thousandths of an inch, or 0.0254 mm). The American convention for the decimal point and comma meaning is used. The 5,000 mil max length is 5.0 inches or 127 mm.

“Pair Match” refers to the length matching of the two parts of the differential pair.

Group Match refers to the length matching of the different pairs in a group.

N/A means “Not Applicable”.

“TX/RX Match” means the length matching between the TX and RX pairs.

Table 21 High-Speed Differential Trace Parameters

Interface Max Symbol Rate

(approximate) Sym Width (ps)

Zo Diff (ohms)

Zo SE (ohms)

Max Length (mils)

Pair Match (mils)

Group Match (mils)

TX / RX Match (mils)

PCIe 8 Gbps (Gen 3) 5 Gbps (Gen 2) 2.5 Gbps (Gen 1)

125 200 500

85 (+-15%)

50 5,000 10,000 12,000

< 5 N/A < 2000

SATA 6 Gbps (Gen 3) 3 Gbps (Gen 2) 1.5 Gbps (Gen 1)

167 333 667

85 (+-20%)

50 (+-15%)

3,000 6,000 8,000

< 5 N/A < 2000

HDMI 3.4 Gbps (HDMI 1.3) 1.6 Gbps (HDMI 1.2) 1.6 Gbps (HDMI 1.1) 1.6 Gbps (HDMI 1.0)

294 625 625 625

90 45 5,000 < 10 < 830 N/A

CSI

1 Gbps (CSI-2) 208 Mbps (CSI)

1000 4808

90 45 9,000 < 100 < 100 N/A

LVDS 770 Mbps (24b 110 MHz) 280 Mbps (24b 40 MHz)

1299 3571

100 (+-20%)

50 6,750 < 20 < 20 N/A

USB 2.0 480 Mbps (HS) 12 Mbps (FS)

2083 23333

90 45 10,000 < 100 N/A N/A

USB 3.0 5 Gbps N/A 85 (+-10%)

50 (+-15%)

4,500 < 5 N/A N/A

GBE 250 Mbps N/A 100 50 4,000 < 5 < 30 N/A

DP++ 8.1 Gbps N/A 85 (+-10%)

50 (+-10%)

3,200 < 5 < 1000 N/A

Reference Plane: GND is preferred Clearance to other traces: 20 mil or more

Page 117: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 117 of 119 Mar 23, 2017 ©SGeT e.V.

Max Vias: Three maximum; two or less preferred

11.5 Trace Parameters for Single Ended Interfaces

Table 22 Single Ended Trace Parameters

Interface Zo SE (ohms)

Max Length (mils)

General 50 12,000

SD Card 50 4,000

Page 118: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 118 of 119 Mar 23, 2017 ©SGeT e.V.

11.6 PCB Construction Suggestions

PCB construction suggestions with trace width and gap parameters are given in the following three tables for four, six and eight layer PCBs. These are meant as a starting point. It is wise to plan ahead with your PCB fabricator and get their input. Four layer construction is difficult since the high speed signals should be referenced against a GND plane, and the four layer construction offers only a single trace layer that is GND referenced.

Table 23 PCB Construction Example - 4 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 PWR Cu 1.2 1.0

Core

50.0

L3 GND Cu 1.2 1.0

Prepreg 2.9

L4 Sig Cu 1.6 0.5 + plating L3 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 63.0 mil Impedance tolerance: +/- 10%

Table 24 PCB Construction Example - 6 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 PWR Cu 1.2 1.0

Core 3.0

L3 Sig Cu 0.6 0.5 L2/L5 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Prepreg

42.0

L4 Sig L6 0.6 0.5 L5/L2 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Core 3.0

L5 GND Cu 1.2 1.0

Prepreg 2.9

L6 Sig Cu 1.6 0.5 + plating L5 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 62.2 mil Impedance tolerance: +/- 10%

Page 119: Smart Mobility ARChitecture Design Guide - SGET Cirrus Logic I2S Audio Example ... 5.1.6 USB Hub On Carrier ... 11.3 General Routing Rules and Cautions ...

SMARC Design Guide 2.0 Page 119 of 119 Mar 23, 2017 ©SGeT e.V.

The eight layer example below shows an 80 mil (2mm) PCB thickness. This is often desirable for Carrier boards, and can be arranged for the four, six or eight layer versions. The thicker PCB makes for a more rugged system: the stiffness of a sheet of material (PCB or other sheet material) is proportional to the cube of the material thickness. The eight layer construction below offers the advantage of four signal layers (L1, L2, L6, L8) that are GND referenced. This is best for high speed signals. This construction also makes power distribution very easy. The Pri/Sec notation in the Plane Ref column below means the following: the plane layer to which the signal is closest is the Primary reference plane. The further plane is the Secondary. If a high speed signal or signal pair changes reference layers (for example, L6 is referenced to L7 and L3 is referenced to L2 - so if you transition from L6 to L3, you are changing reference planes) it is recommended to put in a stitching via or via pair. The stitching vias are single net vias (GND) that tie the two reference planes together (L2 to L6) for the high frequency return signals that are trying to follow the path of the signal traces. You will have better signal integrity and fewer EMI issues if you do this. It is not necessary if reference planes are not being changed (for example, a transition from L1 to L3 keeps both referenced to L2, hence there is no reference plane transition).

Table 25 PCB Construction Example – 8 Layers

Layer Use Layer

Thickness (mils)

Copper (ounces)

Plane Ref Pri/Sec

SE 50 Ohm W (mils)

Diff 90 Ohm W / G (mils)

Diff 92.5 Ohm W / G (mils)

Diff 100 Ohm W / G (mils)

SM 0.8

L1 Sig Cu 1.6 0.5 + plating L2 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

Prepreg 2.9

L2 GND Cu 1.2 1.0

Core 3.0

L3 Sig Cu 0.6 0.5 L2/L4 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Prepreg 10.0

L4 PWR Cu 1.2 1.0

Core

38.0

L5 PWR Cu 1.2 1.0

Prepreg 10.0

L6 Sig Cu 0.6 0.5 L7/L5 4.0 4.0 / 6.5 4.0 / 6.5 3.5 / 8.0

Core 3.0

L7 GND Cu 1.2 1.0

Prepreg 2.9

L8 Sig Cu 1.6 0.5 + plating L7 4.5 4.6 / 6.4 4.5 / 6.5 4.4 / 10

SM 0.8

Finished Thickness: 80.6 mil Impedance tolerance: +/- 10%


Recommended