+ All Categories

sml157

Date post: 02-Jun-2018
Category:
Upload: riomj
View: 216 times
Download: 0 times
Share this document with a friend

of 66

Transcript
  • 8/10/2019 sml157

    1/66

    J. Faist Quantum Electronics

    Semiconductor lasers

    J. Faist

  • 8/10/2019 sml157

    2/66

    J. Faist Quantum Electronics

    Bibliography

    Optoelectronics:

    E. Rosencher, B. Vinter Optolectronique, Masson

    Jasprit Singh Semiconductor Optoelectronics Mc Graw Hill

    A. Yariv Quantum electronics Wiley

    Semiconductor lasers (multi-authors):

    P. Zory Quantum Well lasers Academic Press

    E. Kapon Semiconductor lasers (I, II), Academic Press

    Semiconductor lasers (monographs, out of print):

    G. P. Agrawal, N. K. Dutta Semiconductor lasers, Kluwer

  • 8/10/2019 sml157

    3/66

    J. Faist Quantum Electronics

    Outline

    Semiconductor materials: Bands and Gaps

    direct/indirect, gap size

    Waveguides

    Heterojunctions

    Semiconductor lasers

  • 8/10/2019 sml157

    4/66

    J. Faist Quantum Electronics

    Materials

  • 8/10/2019 sml157

    5/66

    J. Faist Quantum Electronics

  • 8/10/2019 sml157

    6/66

    J. Faist Quantum Electronics

  • 8/10/2019 sml157

    7/66

    J. Faist Quantum Electronics

    Essential feature: bands and gaps

  • 8/10/2019 sml157

    8/66

    J. Faist Quantum Electronics

    Energy (meV)

    transmission

    Electron

    The modulus of thewavefunction is proportionalto (1-R)n

    Why gaps? Bragg reflection

    A periodic modulation of the potential opens gaps in the energy spectrum

  • 8/10/2019 sml157

    9/66

    J. Faist Quantum Electronics

    Why bands?: coupling isolated states

    A periodic array of coupled isolated states forms bands

  • 8/10/2019 sml157

    10/66

    J. Faist Quantum Electronics

    Direct semiconductors

  • 8/10/2019 sml157

    11/66

    J. Faist Quantum Electronics

    IV: indirect semiconductors

  • 8/10/2019 sml157

    12/66

    J. Faist Quantum Electronics

    Semiconductor elements

    Characteristics:

    -Crystalline structure and lattice

    -Nature and size of the gap

    -Doping

  • 8/10/2019 sml157

    13/66

    J. Faist Quantum Electronics

    Absorption edge semiconductors

  • 8/10/2019 sml157

    14/66

    J. Faist Quantum Electronics

    III-V family

    - Nitrideslacking

    - Availability of

    substrates

  • 8/10/2019 sml157

    15/66

    J. Faist Quantum Electronics

    Blue lasers: III-V vs II-VI

    -very hard material

    -GaN substrates rares and expensive

    -Can be grown on GaAs

    -Defects not solved

  • 8/10/2019 sml157

    16/66

    J. Faist Quantum Electronics

    Injection of minority carriers

    Key number:

    Diffusion length of electron

    and holes

  • 8/10/2019 sml157

    17/66

    J. Faist Quantum Electronics

    A key element: the heterojunction

  • 8/10/2019 sml157

    18/66

    J. Faist Quantum Electronics

    Heterojunctions

    The junction between two semiconductors with different

    bandgaps may align differently:

  • 8/10/2019 sml157

    19/66

    J. Faist Quantum Electronics

    Even stranger heterojunctions

    In this case, the energy

    of the GaSb hole islarger than the one of

    the InAs electron!

    One may use this for

    tunneling from

    valence to conduction

    band

  • 8/10/2019 sml157

    20/66

    J. Faist Quantum Electronics

    Waveguiding

  • 8/10/2019 sml157

    21/66

    J. Faist Quantum Electronics

    Waveguiding

    Simplest, total internal reflection

    Helmholz equation

  • 8/10/2019 sml157

    22/66

    J. Faist Quantum Electronics

    Two set of modes: TE and TM

  • 8/10/2019 sml157

    23/66

    J. Faist Quantum Electronics

    Solution of the transandental equation

  • 8/10/2019 sml157

    24/66

    J. Faist Quantum Electronics

    TE vs TM modes

    m

    != 1.55m

    The TE mode has

    a better confinement,

    so will lase before

  • 8/10/2019 sml157

    25/66

    J. Faist Quantum Electronics

    Gain in bulk semiconductor

  • 8/10/2019 sml157

    26/66

    J. Faist Quantum Electronics

    Fermi-Dirac distribution

  • 8/10/2019 sml157

    27/66

    J. Faist Quantum Electronics

    Adding doping

  • 8/10/2019 sml157

    28/66

    J. Faist Quantum Electronics

    Quasi-Fermi levels

  • 8/10/2019 sml157

    29/66

    J. Faist Quantum Electronics

    Gain condition

  • 8/10/2019 sml157

    30/66

    J. Faist Quantum Electronics

    Gain computation

  • 8/10/2019 sml157

    31/66

    J. Faist Quantum Electronics

    Gain versus injection

  • 8/10/2019 sml157

    32/66

    J. Faist Quantum Electronics

    Density of states

  • 8/10/2019 sml157

    33/66

    J. Faist Quantum Electronics

    Quantum well

  • 8/10/2019 sml157

    34/66

    J. Faist Quantum Electronics

    Threshold condition

  • 8/10/2019 sml157

    35/66

    J. Faist Quantum Electronics

    Threshold condition

  • 8/10/2019 sml157

    36/66

    J. Faist Quantum Electronics

    1984 InGaAs / AlGaAs strained QW laser

    1988 AlGaAs / GaAs VCSEL

    (CW, 300K)(Tokyo Institute of Technology)

    1994 InGaAs / AlInAs / InP Quantum Cascade Laser

    (pulsed operation, cryogenic temperatures)

    (Bell Labs)

    1995 InGaN/AlGaN/GaN blue laser diode

    (pulsed operation, cryogenic temperatures)

    (Nichia Chemicals)

    1996 InGaN/AlGaN/GaN blue laser diode

    (CW, 300K)

    (Nichia Chemicals)

    1998 AlGaAs / GaAs Quantum Cascade Laser

    (pulsed operation, cryogenic temperatures)(Thomson-CSF)

    2002 InGaAs / AlInAs / InP Quantum Cascade Laser

    (CW, 300K)(University of Neuchtel)

    1962 First GaAs laser diode

    (pulsed operation, cryogenic temperature)

    (General Electric Research Labs)

    1970 AlGaAs / GaAs DH laser diode

    (CW, 300K)

    (Ioffe Institute, Bell Labs)

    1974 AlGaAs / GaAs DFB laser diode

    1976 GaInAsP / InP DH laser diode at 1.2!m

    (CW, 300K)

    (Lincoln Labs)

    1977 InGaAsP / InP QW laser

    (Urbana University)

    1978 AlGaAs / GaAs QW laser

    (Urbana University)

    1979 InGaAsP / InP VCSEL

    (pulsed operation, 77K)

    (Tokyo Institute of Technology)

    Laser diodes:milestones

  • 8/10/2019 sml157

    37/66

    J. Faist Quantum Electronics

    1962: GaAs homojunction laser

    GaAs p-n-junctiondoped with Te (n-type)

    and Zn (p-type)

    Polished facets

    Pulsed operation @ 77

    K

    Jth= 20000 A/cm2

    Quist, APL, 1, 91, 1962

  • 8/10/2019 sml157

    38/66

    J. Faist Quantum Electronics

    1970: single-/double-heterostructure laser

    SH-structure provides e-confinement only

    Holes are less mobile

    Reduce Ith

    to 11000 A/cm2

    DH-structure provides e-and hole confinement

    Ithgets reduced to 2300 A/cm2

    Smaller active region area

    Panish, APL, 16, 326, 1970

  • 8/10/2019 sml157

    39/66

    J. Faist Quantum Electronics

    1979: SQW laser

    QW structure thanks toMOCVD growth

    20 nm thickness Ith= 2600 A/cm

    2(today10 x better !)

    No waveguide layers

    (QW guides optically)

    Quantization in QW

    Dupuis, APL, 34, 265, 1979

  • 8/10/2019 sml157

    40/66

    J. Faist Quantum Electronics

    1986: Strained QWs

    Strained InGaAs/GaAsQW

    Optical waveguide(GRINSCH-structure)

    Ithnow at 200 A/cm2

    >30 mW output power

    Low loss optical WG

    Fekete, APL, 49, 1659, 1986

  • 8/10/2019 sml157

    41/66

    J. Faist Quantum Electronics

    Development of semiconductor lasers

    Development triggeredby growth techniques

    1962: Bulk crystals

    1970: LPE thin layers

    1979: MOCVD/MBEQWs

    1985: strained layers byMOCVD

  • 8/10/2019 sml157

    42/66

    J. Faist Quantum Electronics

    Separate confinement

    "= 0.2m

    - More or less

    Gaussian mode

    - Strongly confined

    #= 1.7%

  • 8/10/2019 sml157

    43/66

    J. Faist Quantum Electronics

    Materials and processing

    Material choice: wavelength

    Growth technology

    Processing steps Cavity geometries: DFB, DBR, VCELS,

  • 8/10/2019 sml157

    44/66

    J. Faist Quantum Electronics

    Molecular Beam Epitaxy

  • 8/10/2019 sml157

    45/66

    J. Faist Quantum Electronics

    MBE growth reactor

  • 8/10/2019 sml157

    46/66

    J. Faist Quantum Electronics

    FABRICATION STEPS FOR A SEMICONDUCTOR LASER

    1- SUBSTRATE 2- EPITAXIE 3- LASER PROCESSING

    4- FACETS CLEAVING 5- SINGLE CHIPPREPARATION 6- MOUNTING, BONDING

  • 8/10/2019 sml157

    47/66

    J. Faist Quantum Electronics

    Semiconductor ridge laser

    n-dopedSubstrat

    eActive region

    Polymer BCB

    or different typeof insulator

    Ridge laser

    AuGeNiAu

    CrAu

    AuGeNiAu

  • 8/10/2019 sml157

    48/66

    J. Faist Quantum Electronics

    RIDGE LASER WITH POLYMER

    10 m

  • 8/10/2019 sml157

    49/66

    J. Faist Quantum Electronics

    Laser characteristics

    Power

    Threshold current

    Slope efficiency

    Beam properties

    Far-field/near field

    Linewidth (Henry)

    Modulation, noise

  • 8/10/2019 sml157

    50/66

    J. Faist Quantum Electronics

    Applications

    Telecommunications

    modulation, tunability

    Sensing

    wavelength, tunability

    Pumping of Solid-state lasers

    Power, efficiency

    Processing

    Power, wavelength, efficiency

  • 8/10/2019 sml157

    51/66

    J. Faist Quantum Electronics

    Semiconductor lasers features

  • 8/10/2019 sml157

    52/66

    J. Faist Quantum Electronics

    Optical Power

  • 8/10/2019 sml157

    53/66

    J. Faist Quantum Electronics

  • 8/10/2019 sml157

    54/66

    J. Faist Quantum Electronics

    Light vs current

  • 8/10/2019 sml157

    55/66

    J. Faist Quantum Electronics

    Beam Profile

    Semiconductor lasers

    have wide divergence

    because of narrow emitter

    120 deg for the example!

  • 8/10/2019 sml157

    56/66

    J. Faist Quantum Electronics

    Quantum Cascade Lasers

  • 8/10/2019 sml157

    57/66

    J. Faist Quantum Electronics

    Material coverage

  • 8/10/2019 sml157

    58/66

    J. Faist Quantum Electronics

    Interband vs intersubband

    intersubband:

    E

    k||

    Interband:

    k||

    E

    flexibility in tailoring wavefunctionsand energiesatomic-like joint density of stateshort lifetime (~1ps)

    Photon energy limited by gap2D joint density of statelong lifetime (~1ns)

  • 8/10/2019 sml157

    59/66

    J. Faist Quantum Electronics

    Are these semiconductors transparent?

  • 8/10/2019 sml157

    60/66

    J. Faist Quantum Electronics

    Intersubband absorption

    0

    0.5

    1.0

    1.5

    120 130 140 150 160

    Photon energy (meV)

    Absorbance

    10K

    !"= 5meV

    Atomic - like transition!= 3-300m

    Mid-Infrared Terahertz

  • 8/10/2019 sml157

    61/66

    J. Faist Quantum Electronics

    Needed for a laser:

    An optical transition

    Population inversion:

    need to engineer lifetimes

    $up > $dn

    Low loss optical resonator

    long lifetime

    short lifetime

  • 8/10/2019 sml157

    62/66

    J. Faist Quantum Electronics

    Milestones: proposals

    1986-93: Proposals for QCs usingresonant tunneling in superlattices:

    F. Capasso et al, JQE (1986)

    H. C. Liu et al, JAP (1988)

    1971: R. Kazarinov and R.

    Suris propose usingintersubband transitions in a

    biased superlattice for lightamplification

    R. F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

  • 8/10/2019 sml157

    63/66

    J. Faist Quantum Electronics

    Quantum cascade laser

    1994: First intersubband laser (quantum cascade laser) isdemonstrated in Bell Labs

    Tmax = 125K (pulsed), Pmax = 10mW, != 4.26m

    J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A.L. Hutchinson, A. Y. Cho, Science 264, 553 (1994)

  • 8/10/2019 sml157

    64/66

    J. Faist Quantum Electronics

    Cascade

    Cascade:-1 electron may generate many photons

  • 8/10/2019 sml157

    65/66

    J. Faist Quantum Electronics

    High temperature DFB-CW QC source

    Narrow gain 2Ph design

    Low active region doping

    Standard mounting

    Uncoated device

    Jth=1.29 kA/cm2

    Tmaxcw of 400 K !!!

    A. Wittmann et al., unpublished

  • 8/10/2019 sml157

    66/66

    QCL Performances